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Abstract 

Background Long-term exposure to air pollution has been associated with the onset and progression of kidney 
diseases, but the association between short-term exposure to air pollution and mortality of kidney diseases has not 
yet been reported.

Methods A nationally representative sample of 101,919 deaths from kidney diseases was collected from the Chinese 
Center for Disease Control and Prevention from 2015 to 2019. A time-stratified case-crossover study was applied to 
determine the associations. Satellite-based estimates of air pollution were assigned to each case and control day 
using a bilinear interpolation approach and geo-coded residential addresses. Conditional logistic regression models 
were constructed to estimate the associations adjusting for nonlinear splines of temperature and relative humidity.

Results Each 10 µg/m3 increment in lag 0–1 mean concentrations of air pollutants was associated with a percent 
increase in death from kidney disease: 1.33% (95% confidence interval [CI]: 0.57% to 2.1%) for  PM1, 0.49% (95% CI: 
0.10% to 0.88%) for  PM2.5, 0.32% (95% CI: 0.08% to 0.57%) for  PM10, 1.26% (95% CI: 0.29% to 2.24%) for  NO2, and 2.9% 
(95% CI: 1.68% to 4.15%) for  SO2. 

Conclusions Our study suggests that short-term exposure to ambient  PM1,  PM2.5,  PM10,  NO2, and  SO2 might be 
important environmental risk factors for death due to kidney diseases in China.
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Background
Epidemiological evidence has shown that both short-
term and long-term exposure to air pollution is associ-
ated with kidney outcomes [1–7]. A few time-series 
studies reported positive associations between short-
term exposure to air pollution and emergency depart-
ment visits or hospitalizations for kidney diseases in 
North American and East Asian populations, and the 
risk ratios ranged from 1.010 to 1.034 [1–3]. The asso-
ciations of long-term exposure to air pollution with inci-
dent kidney diseases and kidney function decline were 
examined by several large national cohort studies from 
North America and China, and the magnitude of effect 
sizes was larger: the hazard ratios or odds ratios ranged 
from 1.07 to 1.39. Although these previous studies have 
reported the positive associations between air pollution 
and renal outcomes, the relationship between short-term 
air pollution exposure and mortality of kidney disease 
has not yet been investigated.

Air pollution, especially those with smaller aerody-
namic diameter, may be inhaled into the alveoli, pene-
trate through biological membranes, and enter the blood 
stream [8]. People with kidney diseases may be particu-
larly vulnerable to these hazardous pollutants since kid-
neys filter around 20% of cardiac output, and a decline 
in kidney function may result in retainment of environ-
mental toxins in the blood [9]. Animal-based experimen-
tal studies proposed several biological mechanisms that 
support the detrimental effects of air pollution exposure 
on the increased risk of kidney dysfunction and mortal-
ity, including inflammation and oxidative stress [10–14]. 
These biological mechanisms, supported by several 
large epidemiological studies that also report the risk of 
increased mortality [15–18], justify the plausibility of 
testing the short-term effects of air pollution on death 
from kidney diseases in humans.

Time-stratified case-crossover study design has been 
widely used to estimate acute effects in air pollution epi-
demiology [17–19]. Controls in this design were simu-
lated on multiple days prior to and after each case day 
at the same location. Each case serves as its own control 
to reduce individual-level time-invariant confounding; 
environmental variables were the factors that vary over 
time for each person. Although most kidney diseases are 
chronic in nature, death is typically acute. Thus, a time-
stratified case-crossover design is appropriate in estimat-
ing the triggering effects of short-term exposure to air 
pollution on death due to kidney diseases.

In addition to China having the largest number of 
chronic kidney disease cases (132.3 million) in the world 
in 2017 [20], the pollution level is well above the refer-
ence guidelines proposed by the World Health Organi-
zation (WHO) [21–23]. Not only does investigating the 

relationship between short-term air pollution expo-
sure and death from kidney diseases in China examine 
this untested hypothesis, but it also offers insights on 
the burden of death in a country where both factors are 
extremely prevalent. In this study, we collected a national 
sample of 101,919 deaths due to kidney diseases in China 
from 2015 to 2019. We aim to quantify the association 
between short-term exposure to air pollution and mor-
tality of kidney diseases using a time-stratified case-
crossover study design.

