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A B S T R A C T   

The spatial representativeness (SR) of air quality monitoring stations is an important parameter when using site 
observations for air quality evaluation and health assessment. In this study, by using daily 1-km-resolution PM2.5 
concentrations from China High Air Pollutants dataset from 2016 to 2020, we adopted a Concentration Similarity 
Frequency method to estimate SR of the current PM2.5 stations in 25 cities over Yangtze River Delta (YRD) in 
Eastern China. These stations were further adjusted based on our proposed optimization scheme. For the current 
stations, SR areas cover 68.53% of urban area and 79.63% of urban population in YRD, but only cover 25.82% of 
rural area and 40.50% of rural population. Additionally, annual population-weighted mean (PWM) PM2.5 based 
on SR is more accurate for urban regions than rural regions. Compared to full coverage PWM PM2.5, the 
attributable deaths using SR-based PWM PM2.5 for urban and rural regions of YRD were overestimated by 1.04% 
and 4.09%. These overestimations were only 0.10% and 2.26% when using the optimized stations. Applying the 
optimization scheme also led to a 25.71% reduction in the number of stations. Our findings would provide a 
valuable reference for deploying new stations in YRD, especially in rural regions.   

1. Introduction 

Spatial representativeness (SR) is an important parameter when 
interpreting measured data from air quality monitoring stations (Righini 
et al., 2014; Shi et al., 2018). Regarding health assessment, SR is useful 
to quantify population exposure to the atmospheric pollution measured 
in a given station (Piersanti et al., 2015). Besides, optimizing air quality 
monitoring network also should take SR into account to cover large 
spatial area with the minimum number of sites (Hao & Xie, 2018; Ikeda 
et al., 1981). Moreover, SR can provide useful information on the 
point-grid matching tasks, such as data assimilation in air quality models 
(Elbern et al., 2007) and validating satellite-derived air pollution con
centration (Piersanti et al., 2015). Overall, SR is one of the most 
important factors to evaluate the layout of air quality monitoring 
stations. 

As the nationwide monitoring network in China has become 
increasingly dense since 2013 (Zhai et al., 2019), it is valuable to esti
mate and evaluate SR performance of these stations. Such analyses are 
particularly urgent from an urban-rural difference perspective given a 
severe imbalance of spatial distribution of stations in China, with most 
sites being located in urban areas (Gao et al., 2020; Wei et al., 2023). To 
date, several studies have investigated SR of air quality monitoring 
stations in China (Costabile et al., 2006; Hao & Xie, 2018; Hohenberger 
et al., 2021; Ma et al., 2019; Shi et al., 2018; Yu et al., 2018). Most of 
these previous studies were limited to single city, and based on the 
specific measurement campaigns with dense monitoring networks or air 
quality models with high spatiotemporal resolution. However, it is hard 
to apply these methods to investigate a large research area since they are 
expensive or require more computational cost. By contrast, using 
satellite-based air pollution data is a cost-effective method to examine 
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SR over a large study area. For instance, Yu et al. (2018) combined 
remote-sensing data with the stratified sampling approach to assess SR 
of monitoring stations in Beijing-Tianjin-Hebei. Yet, their SR estimates 
may suffer uncertainty due to a coarse spatial resolution of satellite 
product (0.125◦ × 0.125◦). Here, we use satellite-derived 1 km resolu
tion air pollutant data to estimate SR of stations in YRD, and further 
investigate their differences between urban and rural regions. 

SR estimation can be used to improve health assessment from site 
observation. Specifically, for estimating city-level air pollution expo
sure, SR can provide information on the population weights of different 
stations in a given city. Numerous studies have used site-based obser
vation for health assessment and generally directly averaged air pollu
tion data from each site within a city to derive the exposure 
concentrations (e.g., Bai, Gao, et al., 2022; Chen et al., 2017; Guan et al., 
2021; Shi et al., 2021; Song et al., 2017). This strategy assumes the equal 
population weight of different stations, which would likely result in 
uncertainty in health assessment. Additionally, for rural regions without 
deploying air quality monitoring stations, some rural population may be 
covered by SR areas of urban sites; consequently, in these cases, SR 
estimation can be also used to assess rural air pollution exposure. To 
date, such studies are few. Thus, one important objective of this study is 
to estimate health assessment by using SR, and further examine their 
uncertainties. 

