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Abstract
Air pollution measurements from monitoring stations are widely used in health assessment, and it is important to take into 
account the spatial representativeness (SR) of stations when quantifying population exposure to air pollution measured in 
these stations. Using high-quality satellite-derived PM2.5 data with 1-km spatial resolution over Yangtze River Delta (YRD) 
from 2016 to 2020, this study estimates SR of 213 PM2.5 monitoring stations, and these SR estimates are further used to 
calculate annual population-weighted mean (PWM) PM2.5 and deaths attributable to PM2.5 exposure for each city in YRD. 
Our results show that SR areas of 213 stations totally account for 32.33% of the area of YRD, and the SR size varies greatly 
with stations. Additionally, we find that the city-level PWM PM2.5 based on SR is nearly always larger than that using full 
coverage satellite-derived data. The difference tends to decrease as the population ratio of SR area increases. For the entire 
YRD, attributable deaths using PWM PM2.5 based on SR are 182,009 (95% CI: 136,632–225,081), and are comparable to 
the ones derived using full-coverage satellite-derived data. Nevertheless, the relative change in attributable deaths is more 
than 6% in some cities due to the low population ratio of SR (less than 20%), which suggests that more monitoring stations 
should be deployed in these cities for human assessment.
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Introduction

Spatial representativeness (SR) is defined as the extent to 
which the monitoring data is meaningful and useful in a spa-
tial context, and is an important parameter for interpreting 
monitoring data (Righini et al. 2014). It should also be care-
fully considered when air quality measurements are used for 

data assimilation in air quality models (Elbern et al. 2007). 
Additionally, spatial representativeness is also useful to vali-
date satellite-derived air pollution concentration at a certain 
spatial resolution. Besides, spatial representativeness can 
provide useful information for optimal monitoring network 
design (Piersanti et al. 2015).

Some different methods have been investigated to esti-
mate the spatial representativeness of stations. The most 
straightforward method is based on the specific measure-
ment campaigns with dense monitoring networks (Blanchard 
et al. 2014; Shi et al. 2018; Vardoulakis et al. 2005). How-
ever, this method is expensive if a large number of samplers 
are deployed. Additionally, results based on the measure-
ment campaigns strongly depend on the spatial distribution 
of the samplers. Some methods use surrogate indicators to 
investigate concentration variability when measurements 
around sites are not available, such as emission sources 
(Righini et al., 2014) and land use characteristics (Janssen 
et al. 2012). Some methods are based on air quality mod-
els that can take the effects of emission and meteorology 
into account (Martin et al. 2014; Piersanti et al. 2015; San-
tiago et al. 2013). However, simulated results are subject to 
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emission data accuracy and different microphysical schemes 
(Baró et al. 2015; Cao et al. 2021; Schneider et al. 1997). 
Moreover, applying air quality models at a fine spatial reso-
lution requires more computational cost, and it is not an 
effective way to investigate a large research area. Alterna-
tively, using satellite-based air pollution data would be a 
cost-effective method since they can provide long-term data 
with high spatial resolution and wide coverage. Recent stud-
ies have developed the China-High-Air-Pollutants (CHAP) 
data set based on satellite remote sensing and machine 
learning (Wei et al. 2021, 2020). These high-resolution 
and high-quality data sets include seven major air pollut-
ants, and have great potential for investigating the spatial 
representativeness.

Many previous studies have used ground-based air pol-
lution data for human health assessment, but they did not 
consider the difference in population covered by spatial 
representativeness area of different sites (Bai et al. 2022; 
Chen et al. 2017; Dominici et al. 2006; Song et al. 2017); 
they generally directly averaged air pollution data from 
each site within a city to derive the exposure concentra-
tions, which may lead to uncertainty in health assessment. 
Thus, it is meaningful to combine the concept of spatial 
representativeness and ground-based air pollution data for 
health assessment.