Methods
Death from kidney diseases
From the National Mortality Surveillance System man-
aged by the Chinese Center for Disease Control and 
Prevention, we obtained a national sample of deaths due 
to kidney diseases in China from January 1st, 2015, to 
December 31st, 2019, using ICD-10 (International Statis-
tical Classification of Diseases and Related Health Prob-
lems, Tenth Revision) codes “N00” to “N29”. The dates and 
causes of death were ascertained and completed by certi-
fied doctors in the sampling areas. The detailed descrip-
tions of the National Mortality Surveillance System and 
its application have been published elsewhere [24]. To 
briefly explain, this system regularly collects causes of 
death data from 605 counties or districts located in 31 
municipalities, provinces, and autonomous regions in 
mainland China based on multi-stage stratified sampling, 
covering over 300 million residents (24% of the total pop-
ulation). Data collected by this system have been shown 
to be representative at the national and provincial levels 
and have been widely used in formulating national health 
policies and assessing the burden of disease in China 
[25]. In Western and Northeastern areas (Xinjiang, Tibet, 
Qinghai, and northern Heilongjiang) where the popula-
tion was sparse and very few monitoring stations were 
available for exposure estimation [26], air pollutants esti-
mates were less robust and the sample size contributed 
to a small portion of the full sample, so samples in these 
areas were excluded from the analyses (Fig. 1). The data 
cleaning steps yielded a final analytical sample of 101,919 
deaths from kidney diseases between 2015 and 2019.

Air pollution data
We used the 10  km × 10  km grid ChinaHighAirPollut-
ants (CHAP) daily data set  (available at https:// weiji 
ng- rs. github. io/ produ ct. html) to measure short-term 
exposure to pollutants [26–31]. CHAP is a long-term, 
full-coverage, high-resolution, high-quality, and ground-
level gridded air pollutant data source. It constructs a 
combination of advanced satellite remote sensing and 
space–time models, achieving high cross-validation coef-
ficients of determination of 0.8-0.92 and low root mean 
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square errors compared to the data collected by ground 
stations [26–31]. This CHAP data set provides daily con-
centrations of  PM1,  PM2.5,  PM10,  O3,  NO2,  SO2, and CO 

in China from 2015 to 2019. To reiterate, the air pollut-
ant data for Western and Northeastern China were not 
available and were not included in the study to ensure 

Fig. 1 A Spatial distribution of a national sample of deaths attributable to kidney diseases in China, from 2015 to 2019 (N = 101,919). Each point 
indicates a death case. B–H Geographical maps of mean concentrations of ambient air pollution (1B:  PM1, 1C:  PM2.5, 1D:  PM10, 1E: CO, 1F:  NO2, 1G: 
 O3, and 1H:  SO2) in China from 2015 to 2019
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the stability and robustness of exposure data. The con-
centrations of  PM1,  PM2.5,  PM10,  NO2,  SO2, and CO were 
measured as daily average concentrations, while  O3 was 
measured as maximum 8-h averages.

Daily averages of meteorological variables (tem-
perature and relative humidity) at 10  km × 10  km grid 
resolution were obtained from the fifth generation of 
European ReAnalysis (ERA5)-Land reanalysis data set 
[32]. The ERA-5 is a high-resolution and long-span data-
set for meteorological variables estimated using modern 
land surface modeling techniques, covering all Chinese 
regions without missing data from 2015 to 2019.

Exposure assessment
We used a two-stage assessment strategy to measure the 
air pollutants and meteorological variables for case and 
control days, as we have described in our previous stud-
ies [33–35]. In the first stage, we geocoded the latitudes 
and longitudes of residential addresses for each case 
using the application programming interface provided by 
amap (also known as Gaode map) [36], a leading map-
ping, navigation, and location-based service provider in 
China. In the second stage, we used a bilinear interpo-
lation algorithm to estimate the exposure to air pollut-
ants and meteorological variables [37]. This algorithm 
enhanced the spatial resolution of environmental vari-
ables at a specific location by calculating a weighted aver-
age of the nearest four grids. The closer the grids of air 
pollutants and meteorological data were to the location 
of the cases, the larger the weights applied to the grids. 
In locations where fewer than four grids were available, 
we used all the available grids and re-distributed these 
weights so that the weights sum up to one. These loca-
tions accounted for no more than 1% of our data and had 
at least one measure of the exposure, so we decided to 
include them in our final analyses.