Air quality monitoring stations in China are primarily deployed in 
urban regions (Gao et al., 2020), and tend to be clustered in areas with 

poor air quality, such as in street canyons and city centers (Yu et al., 
2018). Consequently, the stations may have poor SR, especially in rural 
areas. Additionally, according to ‘technical regulation for selection of 
ambient air quality monitoring stations’ (on trial) (HJ 664–2013) 
released in China in 2013 (MEPC, 2013), the principles and re
quirements for determining station’s location are specified. However, 
the method for optimizing the network stations is not described in detail 
in HJ 664–2013 (Bai et al., 2017). Therefore, optimizing air quality 
monitoring network in China is important for efficient monitoring of air 
quality. Several studies used SR estimations to adjust existing moni
toring networks in China (Costabile et al., 2006; Hao & Xie, 2018; Yu 
et al., 2018). Yet, these studies did not further investigate health 
assessment from optimized stations. To this end, this study not only 
optimizes the current stations, but also systematically evaluates the 
optimized stations with respect to SR performance and health 
assessment. 

This study aims to investigate SR of the current air quality moni
toring stations in Yangtze River Delta (YRD) using multi-year satellite- 
derived air pollutant data with 1 km spatial resolution. Given that par
ticulate matter with an aerodynamic diameter of 2.5 μm (PM2.5) or less 
is the primary pollutant in most cities in China (Lv et al., 2015), we only 
focus on SR of PM2.5 stations. Additionally, we analyze the difference of 
SR performance between urban and rural regions. Furthermore, PM2.5 
exposure concentrations and deaths attributable to PM2.5 exposure are 
estimated by using SR, and their uncertainties are also examined. 
Finally, we propose an optimization approach to adjust the current 
network stations, and further evaluate SR performance and health 
assessment based on the optimized stations. 

The remainder of this paper was organized as follows. Section 2 
introduced data and methods used to analyze SR performance and 
optimize the layout of stations. The results were presented in Section 3. 
Section 4 discussed the limitation and provided some policy recom
mendations. Finally, the conclusions were made in Section 5. 

2. Data and methods 

The main data sets used in this study were briefly listed in Table 1. 
Note that the different data sets should be restricted to the same year. 
However, using single-year PM2.5 data may cause a large uncertainty in 
SR estimates. This study does not aim to provide an accurate estimate of 

Table 1 
Summary of the data sets in this study.  

Dataset Content Spatial 
resolution 

Temporal 
resolution 

Period for 
this study 

ChinaHighPM2.5 PM2.5 1 km × 1 
km 

Daily 2016–2020 

GPWv4 Population 1 km × 1 
km 

Annual 2020 

Seventh China 
Census 

Population City-level – 2020 

GBD 2019 Mortality 
rate 

National- 
level 

Annual 2019 

GUB_Global_2018 Urban 
boundary 

30 m × 30 
m 

– 2018  

Fig. 1. (a) The spatial representativeness (SR) areas of existing PM2.5 monitoring stations (triangles) in Yangtze River Delta, and orange (green) areas stand for urban 
(rural) SR areas. Panel (b) presents the frequency distribution of urban (orange) and rural (green) SR sizes of stations. 
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attributable deaths for a specific year. One of the objectives of this work 
is to give robust SR estimates using multi-year PM2.5 data, and further 
apply the SR estimates to calculate attributable deaths. The SR-based 
estimates of attributable deaths are compared to those attributable 
death estimates using the multi-year average of PWM PM2.5. Thus, the 
above calculation scheme is not designed to provide health assessments 
for a specific year, and it can be treated as a sensitivity experiment to 
explore the uncertainty of SR-based health assessments. 

2.1. Data sets 

This study focused on the YRD region, which is located in Eastern 
China and contains a total of 26 cities. This region represents the 
strongest economy power in China, but is also one of the regions with the 
heaviest air pollution in China (Bai et al., 2021; Yang et al., 2019). 
Among those cities in YRD, Zhoushan has the smallest land area, but the 
city’s population density is not the lowest. However, we excluded this 
city because the assessment of SR of PM2.5 monitoring stations in the city 
may suffer from a large uncertainty, given that Zhoushan is surrounded 
by sea and PM2.5 data used in the study are unavailable in water area. 
Finally, we estimated SR of 210 p.m.2.5 monitoring stations in 25 cities 
in YRD. The spatial distribution of these current stations is shown in 
Fig. 1a, and the specific cities are listed in Table 2. The details of the data 
used in this study are introduced as follows. 

(1) Gridded daily PM2.5 data. We estimated SR by using the 1-km-res
olution daily PM2.5 concentrations (i.e., ChinaHighPM2.5) 
collected from the CHAP data set (https://weijing-rs.github.io 
/product.html). This dataset was generated from the combined 
MODIS/Terra + Aqua MAIAC AOD products together with other 
auxiliary data using a newly developed space-time extremely 
randomized trees model (Wei et al., 2020, 2021). The daily PM2.5 
estimates have high accuracy with an average cross-validation 

coefficient of determination of 0.92. Here, we employed the 
ChinaHighPM2.5 data for the period from 2016 to 2020 to ensure 
that more samples could be collected.  