The main objective of this study is to estimate the spatial 
representativeness of monitoring stations in Yangtze River 
Delta (YRD) by using the satellite-derived CHAP data with 
1-km spatial resolution. We focus on particulate matter with 
an aerodynamic diameter of 2.5 μm (PM2.5) since it is the 
primary pollutant in most cities in China (Lv et al. 2015). 
Furthermore, we apply the spatial representativeness to 
assess the exposure concentrations and deaths attributable to 
PM2.5. The remainder of this paper is organized as follows. 
“Data and methods” introduces data on PM2.5, population, 
and mortality, as well as methods for estimating the spatial 
representativeness and deaths attributable to PM2.5 pollu-
tion. The results are presented in “Results.” The discussions 
are made in “Discussion,” followed by the conclusions in 
“Conclusions.”

Data and methods

Study area

The study region is YRD, which is located in Eastern China 
and contains a total of 26 cities. The YRD region only 
covers 2.2% of the national land area (Hu et al. 2018), but 
accounts for 11.4% of the national population and 20.2% of 
the national gross domestic product in 2020 based on the 
latest statistical yearbook. In addition, YRD is one of the 
most polluted areas in China (Bai et al. 2021); however, 

annual mean PM2.5 concentrations over this region exhibited 
a significant downward trend in the past few years (H. Zhao 
et al. 2021a, b). According to the China Ecology and Enviro-
ment Bulletion 2020 (https://​www.​mee.​gov.​cn/), the annual 
mean concentration of PM2.5 in YRD in 2020 is 35 μg/m3.

Data sets

Monitoring stations and satellite‑derived PM2.5 data

The spatial representativeness (SR) of 213 stations in YRD 
was assessed by using the satellite-derived 1-km-resolution 
daily PM2.5 concentrations (i.e., ChinaHighPM2.5) col-
lected from the CHAP data set (https://​weiji​ng-​rs.​github.​io/​
produ​ct.​html). The ChinaHighPM2.5 was generated based 
on a newly developed space–time extremely randomized 
tree model by using MODIS/Terra + Aqua MAIAC AOD 
products together with other auxiliary data (Wei et al. 2021, 
2020). The daily PM2.5 estimates have high accuracy with a 
cross-validation coefficient of determination reaching 0.90. 
Note that PM2.5 estimations from the ChinaHighPM2.5 data 
set are 24-h average rather than mean values during the sat-
ellite overpassing period. One of the reasons for this is that 
satellite-based PM2.5 retrieval models using the PM2.5 24-h 
average may have better performance than those using the 
PM2.5 average during the satellite overpassing period (Han 
et al. 2018). Another reason is that PM2.5-related health 
effects are usually assessed by using 24-h average concen-
trations. Here, we employed the ChinaHighPM2.5 data for 
the period from 2016 to 2020 to ensure that more samples 
can be collected.

The spatial distribution of 213 stations in YRD is shown 
in Fig. 1. These sites are the state-controlled and non-back-
ground sites. This site category is selected because they are 
officially used to assess air quality at the city level or larger 
scale and are widely used in health assessment. To confirm 
the SR results, a case analysis in Zhoushan City was carried 
out based on ground-based PM2.5 measurements. Hourly 
PM2.5 concentrations data of 3 stations (the site codes are 
1258A, 1259A, and 1260A, respectively) in Zhoushan City 
from 2016 to 2020 were obtained from the China National 
Environmental Monitoring Center (CNEMC, http://​www.​
cnemc.​cn). Daily PM2.5 concentrations were computed 
from the hourly time series when more than 18 measure-
ments in a day were available (Barrero et al., 2015). Daily 
mean ground-based PM2.5 data within 24-h measurements 
are used to verify SR results from satellite-based PM2.5 
concentrations.

