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A B S T R A C T

Evidence of the potential causal effect of PM2.5 and its constituents on all-cause mortality based on large pop
ulation cohort is still limited. Based on a large scale cohort of 341,098 participants in southern China, we 
developed a marginal structure Cox model based on inverse probability weighting, an established causal infer
ence approach, to evaluate the potential causal associations between PM2.5 constituents and all-cause mortality, 
taking into account time-varying covariates. Additionally, we further explored the modifying effects of de
mographic and lifestyle characteristics on these associations. For each IQR increase in black carbon and organic 
matter, the risk of all-cause mortality increased by 51 % (95 % CI: 40–62 %) and 52 % (95 % CI: 40–58 %), 
followed by ammonium, nitrate and sulfate (HR = 1.32, 1.38 and 1.39, respectively). Individuals < 65 years, 
unmarried, urban medical insured, not consuming alcohol, or not exercising were potentially more susceptible to 
the adverse effects for most PM2.5 constituents (P for interaction < 0.10). The HR estimates for these subgroups 
ranged from 1.51 to 2.10 for black carbon, 1.40–1.71 for nitrate, 1.42–1.53 for sulfate, and 1.52–1.77 for organic 
matter. Various sensitivity analyses verified the robustness of our findings. This study presented compelling 
evidence of potential causal links between PM2.5 constituents and all-cause mortality.

1. Introduction

Epidemiological research have demonstrated that atmospheric fine 
particulate matters (PM) exposure is related to a greater risk of diverse 
detrimental health results, such as cardiovascular diseases, respiratory 
diseases, tumors, and mutations (Mukherjee and Agrawal, 2018; Chen 
and Hoek, 2020; Orellano et al., 2020). Based on the Global Burden of 
Diseases (GBD) study (2019), over 4 million deaths globally could be 
resulted from PM exposure in that year, where 1.4 million of these 
deaths occurred in China (Collaborators, 2020). Potential mechanisms 
underlying the negative health effects of particulate matter exposure 
include intracellular oxidative stress, mutation and genotoxic reactions, 

and systemic inflammatory responses (Feng et al., 2016).
The risk of mortality attributed to PM2.5 exposure was highly het

erogeneous across regions, which might be due to the variation in its 
constituents (Liu et al., 2019). PM2.5 is a composite mixture consisting of 
several chemical constituents, like black carbon, ammonium, nitrate, 
sulfate, and organic matter (Kang et al., 2023). Black carbon and organic 
matter primarily result from incomplete fuel combustion, which is more 
prevalent in areas with heavy traffic and industrial activities (Pateraki 
et al., 2020). Ammonium, nitrate, and sulfate are secondary pollutants 
formed through chemical reactions in the air involving sulfur dioxide 
and nitrogen oxides, originating from biomass and diesel combustion, 
and automobile exhaust emissions (Pateraki et al., 2020). The health 
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effects of a specific constituent of PM2.5 are diverse, while the overall 
toxicity of PM2.5 largely depends on its composition (Wang et al., 2022; 
Shi et al., 2023; Liu et al., 2021). A prior study based on 16 cities in 
China showed that the toxicity of PM in the Pearl River Delta region was 
higher than that in other regions, which may be related to the heavy 
traffic emissions, weather patterns, and susceptibility of residents in the 
Pearl River Delta region (Chen et al., 2012). Although several studies 
have investigated the relationship between PM2.5 constituents and 
mortality in other regions of China (Chen et al., 2021, 2018; Wang et al., 
2019; Fu et al., 2023), there is still a dearth of solid evidence from the 
Pearl River Delta area, particularly based on large population cohorts.

Moreover, a large proportion of existing studies generally are sup
ported by traditional methods of association assessment, the estimates 
from which are typically “conditional effects” obtained from regression 
models with covariates being directly incorporated (Dominici and 
Zigler, 2017; Janes et al., 2010). Given the variation in confounders 
across the individuals, the “conditional effect” often tends to be closer to 
the mean effect at the individual level (Wang et al., 2023). However, 
compared to these individual-level estimates, the population-level effect 
estimates generally have more policy implications, thus, are more 
preferred. Recent advances in causal inference approaches for the 
observational data enable the evaluation of the population-level effect 
estimates. By mimicking the randomized controlled trails, a 
pseudo-population would be created with confounders being homoge
nized across exposure groups. Effect estimates generated by comparing 
across the pseudo groups are considered having potential causal impli
cations. Nevertheless, such evidence remains restricted in current 
studies.