(2) Urban boundary data. The urban boundary data in 2018 were 
applied to identify whether each grid (1 km × 1 km) in YRD 
corresponds to urban grid or rural grid (Li et al., 2020). The data 
were generated by using the global artificial impervious area data 
(Gong et al., 2020), and can be freely accessed from http://data. 
ess.tsinghua.edu.cn/gub.html. Urban areas in YRD can be seen in 
Fig. S1.  

(3) Population and mortality data. Population data with 1 km spatial 
resolution for 2020 were from the Gridded Population of the 
World, Version 4 (Doxsey-Whitfield et al., 2015), and were ob
tained at https://sedac.ciesin.columbia.edu/data/collection/ 
gpw-v4. City-level population data for 2020 from the Seventh 
China Census were also used to adjust the above gridded popu
lation data: for a given city, we scaled the gridded population 
counts by the ratio of the city’s total population from census data 
to gridded data. Data on the age structure at national level for 
2019, as well as the age specific and disease-specific mortality 
were obtained from Global Burden of Disease Study 2019 (GBD 
2019) dataset (https://vizhub.healthdata.org/gbd-compare/). 
Note that we estimated the attributable deaths based on the 
multi-year average of PM2.5. This is because that SR-based PM2.5 
exposure and corresponding attributable deaths were calculated 
by using SR estimates, which are mean values based on a large 
sample size of pairs of PM2.5 data from 2016 to 2020. 

2.2. Methods 

2.2.1. Spatial representativeness 
We estimated SR of PM2.5 monitoring stations by adopting a method 

of Concentration Similarity Frequency (CSF) defined as the following 

Table 2 
The performance of PM2.5 monitoring stations for 25 cities in Yangtze River Delta.  

City Results of existing stations (N = 210) Results of optimized stations (N = 156) 

Area ratio Population ratio Redundancy I_SR Area ratio Population ratio Redundancy I_SR 

Anqing 0.09 0.20 0.10 0.14 0.79 0.91 0.09 0.81 
Hefei 0.16 0.48 0.06 0.31 0.89 0.93 0.05 0.88 
Chizhou 0.16 0.36 0.06 0.25 0.91 0.91 0.04 0.89 
Chuzhou 0.16 0.24 0.09 0.19 0.91 0.93 0.08 0.88 
Ma’anshan 0.48 0.73 0.27 0.52 0.79 0.91 0.34 0.71 
Tongling 0.60 0.84 0.37 0.59 0.97 0.96 0.10 0.92 
Wuhu 0.72 0.89 0.13 0.75 0.93 0.96 0.13 0.88 
Xuancheng 0.12 0.23 0.07 0.17 0.87 0.90 0.04 0.87 
Changzhou 0.81 0.92 0.09 0.83 0.82 0.93 0.14 0.81 
Nanjing 0.88 0.94 0.07 0.87 0.91 0.95 0.10 0.89 
Nantong 0.20 0.35 0.04 0.27 0.83 0.91 0.03 0.85 
Suzhou 0.44 0.74 0.06 0.57 0.67 0.91 0.03 0.78 
Taizhou* 0.60 0.68 0.06 0.62 0.86 0.91 0.08 0.85 
Wuxi 0.47 0.75 0.07 0.59 0.76 0.91 0.05 0.81 
Yancheng 0.19 0.24 0.02 0.21 0.83 0.92 0.08 0.84 
Yangzhou 0.49 0.67 0.11 0.55 0.84 0.90 0.12 0.82 
Zhenjiang 0.52 0.63 0.07 0.56 0.93 0.93 0.13 0.87 
Shanghai 0.62 0.77 0.07 0.67 0.77 0.91 0.04 0.82 
Hangzhou 0.15 0.69 0.11 0.40 0.78 0.91 0.03 0.83 
Huzhou 0.18 0.36 0.01 0.27 0.86 0.91 0.05 0.86 
Jiaxing 0.36 0.45 0.07 0.39 0.91 0.93 0.11 0.87 
Jinhua 0.05 0.21 0.16 0.12 0.69 0.91 0.05 0.78 
Ningbo 0.04 0.22 0.08 0.13 0.83 0.90 0.03 0.85 
Shaoxing 0.28 0.62 0.13 0.42 0.83 0.91 0.02 0.86 
Taizhou** 0.11 0.31 0.05 0.21 0.89 0.91 0.04 0.88 