Population and mortality data

In this study, population data for 2020 were obtained 
from the Gridded Population of the World, Version 4 
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(Doxsey-Whitfield et al. 2015). Population estimates with 
1 km spatial resolution, available at https://​sedac.​ciesin.​
colum​bia.​edu/​data/​colle​ction/​gpw-​v4, were used. The pop-
ulation estimates for 2020 at city level from the Seventh 
China Census were also used to adjust the gridded popula-
tion data. Specifically, for a given city, we scaled the gridded 
values by the ratio of the city’s total population from census 
data to gridded data. Data on the age structure at the national 
level for 2019, as well as the age-specific and disease-spe-
cific mortality were obtained from Global Burden of Disease 
Study 2019 (GBD 2019) dataset (https://​vizhub.​healt​hdata.​
org/​gbd-​compa​re/).

Methods

Spatial representativeness

Spatial representativeness is defined as the spatial area over 
which the air quality data for a given monitoring site can be 
considered representative (Zoroufchi Benis and Fatehifar, 
2015). We combine the spatial coverage of SR and popula-
tion distribution for health impact assessment. SR analysis 
should also consider functional representation (e.g., indus-
trial, port and traffic sites). However, such sites are limited 
and corresponding information is not currently public except 
background station. Hence, this study only compares SR 
estimations between non-background and background sta-
tions (see “Discussion”). To assess the SR of the monitoring 
locations for PM2.5, we adopted a method of Concentration 
Similarity Frequency (CSF) defined as the following formula 
(Piersanti et al. 2015):

where Fsite (x, y) is a frequency function to determine 
whether the grid point (x, y) is included in the SR area of 

(1)Fsite(x, y) =

∑Nt

k=1
Flag

Nt

,whereFlag =

⎧
⎪⎨⎪⎩

1,
�PM2.5(Xsite ,Ysite ,tk)−PM2.5(x,y,tk)�

PM2.5(Xsite ,Ysite ,tk)
< 0.2

0,
�PM2.5(Xsite ,Ysite ,tk)−PM2.5(x,y,tk)�

PM2.5(Xsite ,Ysite ,tk)
> 0.2

the monitoring site (Xsite, Ysite). PM2.5(x, y, t) represents the 
surface concentration field from satellite-derived PM2.5 data. 
Nt is the number of pairs of PM2.5 data. Flag is the concen-
tration similarity at time tk by comparing ΔPM2.5/PM2.5 with 
a threshold of 20% (Piersanti et al. 2015). This work mainly 
focuses on state-controlled and non-background stations. 
According to the technical regulation for selection of ambi-
ent air quality monitoring stations in China (MEPC, 2013), 
a state-controlled and non-background station generally rep-
resents an area within the 0.5- to 4-km radius of this station. 
The maximum radius can be expanded to dozens of kilom-
eters over regions with slight spatial variation in air pollutant 
concentrations (MEPC, 2013). Therefore, we assumed that 
the maximum SR area is a box of 100 km × 100 km centered 
on a given site. After calculating Fi (x, y) for each grid point 
in the box, the SR area of the site was assessed as the area 
where the condition Fsite (x, y) > 0.9 is met on a multi-year 
basis (Piersanti et al. 2015).

Note that satellite-based PM2.5 used in this study suffers 
from data gaps due to AOD missing, which may influence 
the SR estimation. However, using 5-year satellite-based 
PM2.5 data produces enough samples to alleviate this issue. 
Specifically, the mean sample size of grid-site pairs within 
the 100 km × 100 km box is higher than 300 for 85% of 
stations in YRD. Thus, we would not expect this data gap 
issue to influence the estimated SR significantly. Further-
more, we plan to assess SR by using gap-free PM2.5 data 
in the future.

Estimating deaths attributable to PM2.5 pollution

Following a similar method of the GBD 2019 project 
(GBD 2019 Risk Factors Collaborators), we estimated 
deaths attributable to exposure to annual mean PM2.5 using 
the following equation:

Fig. 1   a The spatial representa-
tiveness (SR) areas of 213 PM2.5 
monitoring stations in Yangtze 
River Delta. SR sizes for these 
stations are categorized into 8 
bins, and shown in panel b 
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where POPi stands for the total population for city i; AgePi,a 
is the proportion of population with age a in the city i; 
MBi,a,d is the baseline mortality of disease d for people with 
age a in the city i; RRa,d is the relative risk for disease d in a 
population with age a. Five mortality endpoints associated 
with PM2.5 pollution were estimated in this study, including 
stroke, ischemic heart disease (IHD), chronic obstructive 
pulmonary disease (COPD), lung cancer (LC), and lower 
respiratory infection (LRI). We used the updated RR from 
a recent study (McDuffie et al. 2021), which was based on 
a Meta Regression-Bayesian, Regularized, Trimmed (MR-
BRT) spline from the GBD 2019. MR-BRT RR uses splines 
with Bayesian priors in order to avoid using relative risk 
estimates for active smoking (McDuffie et al. 2021). RR 
is a function of annual population-weighted mean (PWM) 
PM2.5 in each city. Note that we used national-level AgeP 
and MB from GBD 2019 given that these data at city level 
are unavailable.

Here, for a given city, SR-based PWM PM2.5 was calcu-
lated by weighting the annual PM2.5 concentration at each 
station in the city and population covered by the SR area of 
the corresponding station. To examine their reliability, SR-
based PWM PM2.5 values were further compared to those 
by using full coverage satellite-derived PM2.5 and gridded 
population data (referred to as full coverage PWM PM2.5).

Results

Spatial representativeness analysis

The coverage of SR areas for 213 stations in YRD is 
shown as orange areas in Fig. 1a. The orange areas are 
mainly located in the central area of YRD. The SR areas 
only account for 32.33% of the total area of YRD, and 
mainly correspond to urban areas. Figure 1 b shows SR 
area sizes for each station in YRD. About 70% of the sta-
tions correspond to SR size less than 700 km2. Generally, 
there is no obvious spatial pattern for SR sizes across 213 
stations in YRD (Fig. 1b), except for coastal areas where 
SR sizes are typically small and less than 200 km2.

We find a large variability in the size and shape of 
SR (Fig. 1). This variability is most likely related to the 
local meteorology, surface condition, and emissions, 
and has also been reported by previous studies (Martin 
et al. 2014; Piersanti et al. 2015; Shi et al., 2018). For 
instance, Piersanti et al. (2015) found a coast-inland dif-
ference in SR size, with lower values for sites in coastal 
areas. This finding is consistent with our results (Fig. 1b). 

(2)Mi =
∑
a

∑
d

(
POPi × AgePi,a ×MBi,a,d ×

RRa,d − 1

RRa,d

) The low SR estimations in coastal areas are partly because 
these areas are influenced by land-sea breeze recirculation 
and thus may exhibit a large pollutant horizontal gradient 
(Ding et al. 2004; Russo et al., 2016). Additionally, due 
to a large intra-urban spatial variability of PM2.5 concen-
trations in some cities in YRD (Liu et al., 2016), these 
regions may exhibit a large difference in SR estimations 
among different sites at a city level. Furthermore, previ-
ous studies have shown that SR areas have no fixed shape 
but with directional preference (Piersanti et al. 2015; Shi 
et al. 2018). They also found that SR areas were spatially 
discrete for some stations. These findings of the SR shape 
are in accordance with our results. Note that, by using the 
same method as ours, Piersanti et al. (2015) showed good 
performances in describing the size and the shape of the 
SR area. Hence, we would expect that the method used to 
estimate SR in this study is reasonable. Nevertheless, the 
difference in SR between different methods still needs to 
be examined in the future.