Time‑stratified case‑crossover study design
We determined the association between short-term 
exposure to air pollutants and the mortality of kidney dis-
eases by adopting a time-stratified case-crossover design 
[17–19, 38]. This design has the feature that each case 
serves as its own control by measuring the concentration 
of exposure on the control days (typically weeks) prior to 
or after the case day. This study design resembles a clas-
sic matched case–control study design, and it accounts 
for potential confounders that are constant on the case 
and control days, which are often individual-level time-
invariant characteristics. The estimates yielded from a 
time-stratified case-crossover design therefore represent 
the acute triggering effect of short-term exposure to air 
pollution on the outcome.

In this study, we defined each death date as the case 
day, while the control days were set up to be the days on 
the same year, month, and day of week as the case day 
and at the same location. In time-stratified case-crosso-
ver designs, each case day typically has three to four con-
trol days on the same day of week within the same month 
[39]. Additional file 1: Fig. S1 presents an example calen-
dar plot of the time-stratified case-crossover design. If a 
subject died on the first Wednesday of May 2018 (May 2, 
2018; the red tile), for example, May 2, 2018, was defined 
as the case day and all the other Wednesdays in the same 
month (May 9, 16, 23, and 30, 2018; the blue tiles) were 
defined as the control days. Using this methodology, 
345,926 control days were matched to the 101,919 death 
cases in this study, yielding a total sample of 447,845 
observation days. These matched control days were set 
up to offset the effects of time trend, seasonality, and day 
of week.

Statistical analysis
In the main models, we estimated the odds ratios of 
death from kidney diseases associated with each 10  µg/
m3 increase in lag 0–1 of  PM1,  PM2.5,  PM10,  O3,  NO2, 
and  SO2, as well as 1  mg/m3 increase in lag 0–1 of CO 
using conditional logistic regressions to account for the 
characteristics of the matched case control study design 
[19, 38, 40]. To characterize the concentration–response 
curves of short-term exposure to air pollution and risk of 
death from kidney diseases, we constructed natural cubic 
splines (degrees of freedom = 4) in the conditional logis-
tic regression models and plotted the marginal-effect 
concentration–response curves. Unadjusted conditional 
logistic regression models accounted for case cluster-
ing using patient identification number as strata. Since 
the exposure conditions for the same individual were 
switched on the same day of different weeks in the same 
month (Additional file 1: Fig. S1), the varying exposures 
nested within the same individuals resemble a matched 
case–control design and cause the issue of case cluster-
ing. Fully adjusted conditional logistic regression mod-
els accounted for five-day moving averages (lag 0–4) of 
daily temperature and relative humidity prior to the date 
of death by including them as natural restricted cubic 
splines (degrees of freedom = 4), and case clustering. The 
lag periods for temperature and relative humidity were 
chosen based on Bayesian information criterion of the 
models, and models using lag 0–4 of temperature and rel-
ative humidity showed the lowest Bayesian information 
criterion and the best model fit (Additional file 1: Fig. S2). 
Since the case-crossover design already accounted for 
individual-level time-invariant characteristics, individ-
ual-level unchanging variables (such as age, sex, and edu-
cation) were not included in the models. Unadjusted and 
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adjusted percent changes in death from kidney diseases 
were reported as (odds ratio − 1) × 100% since the odds 
ratios were very small [17].

Stratified analyses
We also repeated the conditional logistic regression mod-
els after stratifying by several demographic and socioeco-
nomic factors [41–43]: age (< 60, 60–69, 70–79, > 79), sex 
(men and women), education (< high school and ≥ high 
school), marriage (married, widowed, and divorced/
unmarried), occupation (retired, farmers, other), disease 
subtype (acute kidney failure, unspecified kidney failure, 
chronic kidney disease, glomerular diseases, and other 
kidney diseases), season (cold and warm), year of death 
(2015, 2016, 2017, 2018, and 2019), and region (Cen-
tral China, East China, North China, Northeast China, 
Northwest China, South China, and Southwest China). A 
map of the seven geographical regions of China is shown 
in Additional file 1: Fig. S3. Warm seasons were defined 
as from May to October, while cold seasons were defined 
as from November to April of the next year. Differences 
across subgroups were examined by testing the joint sig-
nificance of the interaction terms between the air pollut-
ant and the subgroup categorical variable using analysis 
of variance tests.