N: the number of stations; I_SR: the index for evaluating SR performance of stations (see Section 2.2.3 for details); Taizhou* from Jiangsu province; Taizhou** from 
Zhejiang province. 
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(Piersanti et al., 2015):  

where Fsite (Xgrid, Ygrid) is a frequency function to determine whether a 
grid point (Xgrid, Ygrid) is included in SR area of a site (Xsite, Ysite). PM2.5 
(X, Y, t) represents surface concentration field from PM2.5 data at loca
tion (X, Y) at time t. Flag is the concentration similarity at time tk by 
comparing ΔPM2.5/PM2.5 with a threshold of 20% (Piersanti et al., 
2015). We used gridded daily PM2.5 data from 2016 to 2020 to match 
with the PM2.5 site; Nt is the number of successfully matched PM2.5 data 
pairs for the site. To robustly calculate the frequency function Fsite (Xgrid, 
Ygrid), we set the minimum value of Nt as 180 (about 10% of PM2.5 image 
count from 2016 to 2020). We assumed the maximum SR area is a box of 
100 km × 100 km centered on the site. Nt for each 100 km × 100 km box 
for each PM2.5 site in YRD can be seen in Fig. S2, which shows that 
nearly all grids within each box meet the threshold of 180 except for 
grids in water region. After calculating Fsite (Xgrid, Ygrid) for each grid 
point in the box, SR area of the site was assessed as the area where the 
condition Fsite (Xgrid, Ygrid) > 0.9 is met on multi-year basis (Piersanti 
et al., 2015). 

2.2.2. Optimization approach for adjusting current stations 
We proposed an optimization approach to adjust the layout of the 

current PM2.5 monitoring stations for more population covered by SR. 
This approach includes three major steps. First, we estimated SR area for 
each grid (1 km × 1 km) in a given city, and subsequently calculated 
populations corresponding to these SR areas. Second, the grids were 
sorted by populations, and the first grid point was selected as one of the 
optimized stations. Third, for all grids except the selected one, the 
above-mentioned two steps were repeated until population covered by 
the overall SR area of all selected grids reached a threshold (90% of 
population of the city). Note that if SR area of a grid overlaps SR areas of 
the selected grids in the first step, then the overlapping area was cut out 
from SR area for this grid. 

In the first step of the optimization approach, we did not use the data 
of the current PM2.5 stations; we treated each grid point in the study area 
as a potential PM2.5 station and evaluated SR performance for these grid 
points. The optimization approach in the present study only considered 
the SR and population. This approach aims to provide an accurate health 
assessment using site-based PM2.5 observations. The actual site selection 
should consider several other aspects besides SR, e.g., the category of 
monitoring sites (industrial, traffic, and port stations) (MEPC, 2013). 
However, it is hard to obtain data on such categories of land use in the 
entire YRD region. Information on different categories of current sta
tions is also unavailable. To improve the optimization approach, we plan 
to perform city-level analysis in the future, considering the actual site 
selection requirements. 

2.2.3. Evaluation of SR performance 
We developed an index (I_SR) to comprehensively evaluate SR per

formance of stations for a given city i, which is defined as the following: 

I SRi =
r areai + r popi

eRi + 1
(2)  

where r_areai is the ratio of the overall SR area of all stations in city i to 
city area; r_popi is the ratio of the population covered by the overall SR 

areas to city population; Ri represents the redundancy of stations defined 

as the following formula (Bai, Yan, et al., 2022): 

Ri =

∑n

j=2
(j − 1) × Sij

(n − 1) × Si
(3)  

where n is the number of stations in city i, and Si is the overall SR area of 
n stations, and Sij is the overlap SR area. equation (3) implies that a 
weight of overlap SR area (Sij) is positively correlated with the number 
of stations (i.e., j) that contribute to this overlap area. The weight is 
assigned as j-1 (j ≥ 2) to make the maximum Ri be 1. Ri ranges from 0 to 
1, 0 indicating no overlap area and thus no redundancy in SR, and 1 
indicating that the SR areas among n stations are exactly the same. 

I_SR comprehensively takes into account the spatial coverage of SR, 
population coverage of SR and redundancy of stations. This index ranges 
from 0 to 1, with larger values meaning better SR performance. 

2.2.4. Estimating deaths attributable to PM2.5 pollution 
Deaths attributable to exposure to annual mean PM2.5 were esti

mated with equation (4), following a method from the GBD 2019 project 
(GBD 2019 Risk Factors Collaborators): 

Mi(z)=
∑

a

∑

d

(

POPi,a ×MBi,a,d ×
RRa,d(z) − 1

RRa,d(z)

)

(4)  

where i, a, and d represent city, age group and cause of death, respec
tively; M denotes the attributable deaths at exposure level z; POP stands 
for the population; MB is the baseline mortality rate. RR(z) is the relative 
risk associated with exposure at level z. Note that we used national-level 
age group and MB from GBD 2019 given that these city-level data are 
unavailable. 