SR sizes are very small and less than 10 km2 in some 
cases. For instance, SR sizes for 3 stations in Zhoushan 
city located in the east of Zhejiang province range from 3 
to 6 km2. To verify such cases based on satellite-derived 
PM2.5 data, we used ground-based PM2.5 measurements to 
analyze the concentration similarity among these 3 adja-
cent stations in Zhoushan city. Specifically, the daily time 
series of PM2.5 at station 1260A is treated as the refer-
ence series (Fig. 2a) given that this station is located in 
the center of the other two stations. The relative change 
in daily PM2.5 between other stations and the reference 
station was then calculated (Fig. 2b), thereby estimating 
CSF (see “ Spatial representativeness” for details). As 
shown in Fig. 2b, the relative changes exceed the thresh-
old (± 20%) in many cases. The CSF values for paired 
stations of 1258A–1260A and 1259A–1260A are 0.80 and 
0.89, respectively, and both are less than the threshold of 
0.9. Therefore, stations 1258A and 1259A are not covered 
by the SR area of the 1260A station, despite the fact that 
their distances are very small (7 km for 1258A–1260A and 
12 km for 1259A–1260A). These results could support our 
conclusion about the low SR size for station 1260A using 
satellite-derived data.

Given that SR areas for two or more stations may overlap, 
we propose an indicator Ri to estimate how redundant sta-
tions are for a given city defined as the following formula:

where Si is the overall area of SR in a city i, n is the number 
of stations in which the SR area is fully or partially con-
tained in the city i. Sij stands for the overlap SR area contrib-
uted by j stations (j ≥ 2). Ri ranges from 0 to 1, 0 indicating 

(3)Ri =

∑n

j=2
(j − 1) × Sij

(n − 1) × Si
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no overlap area and thus no redundancy in SR, and 1 indicat-
ing that the SR areas among n stations are exactly the same.

Figure 3 shows the Ri for 26 cities in YRD. As can 
be seen, the redundancy of stations for 19 cities is less 
than 0.1, which suggests that the spatial distribution of 
stations is reasonable for most cities from a redundancy 
perspective. Note that the redundancy is relatively high for 
Ma’anshan (0.27) and Tongling (0.37), which is likely due 
to a combination of a concentrated spatial distribution of 
stations and the large SR sizes for these stations.

Appling SR for health assessment

Combining SR areas with the spatial distribution of popula-
tion, we can estimate the population ratio of SR areas to city 
areas for each city in YRD, as shown in Fig. 4. The popula-
tion ratio varies greatly with cities: the minimum value of 
4.42% appears in Zhoushan city; the values are less than 
30% for the additional five cities (i.e., Anqing, Chuzhou, 
Yancheng, Jinhua, and Ningbo); and only five cites have the 
population ratios above 90%, including Ma’anshan, Wuhu, 
Changzhou, Nanjing, and Zhenjiang. For the entire YRD 
region, the SR areas of all monitoring stations can only cover 
62.16% of the population (see the gray line in Fig. 4). We 
further examined the relationship between the population 

Fig. 2   a Daily time series of 
PM2.5 concentration from 2016 
to 2020 at station 1260A. Red 
(blue) line in b presents the dif-
ference in daily PM2.5 concen-
tration between station 1258A 
(1259A) and station 1260A

Fig. 3   The redundancy of stations for 26 cities in Yangtze River 
Delta. Different color bars correspond to cities in different provinces 
or municipality

Fig. 4   Population ratio of spatial representativeness (SR) area to city 
area for each city in Yangtze River Delta. Different color bars corre-
spond to cities in different provinces or municipality
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ratio of SR and the area ratio of SR. As shown in Fig. 5, 
the population ratio tends to increase with increasing area 
ratio. Note that there is one exceptional case in Hangzhou, 
where the SR area covers only 16.83% of the city area, but 
the population ratio of SR is up to 72.03%.

SR estimates were also used to calculate annual PWM 
PM2.5 for each city in YRD. Figure 6 a shows a scatter of SR-
based PWM PM2.5 and full-coverage PWM PM2.5 (see “Esti-
mating deaths attributable to PM2.5 pollution” for details). 
As can be seen, SR-based PWM PM2.5 values are higher than 
full-coverage PWM PM2.5 values for all cities in YRD except 
Nanjing (Fig. 6a). Compared to full-coverage PWM PM2.5 
for the entire YRD region (43.35 μg/m3), SR-based PWM 
PM2.5 overestimates by 6.30%. The overestimate is partly 
because most stations are located in urban areas with a high 
pollution level (Gao et al. 2020). Furthermore, the overesti-
mation may also be related to a positive relationship between 
PM2.5 concentration at each station and population covered 
by SR of each station, as shown in Fig. 7. Due to this rela-
tionship, SR-based PWM PM2.5 is mainly contributed by 
those stations that represent both high levels of population 
and PM2.5 concentration.