Sensitivity analyses
We conducted multiple sensitivity analyses to test the 
robustness of the results. First, we included different lag 
periods (lag 0 to lag 3 and lag 0–1 to lag 0–3) of the air 
pollutants and re-estimated the relative percent changes. 
Second, we conducted two-pollutant models for each 
of the seven pollutants in the same model while exclud-
ing those models with potential multi-collinearity issues 
(Pearson correlation coefficient of two pollutants above 
0.8).

Missing data were not imputed and were excluded 
prior to statistical analyses. All p-values were reported 
two-sided, and a p-value smaller than 0.05 or outside the 
95% confidence interval (95% CI) excluding null were 
considered statistically significant. All data management, 
cleaning, modeling, and visualization were conducted in 
the Statistical computing environment R 4.1.1 [44]. The 
study was approved by the institutional review board of 
Sun Yat-sen University.

Results
Sample characteristics and air pollutants
Among the 101,919 deaths from kidney diseases, the 
median age was 71 (interquartile range [IQR], 59.1 
to 80.5) years, 57.9% were men, 72.8% were married, 
89.5% received education of lower than high school, and 
66.5% were farmers (Table 1). The number of deaths was 

relatively evenly distributed in across years. The top four 
regions with the highest number of death cases were 
East China (25.7%), Southwest China (19.5%), Central 
China (18.5%), and South China (13.7%). A map of the 
geographical distribution of deaths is shown in Fig.  1A, 
where each dot represents a case, and darker clusters 
denote high density. A total of 345,926 control days were 

Table 1 Characteristics of 101,919 deaths from kidney disease in 
China from 2015 to 2019

Characteristics Statistics

Age, years, age (IQR) 71 (59.1–80.5)

Sex

 Men 59,040 (57.9%)

 Women 42,879 (42.1%)

Disease

 Total 101,919

 Glomerular diseases 62,734 (61.6%)

 Acute kidney failure 5756 (5.6%)

 Chronic kidney disease 9985 (9.8%)

 Unspecified kidney failure 14,563 (14.3%)

 Others 8881 (8.7%)

Marriage

 Married 74,245 (72.8%)

 Widowed 20,530 (20.1%)

 Unmarried/divorced 7144 (7.0%)

Education

 < High school 91,194 (89.5%)

 ≥ High school 10,725 (10.5%)

Occupation

 Retired 13,653 (13.4%)

 Farmer 67,818 (66.5%)

 Other 20,448 (20.1%)

Year

 2015 19,424 (19.1%)

 2016 19,896 (19.5%)

 2017 21,005 (20.6%)

 2018 21,051 (20.7%)

 2019 20,543 (20.2%)

Region

 Central China 18,851 (18.5%)

 East China 26,165 (25.7%)

 North China 8970 (8.8%)

 Northeast China 8373 (8.2%)

 Northwest China 5743 (5.6%)

 South China 13,991(13.7%)

 Southwest China 19,826 (19.5%)

Season

 Cold 54,682 (53.7%)

 Warm 47,237 (46.3%)
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matched to the deaths, resulting in an average of 3.4 con-
trol days matched to each case day.

Table  2 demonstrates the median and interquartile 
range (IQR) of air pollutants (2-day average, lag 0–1) 
and meteorological conditions (five-day average, lag 
0–4) on all observation days and stratified by control 
and case days. The concentration of  PM1,  PM2.5,  PM10, 
 NO2, and  SO2 were significantly higher on case days than 
that of control days, although the magnitude of the dif-
ference was small. The overall concentrations of the air 
pollutants on the observation days were high; for exam-
ple, the median concentration of  PM2.5 was 36.36 µg/m3 
(IQR: 25.2 to 54.52 µg/m3) and the median of  PM10 was 
63.32 µg/m3 (IQR: 44.28 to 93.84 µg/m3). Maps of 5-year 
mean concentrations of air pollutants in China between 
2015 and 2019 are shown in Fig. 2B through Fig. 2H. The 
temporal trends of case and control days by year and 
month are shown in Additional file 1: Fig. S4.