We estimated five mortality endpoints associated with PM2.5 pollu
tion, including stroke, ischemic heart disease (IHD), chronic obstructive 
pulmonary disease (COPD), lung cancer (LC) and lower respiratory 
infection (LRI). Additionally, we applied an updated RR from a recent 
study (McDuffie et al., 2021), which was based on a Meta 
Regression-Bayesian, Regularized, Trimmed (MR-BRT) spline from the 
GBD 2019. 

RR is based on annual population-weighted mean (PWM) PM2.5. 
Here, calculating SR-based PWM PM2.5 is based on the following 
formula: 

PWMSR,i =

∑

j

(
PMj × POPSR,j

)

∑

j
POPSR,j

(5)  

where PWMSR,i is SR-based PWM PM2.5 for a given city i; PMj is annual 
PM2.5 concentration at station j and POPSR,j is population covered by SR 
area of station j. To examine their reliability, SR-based PWM PM2.5 
values were further compared to PWM PM2.5 calculated by using full 
coverage satellite-derived PM2.5 and gridded population data (referred 
to as full coverage PWM PM2.5). 

A flow chart of this study is depicted in Fig. S3. Note that, for a given 
station in a given city, SR area of the station frequently covers rural areas 
in other cities. We consider this situation only for plotting the SR area for 

Fsite
(
Xgrid ,Ygrid

)
=

∑Nt

k=1
Flag

Nt
,where Flag=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,
⃒
⃒PM2.5(Xsite, Ysite, tk) − PM2.5

(
Xgrid ,Ygrid , tk

)⃒
⃒

PM2.5(Xsite,Ysite, tk)
< 0.2

0,
⃒
⃒PM2.5(Xsite, Ysite, tk) − PM2.5

(
Xgrid ,Ygrid , tk

)⃒
⃒

PM2.5(Xsite,Ysite, tk)
> 0.2

(1)   
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the entire YRD region. For other analyses, such as frequency distribution 
of SR area and city level performance of SR, we focus on SR area within 
the city in which the station is located. 

3. Results 

3.1. Spatial representativeness analysis for existing stations 

For existing PM2.5 monitoring stations in YRD, there is a large urban- 
rural difference in SR area. Urban (rural) SR areas are indicated by or
ange (green) areas in Fig. 1a. As can be seen, SR areas of the stations in 
YRD are mainly contributed by rural SR areas. The total area of rural SR 
(43487 km2) is about twice larger than that of urban area (20383 km2) 
(Fig. 1a). By contrast, the ratio of rural SR area to the entire rural area in 
YRD (25.82%) is much smaller than that for urban SR area (68.53%). 
This is likely due to the fact that almost all stations (93.33%) are located 
in urban areas (see triangles in Fig. 1a) in conjunction with a low ratio of 
urban area to entire YRD area (15.01%). Additionally, a difference in the 
frequency distribution of SR size between urban and rural areas is 
clearly observed, as shown in Fig. 1b. The frequency distribution is 
calculated by SR area of urban and rural regions represented by each 
station. Compared to urban results, the frequency distribution for rural 
areas shift to lower SR size (Fig. 1b), which suggests that small rural 
areas are frequently covered by SR areas. 

The urban-rural difference in SR at city level is further examined. 
Blue (red) bars in Fig. 2a show ratios of urban (rural) SR area to total city 
area for each city in YRD. Blue (red) asterisks in Fig. 2a stand for urban 
(rural) area to total city area. As can be seen in Fig. 2a, rural SR area is 
larger than urban SR area for all cities except Suzhou, Wuxi, Shanghai, 
Hangzhou, Jinhua and Ningbo. These exceptional cities generally 
correspond to cities where urban area is close to rural area (see blue and 
red asterisks in Fig. 2a). On the other hand, for most cities, population 
covered by rural SR areas is smaller than that covered by urban SR areas, 
as shown in Fig. 2b. Note that population ratio is higher than area ratio 
for urban SR (blue bars in Fig. 2), and it is opposite for rural SR (red bars 
in Fig. 2). This can be partially attributed to a stronger population ag
gregation effect for urban region than rural region (Gaughan et al., 
2016). 