We further estimate deaths attributable to PM2.5 from dif-
ferent sources (i.e., full coverage PWM PM2.5 and SR-based 
PWM PM2.5). Figure 8 a shows attributable deaths by using 
full-coverage PWM PM2.5 for each city in YRD. Such esti-
mations vary greatly with cities. More than 10,000 attribut-
able deaths are estimated for Hefei, Nanjing, Suzhou, Shang-
hai, and Hangzhou. For Chizhou, Tongling, and Zhoushan, 
attributable deaths are less than 2000 (Fig. 8a). Addition-
ally, there are a total of 176,908 (95% CI: 131,664–220,023) 

attributable deaths for the entire YRD by using full coverage 
PWM PM2.5. Attributable deaths are mainly from Stroke and 
IHD (66.53%), followed by COPD, LC, and LRI.

Compared with the assessment by using full-coverage 
PWM PM2.5 (Fig. 8a), attributable deaths by using SR-
based PWM PM2.5 are relatively high for all cities in YRD 
except Nanjing, as shown in Fig. 8b. These changes are 
more than 200 deaths in 9 out of 26 cities. For Shanghai 
and Hangzhou, the differences in attributable deaths are 
more than 500. In addition, attributable deaths using SR-
based PWM PM2.5 totally increase by 2.80% (5101) in 

Fig. 5   Scatter plot of the population ratio of spatial representativeness 
(SR) versus the area ratio of SR for each city in Yangtze River Delta. 
Different color points correspond to cities in different provinces or 
municipality

Fig. 6   Scatter plot of SR-based population-weighted mean (PWM) 
PM2.5 versus full coverage PWM PM2.5 for each city in Yangtze River 
Delta. Different color points correspond to cities in different prov-
inces or municipality. See text for details

Fig. 7   Scatter plot of annual PM2.5 at each station versus population 
covered by SR of each station. Different color points correspond to 
stations in different provinces or municipality

1576 Air Quality, Atmosphere & Health (2022) 15:1571–1581



1 3

YRD, compared to that using full-coverage PWM PM2.5. 
Although the difference is low for the entire YRD region, 
the relative change at city level is more than 6% in five 
cities, including Chizhou (6.60%), Xuancheng (9.44%), 
Jinhua (6.34%), Taizhou (6.30%), and Zhoushan (9.60%).

Furthermore, by comparing Figs. 4 and 8b, we find that 
the more people SR areas of stations cover, the smaller 
the change in attributable deaths tends to occur. For those 
cities with the population ratios of SR above 90% (see 
Fig. 4), their relative changes are generally smaller than 
1.70%. By contrast, for those cities with the low popu-
lation ratios (less than 20%), their relative changes are 
higher than 6.30%. These results suggest that more moni-
toring stations should be deployed in cities with the low 
population ratios of SR.

Discussion

Our results show a large range of SR of stations in YRD 
(Fig. 1b). Thus, we should be cautious when using these 
site-based observations for the point-grid matching task. 
For example, a body of previous studies used ground-
based PM2.5 observations and satellite data to build a 
PM2.5 retrieval model, and they generally directly matched 
a ground site with a satellite grid, without considering 
whether or not SR of the site is suitable for the satellite 
spatial resolution (Geng et al. 2015; He et al. 2018, 2016; 
Park et al. 2020; van Donkelaar et al., 2016). This may 
result in the uncertainty of satellite-derived PM2.5 esti-
mates in some cases when SR sizes of the stations are very 
low (even lower than satellite spatial resolution).