Short‑term air pollution exposure associated 
with increased risk of death from kidney diseases
In the main models, short-term exposure to  PM1,  PM2.5, 
 PM10,  NO2, and  SO2 was associated with a mild but sta-
tistically significant increase in the risk of death from 
kidney diseases in both unadjusted and adjusted models 
(Table 3). The adjusted relative percent increase in odds 
of death from kidney disease per 10 µg/m3 increase in air 
pollutants were: 1.33% (95% CI: 0.57% to 2.1%) for  PM1, 
0.49% (95% CI: 0.10% to 0.88%) for  PM2.5, 0.32% (95% 
CI: 0.08% to 0.57%) for  PM10, 1.26% (95% CI: 0.29% to 
2.24%) for  NO2, and 2.9% (95% CI: 1.68% to 4.15%) for 
 SO2 (Table 3).

Figure  2 presents the concentration–response curves 
of the association between the seven air pollutants and 

the odds of death from kidney diseases. We observed an 
increasing but with decreasing gradient trend (a “con-
cave-down” pattern) on the associations of short-term 
exposure to ambient  PM1,  PM2.5,  PM10, CO, and  SO2 with 
odds of death from kidney diseases: the odds of death 
from kidney diseases increased rapidly at lower concen-
trations of air pollutants, and it then showed an attenu-
ated increasing trend when the concentration exceeded 
a threshold. The associations of short-term ambient  NO2 
and  O3 with odds of death exhibited a slight concave-up 
relationship.

Sensitivity analyses
We observed a consistent trend that different lags of 
short-term exposure (lag 0, lag 1, and MA 01) to  PM1, 
 PM2.5,  PM10,  NO2, and  SO2 were significantly associ-
ated with an increased risk of death from kidney diseases 
(Additional file  1: Fig. S5). The relative percent change 
estimates were generally significant on the day of the 
event (lag 0) and the day prior to the event (lag 1), while 
the relative percent changes were nullified and estimates 
became insignificant when longer lag periods were used 
(lag 2 and lag 3).

We further constructed two-pollutant models to 
test the robustness of the results when the correlation 
between air pollutants was adjusted  for. In view of the 
high correlation between particulate matter air pollut-
ants (Additional file 1: Fig. S6), the two-pollutant models 
included one particulate matter air pollutant  (PM1,  PM2.5, 
and  PM10) and one gaseous pollutant (CO,  NO2,  O3, and 
 SO2) at a time. The results of two-pollutant models sug-
gest that  PM1 and  SO2 remained consistently significant 
in two-pollutant models (Table 4).

Table 2 Median (interquartile ranges) of ambient air pollutants and meteorological conditions on control and case days

* The p-values were calculated using univariate conditional logistic regression with accounting for the nesting nature of patients in a case-crossover design

Overall Control days Case days P‑value*

447,845 345,926 (77.2%) 101,919 (22.8%)

Particulate matter air pollutants, 2‑day moving average (lag 0–1)
  PM1, µg/m3 24.68 (17.24–35.41) 24.66 (17.24–35.41) 24.74 (17.24–35.41) 0.003

  PM2.5, µg/m3 36.36 (25.20–54.52) 36.32 (25.2–54.52) 36.50 (25.2–54.50) 0.038

  PM10, µg/m3 63.32 (44.28–93.84) 63.23 (44.28–93.84) 63.63 (44.28–93.84) 0.033

Gaseous air pollutants, 2‑day moving average (lag 0–1)
 CO, mg/m3 0.88 (0.72–1.10) 0.88 (0.72–1.10) 0.88 (0.72–1.10) 0.242