Fig. 2 shows ratios of SR area to total city area and ratios of popu
lation covered by SR area to total city population. For some cities in 
Fig. 2, small ratios do not indicate poor performance of SR. For instance, 

ratio of urban SR area to total area of Chizhou city is only 0.92% (see 
blue bars in Fig. 2a). This low value is mainly due to the small size of the 
urban area in the city (1.4% of total city area). The ratio becomes 
65.71% after dividing the urban SR area by urban area in Chizhou city. 
To address these issues, we further calculated ratios of urban (rural) SR 
areas of stations in a given city to the corresponding city’s urban (rural) 
areas; these urban and rural area ratios for each city in YRD are shown in 
blue and red bars in Fig. 3, respectively. Additionally, blue (red) aster
isks in Fig. 3 show ratios of urban (rural) population covered by SR areas 
of stations in each city to the corresponding city’s urban (rural) popu
lation. For rural regions, SR performance is generally poor. Fig. 3b 
shows that there are only five cities where both rural area ratio and rural 
population ratio are higher 50%. Besides, there are nine cities with rural 
population ratios smaller than 20%, and these cities’ population is 
dominated by rural population except Ningbo (rural population domi
nated cities: Anqing, Hefei, Chizhou, Chuzhou, Tongling, Wuhu, Xuan
cheng, Nantong, Taizhou, Yancheng, Yangzhou, Zhenjiang, Huzhou, 
Jinhua, Shaoxing and Taizhou). By contrast, SR performs well for urban 
regions in YRD. As shown in Fig. 3a, both urban area ratio and urban 
population ratio are higher than 50% for 16 cities. 

3.2. Health assessment based on SR 

Combining the annual PM2.5 concentration at each station with 
population covered by SR area of the corresponding station, we esti
mated SR-based PWM PM2.5 for urban and rural areas in each city in 
YRD, and further investigated their uncertainties by comparing these 
estimates with the ones using gridded PM2.5 and population datasets. An 
illustration of this comparison is given in Fig. 4, where the left panel 
indicates that SR-based PWM PM2.5 for urban region is relatively accu
rate in most cities. The difference in urban PWM PM2.5 between using SR 
and full coverage data is less than 5% for all cities except Xuancheng 
(8.45%) in Anhui province (Fig. 4a). On the other hand, SR-based PWM 
PM2.5 for rural region is generally severely overestimated, even the one 
is overestimated by more than 10% for eight cities compared to full 
coverage PWM PM2.5, as shown in Fig. 4b. The reason for this over
estimation is that calculating SR-based PWM PM2.5 for rural region 
generally considers a minority of rural population living in highly 
polluted areas that covered by SR areas of stations; the calculation ig
nores most of rural population with low pollution exposure. By using SR- 
based PWM PM2.5, attributable deaths in the whole urban and rural 

Fig. 2. Blue (red) bars in panel (a) present area ratio of urban (rural) SR to total city area for each city in YRD, and blue (red) asterisks in this panel stand for urban 
(rural) area to total city area. Panel (b) is the same as (a) but for population ratio. 

H. Bai et al.                                                                                                                                                                                                                                      



Applied Geography 154 (2023) 102949

6

regions of YRD are 99.84 thousand (95% confidence interval (CI): 
74.80–123.63) and 80.40 thousand (95% CI: 60.40–99.39) respectively, 
and overestimated by 1.04% and 4.09% compared to those by using full 
coverage PWM PM2.5. The differences of attributable deaths for each city 
are shown in Fig. 5. As can be seen, the difference for urban regions is 
relatively small, ranging from − 1.53% in Ningbo to 5.03% in Xuancheng 
(see black asterisks in Fig. 5b). By contrast, the difference for rural re
gions varies greatly with cities, and is more than 5% in about half of the 
cities in YRD (black asterisks in Fig. 5d). Additionally, in rural popula
tion dominated cities except for Shaoxing, attributable deaths using full 
coverage PWM PM2.5 in rural regions are higher than these in urban 
regions, with an increase ranging from 10.19% in Wuhu to 851.53% in 
Chizhou. This urban-rural difference expands when using SR-based 
PWM PM2.5 and covers a range from 3.13% in Shaoxing to 909.63% 
in Chizhou. For attributable deaths based on SR-based PWM PM2.5, rural 
estimates are >100% higher than urban estimates for half of the cities 

where population is dominated by rural population. 

3.3. Analysis for optimized stations 

The results above show that the layout of the current stations is 
somewhat unreasonable, especially for cities where population is 
dominated by rural population. In these cities, SR areas of the current 
stations cover a limited rural population, which leads to a high uncer
tainty in rural health assessment. Thus, we developed an optimization 
approach to adjust the current stations to account for more rural pop
ulation. The distribution of the optimized stations is shown in Fig. 6a. As 
can be seen, comparing to the existing stations, the number of the 
optimized stations decreases by 54 (25.71%) while SR area of the 
optimized stations increases nearly twice for the entire YRD region. The 
results are partly because the optimized stations include more rural 
stations with larger SR size (Fig. 6b). 

Fig. 3. Blue (red) asterisks denote ratios of urban (rural) population covered by SR areas of stations in each city to the corresponding city’s urban (rural) population. 
Blue (red) bars stand for ratios of urban (rural) SR areas of stations in each city to the corresponding city’s urban (rural) areas. 