Our results show that SR performs poorly in YRD: SR 
areas only cover 32.33% of the total area, and 62.16% of 
the total population in YRD. Several reasons explain this 
poor SR performance. First, many stations are deployed in 
urban areas of YRD, but few stations are for rural areas. 
This situation may cause the redundancy of stations 
(Fig. 3) and limited rural areas covered by SR (Fig. 1a). 
Second, the location of the current stations is unsatisfac-
tory. For instance, in Nantong City with the nine current 
stations, the SR area only covers 19.72% of the city area 
and 34.64% of the city population. These ratios would 
increase to 82.90% and 90.81% after optimizing the cur-
rent stations in Nantong (not shown). The principle of the 
optimization approach is to iteratively find the grid where 
the SR area covers the largest population by using SR esti-
mations for each grid in the city. It would be helpful to 
optimize the layout of the current stations in China in the 
future.

We find that the annual PM2.5 concentrations at the sta-
tions generally tend to increase with increasing SR area of 
the stations, which is observed by comparing Fig. 7 with 
Fig. 5. This finding is not consistent with previous stud-
ies that suggested a large spatial heterogeneity under high 
pollution levels (Kikuchi et al., 2018). This inconsistency 
may be related to that they used aerosol optical depth as 
proxy for air quality, and warrants further investigation in 
the future. Additionally, for stations that meet the national 
standard of annual PM2.5 concentrations (35 μg/m3), their 
spatial representations are typically poor and less than 30 
km2 for most of these stations. Thus, it should be cautious 
to use PM2.5 observations from these stations for air pol-
lution evaluation and human health assessment.

This study focused on the state-controlled and non-
background sites in YRD. It is meaningful to compare 
SR results among different categories of monitoring sites. 
However, other sites (e.g., industrial, port and traffic sta-
tions) are limited and corresponding information is not 

Fig. 8   a Deaths attributable to PM2.5 exposure by using full coverage 
PWM PM2.5 for each city in Yangtze River Delta, error bars denote 
95% CI and different color bars stand for different causes of death, 
i.e., stroke, ischemic heart disease (IHD), chronic obstructive pulmo-
nary disease (COPD), lung cancer (LC), and lower respiratory infec-
tion (LRI). b The difference in attributable deaths between using SR-
based PWM PM2.5 and full coverage PWM PM2.5
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currently public except background station. Therefore, 
we estimate SR of 14 background stations in YRD and 
further examine the difference of SR between background 
and non-background stations. As shown in Fig. 9a, the 14 
background sites are sparsely distributed in 12 cities, and 
there are two background sites in Ningbo and Huzhou. 
Compared to the city average based on non-background 
sites, the annual PM2.5 concentration and SR area for 
background sites exhibit an irregular variation (Fig. 9b). 
However, Fig. 9b generally shows a positive relationship 
between PM2.5 concentration and SR area, which further 
supports our findings that the annual PM2.5 concentra-
tion at a station tends to increase as the station’s SR area 
increases.

According to “technical regulation for selection of ambi-
ent air quality monitoring stations” (on trial) (HJ 664–2013) 
released in China in 2013 (MEPC, 2013), one of the princi-
ples for the monitoring site layout is that the site should have 
a certain spatial representation. Specifically, for the state-
controlled and non-background site, the technical regulation 
requires that SR size generally ranges from 1 to 50 km2; for 
the background site, it requires that the SR size is gener-
ally larger than 31,400 km2 (MEPC, 2013). Based on our 
SR results for sites in YRD, 18 out of 213 non-background 
sites meet the requirement, and most sites have an SR size 
greater than 50 km2 (Fig. 1b). Additionally, for background 
sites in YRD, the maximum SR is 3973 km2 (1208A station 
in Taizhou, Jiangsu province), thus failing to meet the SR 
size requirement in HJ 664–2013. Hence, we recommend 
relocating the current background sites to cover more spatial 
areas in the future.