  NO2, µg/m3 26.07 (18.88–36.79) 26.07 (18.88–36.79) 26.08 (18.88–36.79) 0.014

  O3, µg/m3 81.55 (59.38–109.54) 81.55 (59.38–109.54) 81.54 (59.38–109.54) 0.032

  SO2, µg/m3 13.54 (9.60–20.02) 13.53 (9.60–20.02) 13.57 (9.60–20.02)  < 0.001

Meteorological variables, 5‑day moving averages (lag 0–4)
 Relative humidity, % 72.80 (59.26–81.52) 72.84 (59.26–81.52) 72.68 (59.26–81.52) 0.291

 Temperature, Celsius 16.25 (7.92–22.86) 16.28 (7.92–22.86) 16.14 (7.92–22.86) 0.010
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Fig. 2 Concentration–response association of short-term exposure to  PM1,  PM2.5,  PM10, CO,  NO2,  O3, and  SO2 with death from kidney diseases in 
China. The solid lines with shaded regions represent odds of death from kidney diseases and the associated 95% confidence intervals

Table 3 Short-term ambient air pollution associated with unadjusted and adjusted relative percent increase in odds of death from 
kidney diseases

PM1,  PM2.5, and  PM10, particulate matter with diameters less than or equal to 1 µm (2.5 μm for  PM2.5 and 10 μm for  PM10); CO, carbon monoxide;  NO2, nitrogen dioxide; 
 O3, ozone;  SO2, sulfur dioxide; CI, confidence interval

Relative percent increases were reported per 10 µg/m3 for  PM1,  PM2.5,  PM10,  NO2,  O3,  SO2 and per 1 mg/m3 for CO
† Multivariate Conditional logistic regression models adjusted for air pollutants, natural cubic splines of temperature and relative humidity (lag 0-4), and case 
clustering. Case clustering represents the fact that exposure conditions for the same individual were switched on the same day of different weeks in the same month, 
and this clustering within the same individuals was accounted for using patient identification number as strata
a The pollutants were measured as the moving average of exposure on the day of event and one day prior to the event (lag 0-1)

Air  pollutantsa Relative percent increase (95% 
CI)
Unadjusted

P‑value
Unadjusted

Relative percent increase (95% 
CI)
Adjusted†

P‑value
Adjusted†

PM1 1.11 (0.38 to 1.85) 0.003 1.33 (0.57 to 2.1) 0.001
PM2.5 0.36 (0.013 to 0.73) 0.038 0.49 (0.10 to 0.88) 0.012
PM10 0.27 (0.04 to 0.51) 0.022 0.32 (0.08 to 0.57) 0.010
CO 1.94 (− 1.29 to 5.28) 0.242 3.48 (0.11 to 6.97) 0.043
NO2 1.18 (0.24 to 2.13) 0.014 1.26 (0.29 to 2.24) 0.011
O3 0.34 (0.03 to 0.65) 0.032 0.34 (− 0.05 to 0.72) 0.084

SO2 3.08 (1.89 to 4.29)  < 0.001 2.90 (1.68 to 4.15)  < 0.001
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Subgroup analyses
Figure 3 and Additional file 1: Table S1 demonstrate the 
relative percent changes in risk of death from kidney dis-
eases for each air pollutant in stratified analyses by dif-
ferent subgroups. We observed significant differences 
of percent change estimates across occupation for  PM1, 
 PM2.5, and  PM10 and across different marital statuses for 
 O3. The estimates for  PM1,  PM2.5, and  PM10 were larger 
among retired residents, and the estimate for  O3 was 
larger for widowed individuals. We did not find signifi-
cant heterogeneity between ambient air pollutants and 
death from kidney disease in subgroups including age, 
sex, education, disease subtype, season, year, or region.

Discussion
In this nationally representative sample of deaths from 
kidney diseases in China spanning five years, our time-
stratified case-crossover study suggests that  short-term 
exposures to  PM1,  PM2.5,  PM10,  NO2, and  SO2 were asso-
ciated with a significantly elevated risk of death, exhib-
ited by a nonlinear concave-down pattern. The results 
were generally consistent when the exposure was meas-
ured at different lag periods and in two-pollutant models.