Fig. 4. Comparisons of annual population-weighted mean (PWM) between using SR estimates and using full coverage PM2.5 data for (a) urban and (b) rural regions. 
Different color points correspond to cities in different provinces or municipality. 
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For the optimized stations in the entire YRD, there is a smaller urban- 
rural difference in SR area than that for the current stations. Specifically, 
the ratio of rural SR area to the entire rural area in YRD (84.49%) is 
comparable to that for urban SR area (93.93%). Additionally, both about 
95% of urban and rural population in YRD are covered by SR areas of the 
optimized stations. These small urban-rural differences are also 
observed at city level (not shown). 

SR-based PWM PM2.5 is more accurate for most cities after applying 
the optimized stations than the existing stations, and this improvement 
is particularly obvious in rural regions (Fig. 4 vs. 7). Based on the 
optimized stations, the difference in rural PWM PM2.5 between using SR 

estimates and full coverage data is less than 5% for 19 out of 25 cities 
(Fig. 7b), and the difference in urban PWM PM2.5 is even less than 1% for 
about half of the cities (Fig. 7a). Note that both urban and rural PWM 
PM2.5 are still generally overestimated even after applying optimized 
stations (Fig. 7). One possible reason for this is that the optimized sta
tions tend to be located in densely populated areas coupled with heavy 
pollution emissions (Bi et al., 2019, van Donkelaar et al., 2006). 

The improvement in attributable deaths assessment is also observed 
for most cities by applying the optimized stations (Figs. 5 and 8), 
especially for cities where population is dominated by rural population 
(red asterisks in Fig. 5). For instance, for Xuancheng City where about 

Fig. 5. Deaths attributable to PM2.5 exposure by using full coverage PWM PM2.5 for (a) urban and (c) rural regions in each city in YRD. The differences in urban and 
rural deaths between using full coverage PWM PM2.5 and using SR-based PWM PM2.5 are shown in (b) and (d) respectively, and black (red) asterisks stand for results 
based on existing (optimized) monitoring stations. Note that we calculated full coverage PWM PM2.5, SR-based PWM PM2.5 and the attributable deaths by using the 
multi-year average of PM2.5 data from 2016 to 2020. 

Fig. 6. (a) The spatial representativeness (SR) areas of optimized PM2.5 monitoring stations (triangles) in Yangtze River Delta, and orange (green) areas stand for 
urban (rural) SR areas. Panel (b) presents the frequency distribution of urban (orange) and rural (green) SR sizes of optimized stations. 
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90% of population is located in rural regions, attributable deaths are 
overestimated by 5.03% and 8.53% for urban and rural regions 
respectively when using the existing stations. Correspondingly, after 
applying the optimized stations, the differences in attributable deaths 
between using SR-based PWM PM2.5 and full coverage PWM PM2.5 are 
only − 1.98% and 0.50% for urban and rural regions, respectively. For 
the entire urban and rural areas in YRD, these differences are 0.10% and 
2.26%. 

To comprehensively evaluate the performance of the optimized sta
tions, four factors regarding SR were estimated for each city in YRD, 
including area ratio, population ratio, redundancy and I_SR (see Section 

2.2.3 for details). As shown in Table 2, for the optimized stations, both 
area ratio and population ratio substantially increase for all cities in YRD 
compared to that based on the existing stations. Meanwhile, the 
redundancy of stations decreases for 16 out of 25 cities. In addition, we 
can see a clear increase in I_SR, except two cities (Changzhou and 
Nanjing) where I_SR changes little. Overall, the above results suggest 
that the layout of the optimized stations proposed by this study is 
reasonable. 

Fig. 7. Comparisons of annual population-weighted mean (PWM) between using SR estimates and using full coverage PM2.5 data for (a) urban and (b) rural regions. 
This figure is based on the optimized stations. 

Fig. 8. Deaths attributable to PM2.5 exposure by using SR-based PWM PM2.5 for (a) urban and (b) rural regions in each city in YRD. This figure is based on the 
optimized monitoring stations. 
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4. Discussion 

4.1. Policy recommendations 

Several reasons explain the unreasonable layout of the existing PM2.5 
stations in YRD. First, the location of existing stations is unsatisfactory. 
For about half of cities in YRD, SR areas of stations are not large enough 
to cover most of the residents. For example, based on the 9 existing 
stations in Nantong, the total SR area only covers 19.72% of the city area 
and 34.64% of the city population; after adjusting the locations of these 
stations, these values increase to 82.90% and 90.81%, respectively. 
Second, for most cities, there are too many urban stations, while rural 
stations are severely scarce. This situation may lead to the redundancy of 
stations in urban regions and the limited rural population covered by SR. 
Taking Hangzhou as an example, there are 15 urban stations and 2 rural 
stations. Correspondingly, the redundancy of stations is 11.19% and 
only 23.85% of the rural population is covered by SR areas. 