This study adopted a causation inference method to explore the 
potential causal link between long-term PM2.5 constituents exposure and 
all-cause mortality based on the Pearl River Cohort. We further assessed 
the potential modifying effects of demographic features and living 
habits.

2. Methods

2.1. Study population and outcome

The study utilized a large population cohort from the Major Science 
and Technology Projects of the 11th and 12th Five-Year Plans in China, 
which oriented to establish national demonstration areas for 
community-level collaborative innovation projects (Ruan et al., 2019; 
Wang et al., 2024a). And the participants in this cohort were selected on 
a community scale in southern China by stratified random cluster 
sampling. All enrolled subjects were required to undertake a compre
hensive survey to obtain research information. Due to the accessibility of 
PM2.5 constituents exposure concentrations, the study focused on a 
sub-cohort enrolled after January 1, 2013, consisting of 341,098 par
ticipants from Guangzhou and Zhongshan areas. Ethical approval was 
obtained by us from the Institutional Review Board at Sun Yat-sen 
University (L2017–030). All the individual participants in the study 
provided their informed consent.

The mortality data were obtained from the Centers for Disease 
Control and Prevention Death Registry in Guangzhou and Zhongshan. 
The length of the follow-up period was set as the time between regis
tration and occurrence of death or the termination of the study on 
December 31, 2020.

2.2. Exposure and covariates

The main exposure in this study was PM2.5 concentration and its 
constituents, namely black carbon, ammonium, nitrate, sulfate, and 
organic matter. The annual average concentrations of these pollutants, 
having a spatial resolution of 1 km × 1 km, were obtained from the 
ChinaHighAirPollutants (CHAP) datasets. The data collection and 
modeling process have been previously outlined in detail (Wei et al., 

2023, 2021, 2020). The model estimation of these constituents’ con
centrations are well validated and widely used. In general, in relation to 
126 ground monitoring stations distributed nationwide, the 
cross-validation R2 values of each constituent ranged from 0.71 to 0.75 
and the root-mean-square error (RMSE) was within the scope of 4.3–6.6 
(Wei et al., 2023). Average annual exposure concentration for each 
pollutant was allocated to each participant in accordance with their 
residential address.

We utilized a directed acyclic graph (DAG) to detect confounding 
factors (Lipsky and Greenland, 2022). Mapping the DAG was informed 
by an extensive literature review and our prior research experience, as 
depicted in Fig. S2. Based on the insights from the DAG, the factors 
included sociodemographic factors (age, gender, education, marital 
status, ethnicity, and medical insurance) and lifestyle variables (smok
ing, alcohol consumption, and exercise). Information on participants’ 
sociodemographic and lifestyle factors was gathered through 
direct-contact interviews with the assistance of well-trained nurses using 
computer-based questionnaires. These variables included age group (<
65, ≥ 65), gender (male, female), education level (elementary, middle 
school, high school, and college), marital status (single, married, and 
widowed/divorced), ethnicity (Han or other), medical insurance (urban 
workers, non-working urban residents, new rural cooperative, or other), 
smoking habits (No or Yes), with Yes signifying at least one cigarette 
daily for a minimum duration of 6 months, alcohol consumption (No or 
Yes), with No signifying either no alcohol consumption or only a limited 
amount consumed within the past year, and exercise habits (No or Yes).