This was the first nationwide study to examine the 
relationship between short-term exposure to air pollu-
tion and mortality from kidney diseases in China, where 
both large burden of kidney diseases and air pollution 
exist. Although air pollution in China has experienced 
a substantial and steady decline in recent years [45–47], 

the current level of particulate matter air pollution is still 
above the 2021 WHO Air Quality Guideline [23]. For 
example, the medians of particulate matter air pollut-
ants on case days in this study were 34.86 µg/m3 for  PM2.5 
and 60.49  µg/m3 for  PM10, both substantially higher 
than the WHO guideline, in which 24-h pollutants were 
recommended to be lower than 15 µg/m3 and 45 µg/m3 
respectively. The findings of this study deepen our under-
standing that elevated air pollution is associated with a 
small but significant excess in burden of death from kid-
ney disease in China.

Although this epidemiological case-crossover study 
does not shed mechanistic insights on the link between 
short-term air pollution exposure and mortality among 
people with kidney disease, several postulated biologi-
cal mechanisms may help explain the observed associa-
tions in this study. The most widely cited mechanisms are 
inflammation and oxidative stress, suggested by labora-
tory experiments and population-based epidemiological 
evidence [12–14]. Elevation of short-term air pollution 
may increase pulmonary inflammation and cause dam-
age to distant organs including the kidney, and further 
trigger death among a vulnerable population [9]. These 
biological mechanisms need further studies supported 
by animal-based laboratory evidence or epidemiological 
studies that delve deeper into the chemical components 
or different sources of air pollution [9, 22].

Compared to previous cohort studies using long-term 
exposure to air pollution [48] or aggregated time-series 

Table 4 Short-term ambient air pollution associated with adjusted relative percent increase in odds of death from kidney diseases in 
two-pollutant models

The pollutants were measured as the average of exposure on the event day and one day prior to the event (lag 0-1)

Conditional logistic regression models adjusted for air pollutants, natural cubic splines of temperature and relative humidity (lag 0-4), and case clustering. Case 
clustering represents the fact that exposure conditions for the same individual were switched on the same day of different weeks in the same month, and this 
clustering within the same individuals was accounted for using patient identification number as strata

PM1,  PM2.5, and  PM10, particulate matter with diameters less than or equal to 1 µm (2.5 μm for  PM2.5 and 10 μm for  PM10); CO, carbon monoxide;  NO2, nitrogen dioxide; 
 O3, ozone;  SO2, sulfur dioxide

Relative percent increases were reported per 10 µg/m3 for  PM1,  PM2.5,  PM10,  NO2,  O3,  SO2 and per 1 mg/m3 for CO

Particulate matter air pollution
Co-pollutant Relative percent increase in odds of death from kidney diseases

PM1 PM2.5 PM10

 + CO 1.43 (0.32 to 2.56) 0.31 (− 0.24 to 0.86) 0.23 (− 0.08 to 0.53)

 +  NO2 0.83 (− 0.23 to 1.89) 0.08 (− 0.43 to 0.58) 0.12 (− 0.18 to 0.42)

 +  O3 1.2 (0.39 to 2.03) 0.38 (− 0.03 to 0.79) 0.27 (0.02 to 0.53)
 +  SO2 0.31 (− 0.6 to 1.23)  − 0.04 (− 0.49 to 0.4) 0.05 (− 0.22 to 0.32)

Gaseous air pollution
Co-pollutant Relative percent increase in odds of death from kidney diseases

CO NO2 O3 SO2

 +  PM1  − 1.4 (− 6 to 3.43) 0.71 (− 0.59 to 2.03) 0 (− 0.43 to 0.43) 2.76 (1.35 to 4.2)
 +  PM2.5 1.07 (− 3.59 to 5.95) 1.27 (0.02 to 2.55) 0.04 (− 0.39 to 0.47) 3.07 (1.69 to 4.46)
 +  PM10 1.14 (− 2.95 to 5.4) 1.13 (− 0.03 to 2.32) 0.05 (− 0.38 to 0.47) 2.92 (1.58 to 4.26)
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studies [15], the effect estimates in this study were rela-
tively small (< 3% per 10  µg/m3 increase); these small 
estimates are within our expectations given the time-
stratified case-crossover design. For example, a large 
time-stratified case-crossover study in the US Medicare 
population showed that each 10 µg/m3 increase in  PM2.5 
was associated with a 2.3% (95% CI: 1.7% to 3.0%) relative 
increase in the risk of acute and unspecified renal failure 
hospital admission [3]. Other time-series studies that 
investigated associations between short-term exposure to 
air pollution and emergency department visits for kidney 
diseases in North American and East Asian population 
reported relative percent changes ranging from 10% to 
3.4% [1, 2]. Another time-stratified case-crossover study 
in Hubei province of China estimated that each 10  µg/