Given the above-mentioned reasons regarding the unreasonable 
layout of the existing PM2.5 stations in YRD, we proposed several policy 
recommendations. First, for cities with high redundancy of stations (e.g., 
Tongling), some urban stations with poor SR performance should be 
eliminated. Second, based on our results of the optimized stations, more 
rural stations should be deployed, especially for rural population 
dominated cities, e.g., Chizhou. Third, for some coastal cities (Taizhou 
and Ningbo), more stations should be deployed to capture large 
pollutant horizontal gradients influenced by a combination of land-sea 
breeze recirculation and emissions (Ding et al., 2004; Russo et al., 
2016). Finally, it is necessary to evaluate layout of PM2.5 stations from 
an SR perspective. This evaluation should systematically consider SR 
area, population coverage of SR and redundancy of stations. The study 
provided an alternative metric for policymakers to achieve these goals. 

4.2. Limitations 

A limitation of this study is the lack of comparison with previous 
results of SR. Our estimates of SR sizes vary greatly with stations, 
ranging from 2 to 3624 km2 for the existing stations. Previous studies 
have rarely reported SR of PM2.5 monitoring stations in YRD. Given that 
SR strongly depends on local meteorology and emissions (Righini et al., 
2014; Santiago et al., 2013; Vardoulakis et al., 2005), it is not appro
priate to directly compare SR studies across different regions. Never
theless, previous studies can still provide some useful references for SR. 
For example, Piersanti et al. (2015) reported an SR size of 224 km2 for a 
station located near coastline of Italy, and this estimate was much 
smaller than another one (800 km2) for an inland station. This 
coast-inland difference is also observed in our study (not shown). 
Additionally, Martin et al. (2014) found that the SR sizes ranging from 
75 to 300 grid cells (0.1◦ × 0.1◦) were more frequent for the Spanish 
PM10 rural background stations. Their estimates are much higher than 
our results of the optimized stations, most of which located in rural re
gions. Different from the previous studies above using model dataset, Shi 
et al. (2018) used a high-resolution network observation over an urban 
city in North China, and found that SR sizes of PM2.5 stations range from 
0.25 to 16.25 km2. Their estimates, however, are likely to be under
estimated due to the sparse distribution of stations. Further work is 
needed to confirm and validate our SR estimates, perhaps in combina
tion with model simulations. 

Another limitation of this work is that we only focus on PM2.5 when 
optimizing the current stations. A monitoring station usually observes 
multiple pollutants, such as ozone and oxides of sulfur and nitrogen. 
Thus, optimizing the network stations should consider the discrepancy 
in SR among different pollutants, which is needed to further investigate 
in the future. Additionally, for urban-rural difference in health assess
ment, we did not consider the difference in age structure between urban 
and rural areas. We also did not consider PM2.5 exposure due to different 
emission sources, such as rural population exposure to agricultural 

chemicals. It would be useful to explore these limitations in the future. 
Additionally, the optimized stations may fail to meet the site selec

tion principles and distribution requirements according to HJ 664–2013 
(MEPC, 2013). For example, one of the principles for the monitoring site 
layout is the stability of site location. But we relocated all the previous 
sites in the optimized scheme. Additionally, the site selection should 
consider the monitoring site category according to HJ 664–2013 (MEPC, 
2013). However, data on specific categories of land use (e.g., industrial, 
traffic, and port categories) are hard to obtain for the entire YRD region. 
Future work is needed to improve the optimized scheme by considering 
the category of sites and the stability of site location. 

5. Conclusions 

In this study, based on daily 1-km-resolution PM2.5 data, we esti
mated spatial representativeness (SR) of the current PM2.5 monitoring 
stations in the Yangtze River Delta (YRD). We also proposed an opti
mization approach to adjust the current network stations and compared 
the SR performance between the current stations and the optimized 
stations. Our results show that 68.53% of urban area and 79.63% of 
urban population are covered by SR areas of the current stations for the 
entire YRD region; these ratios are only 25.82% and 40.50% for rural 
area and rural population, respectively. After optimizing the layout of 
the current stations, the number of stations decreases from 210 to 156 
while SR area increases nearly twice for the entire YRD region. More
over, SR areas of the optimized stations cover about 95% of urban and 
rural population in YRD. The optimization strategy of this study, how
ever, only focused on PM2.5. Other pollutants, such as ozone, should be 
considered for air quality evaluation and management. Thus, future 
work on optimizing the network stations would need to consider SR 
estimates among different pollutants. 
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