Using different concentration–response functions 
(CRFs) may affect our health assessment. Deaths attrib-
utable to PM2.5 exposure were also estimated by using 

an updated version of the Global Exposure Mortality 
Model (GEMM) (Burnett et al. 2018). The fractional dis-
ease contributions estimated by the GEMM are similar 
to those from the MR-BRT GBD2019 CRFs, whereas 
the absolute number of attributable deaths in each city 
in YRD is always larger when the GEMM is used (not 
shown). Moreover, based on the GEMM, the attributable 
deaths from SR-based PWM PM2.5 totally increase by 
7500 (3.54%) compared to that from full-coverage PWM 
PM2.5. Based on the GEMM model and full-coverage 
PWM PM2.5, attributable deaths in YRD are 211,927 
(95% CI: 159,927–259,330). Our assessments are compa-
rable to previous studies (Maji, 2020; Song et al. 2017). 
They reported about 205,000 attributable deaths in YRD 
in 2015. However, their assessments are supposed to be 
higher than our estimations due to a lower PM2.5 con-
centration used in this study (5-year annual average from 
2016 to 2020). This unexpected situation is partly because 
decreases in PM2.5 concentrations cannot entirely offset 
the health impact of population aging (Yue et al. 2020).

Our analysis is at the city level, and does not further 
focus on urban–rural difference. Most monitoring stations 
are located in urban regions with a high pollution level (Gao 
et al. 2020), and SR has limited coverage for a rural popula-
tion with low pollution exposure. This situation may result 
in a larger difference between SR-based PWM PM2.5 and 
full-coverage PWM PM2.5 for rural regions compared to 
that for urban regions. The large difference of PWM PM2.5, 
combined with previous findings, shows that rural residents 
may face a higher air pollution–related health risk (Chen 
et al. 2021; Garcia et al. 2016; S. Zhao et al. 2021a, b), and 
may finally contribute to relatively higher uncertainty in 
rural health assessment by using SR-based PWM PM2.5. We 
plan to explore these urban–rural differences in future work.

Fig. 9   a The spatial distribution of 213 non-background and 14 back-
ground stations in Yangtze River Delta. In b, the horizontal axis 
denotes the relative changes in annual PM2.5 between background sta-
tions in a given city and non-background stations in the same city; the 

vertical axis is the same as the horizontal axis but for the spatial rep-
resentative (SR) area. Note that Ningbo and Huzhou both have two 
background sites and arithmetic mean values are used to obtain SR 
area and PM2.5 for background sites
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Conclusions

In this study, by using the multi-year daily satellite-derived 
PM2.5 data with 1 km spatial resolution, we examined the 
spatial representativeness (SR) of 213 PM2.5 monitoring 
stations in Yangtze River Delta (YRD). Based on these 
SR estimates, annual population-weighted mean (PWM) 
PM2.5 and deaths attributable to PM2.5 exposure were also 
analyzed for each city in YRD.

The SR areas of 213 stations totally account for 32.33% 
of the area of YRD, and the SR size varies greatly with 
stations. These stations with SR size higher than 1000 km2 
are mainly located in the north-central area of YRD, while 
SR sizes are typically low and less than 200 km2 in coastal 
areas. In addition, the spatial distribution of stations is 
reasonable for most cities from a redundancy perspective.

The SR areas of all monitoring stations can totally cover 
62.16% of the population in YRD. The population ratios of 
the SR area to the city area are less than 50% for about half 
of the cities in YRD, and most of these cities are located in 
Anhui and Zhejiang provinces. Partly due to the fact that 
most stations are located in urban areas with a high pollu-
tion level, the city-level PWA PM2.5 estimate based on SR 
is nearly always larger than full-coverage PWA PM2.5, and 
this difference tends to decrease with increasing popula-
tion ratio of the SR area.

Attributable deaths by using SR-based PWM PM2.5 are 
182,009 (95% CI: 136,632–225,081) for the entire YRD. 
Although this estimate only increases by 2.80% overall 
compared to that by using full-coverage PWM PM2.5, the 
difference is more than 6% in five cities, where the popu-
lation ratio of SR is less than 20%. These results suggest 
that more monitoring stations should be deployed in these 
cities for air pollution evaluation and human health assess-
ment, especially for rural regions.
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