m3 increase in  PM2.5,  PM10, and  NO2 was associated with 
a 4.14% (95% CI: 1.25% to 7.12%), 2.67% (95% CI: 0.80% 
to 4.57%), and 1.46% (95% CI: 0.76% to 2.17%) increase 
in odds of myocardial infarction mortality [17]. The 
magnitude of these effect estimates in previous papers 
utilizing the same time-stratified case-crossover or time-
series study design was comparable to the findings in our 
study. In addition, we found that the relative percentage 
increases per 10  µg/m3 increment for particulate mat-
ter air pollution with smaller particle sizes were greater 
than those with larger particle sizes were also consistent 
with findings in several other studies on air pollution and 
mortality [33, 49].

This study has several strengths. A large nationwide 
sample of deaths collected from over 600 surveillance 

Fig. 3 Associations of short-term exposure to air pollution and risk of death from kidney diseases by age, sex, education, marriage, occupation, 
disease type, season, and region. AKI: acute kidney injury; CKD: chronic kidney disease
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sites in China spanning the past five years yields 
nationally representative estimates on the association 
between short-term exposure to air pollution and risk 
of death from kidney diseases. The levels of air pollu-
tion, notably particulate matter air pollution, were con-
siderably higher than the WHO-recommended levels, 
providing us an opportunity to investigate our hypoth-
esis in an ideal setting. Since the time-stratified case-
crossover design uses the individual as its own control, 
it eliminates the possibility of unknown individual-level 
time-invariant residual confounding including access to 
renal replacement therapy and genetic risk factors [50, 
51]. Compared to other time-series studies that meas-
ured air pollution at city levels, our study ascertained 
air pollution at the individual level using residential 
latitudes and longitudes, producing more accurate esti-
mates of air pollution.

This study has several limitations. Air pollution was 
estimated only at residential addresses and did not 
account for place of employment, and thus, we were una-
ble to obtain a fully comprehensive measurement of air 
pollution for each case. This may lead to potential expo-
sure misclassification bias, but this is likely a minor issue 
since the physical activity of patients with kidney prob-
lems is limited, and it is unlikely that many individuals 
were far from their residential addresses for very long. 
The current CHAP air pollutant data were estimated at 
10*10 km grids and had relatively low spatial resolution, 
this may lead to exposure misclassification and the esti-
mates may be biased towards null. Indoor air pollution 
subject to cooking, solid fuel use, and smoking is another 
important source of air pollution that may contribute 
the death from kidney diseases [52], but this informa-
tion was unavailable in the study. The exposure source 
data only measured air pollution as a whole and did not 
account for the chemical composition of air pollution, 
and future studies should take advantage of advances in 
remote sensing technologies and evaluate the effects of 
chemical components of air pollution [53]. The data col-
lection system included prespecified choices for categori-
cal variables, and some detailed sub-categories may not 
be collected in the original data (for example, illiteracy 
for education) [54]. Although the time-stratified case-
crossover design eliminates time-invariant factors and 
we accounted for meteorological variables, it may still be 
subject to residual confounding caused by unmeasured 
time-varying factors. The case-crossover design gener-
ally has lower statistical power compared to a time-series 
study design [38], and we were underpowered to detect 
statistically significant heterogeneity across different sub-
groups. The findings based on the Chinese population 
may not be generalizable to other countries due to popu-
lation dissimilarity and differing levels of air pollution.

Conclusions
In summary, our results demonstrate a significant asso-
ciation between short-term exposure to  PM1,  PM2.5, 
 PM10,  NO2, and  SO2 and the risk of death from kidney 
diseases. Policy efforts to reduce air pollution may miti-
gate the burden of death from kidney diseases in China 
and globally.
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