2.3. Statistical analysis

In this study we employed a marginal structure Cox model (MSM) 
utilizing inverse probability weighting (IPW) for assessing the potential 
causal relationship between each IQR increase in concentrations of 
PM2.5 and its constituents and all-cause mortality. To account for the 
decreasing trend in the concentration of PM2.5 and its constituents over 
time, we treated them as time-dependent variables (Zhang et al., 2018). 
The IPW approach utilized the concept of counterfactuals to simulate 
observational data in the form of a randomized controlled trial in order 
to create pseudo-populations and achieve the effect of balancing the 
observed confounding factors (Wu et al., 2020a; Cole and Hernan, 
2008). The stabilized weights for the exposures were calculated as the 
ratio of the marginal probability of exposure to the generalized pro
pensity score (GPS) (Robins et al., 2000). The GPS was obtained through 
regression of exposure variables against potential confounding factors. 
In order to address extreme weights, we capped the weights at 10 for 
those with a value exceeding 10 (Gruber et al., 2022). Moreover, we 
employed three different regression methods for calculating GPS: linear 
model (LM), generalized estimating equation (GEE), and gradient 
boosting machine learning (ML). The balance of covariates in the 
pseudo-population was assessed using the mean absolute correlation 
(AC), where AC values under 0.1 indicated the high quality of the 
simulated randomized controlled trial (Fig. S1) (Austin, 2019). Based on 
the results, we selected the GEE-IPWs method, which attained the best 
balance in covariates, as our main analysis model.

We adopted a sequential modeling strategy as follows:
Model 0: the crude time-dependent Cox model including either 

PM2.5 or its constituents as the sole variable.
Model 1: model 0 with additional adjustment for age and gender.
Model 2: model 1 with further adjustment for education level, 

marital status, ethnicity, medical insurance, smoking habits, alcohol 
consumption and exercise habits.

Model 3: model 2 weighted by GPS using GEE.
We evaluated collinearity in the final model using the generalized 

variance inflation factor (GVIF), ensuring that GVIF values were below 
5. Building upon Model 3, we carried out a stratified analysis according 
to sociodemographic and lifestyle variables to assess potential modifi
cation effects. Notably, upon applying the weights of Model 3 in the total 
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population to the stratified analyses, the balance of the covariates within 
subgroups was also achieved, as indicated by the AC values for the 
exposure against confounders in each subgroup (Table S1, all AC < 0.1). 
For imputing missing data, we employed the R multivariate imputation 
by chained equation (MICE) package (Zhang, 2016).

In order to guarantee the robustness of our results, several sensitivity 
analyses were performed. First, the final model was applied to the 
complete datasets without imputing missing values to assess the impact 
of data imputation. The characteristics of participants in the complete 
datasets are shown in Table S2. Second, we utilized IPW obtained 
through all three weighting methods in the final model. Third, a multi- 
constituent model analysis was conducted to evaluate the influence 
between constituents with low correlations (r < 0.7). In the multi- 
constituent model, all constituents with low correlations to the major 
constituent were adjusted as covariates based on the single-constituent 
model (Model 3) (Tao et al., 2023). Fourth, we also calculated the 
E-value to evaluate the implications of unmeasured confounding factors 
for the study results. A larger E-value indicated greater robustness of the 
results (Haneuse et al., 2019). The main outputs for these models were 
hazard ratio (HR) estimates for every IQR rise in PM2.5 and its constit
uents. All the analysis work was performed using R version 4.1.3. 
Two-sided P-values < 0.05 were deemed statistically significant. We also 
evaluated P-values < 0.10 as the threshold for statistical interaction 
(Selvin, 2004).

3. Results

During the 8-year follow-up period, among the 341,098 participants, 
a total of 10,683 deaths occurred, representing a mortality rate of 3.13 % 
(Table 1). Male participants accounted for 49.9 % of the total sample. 
The mean age of the all-cause deaths group was 70.54 ± 14.58 years, 
while the survived group had an average age of 42.69 ± 16.07 years. The 
average exposure concentration of PM2.5 among participants in 2013 
was 52.14 ± 3.10 μg/m3, gradually decreasing each year to 
22.25 ± 1.77 μg/m3 by 2020. The exposure concentration trend was 
similar for PM2.5 constituents (Table 2).

Fig. 1 displays the HR estimates for the relationship between PM2.5 
constituents and all-cause mortality risk in both the marginal structure 
Cox model and the ordinary time-dependent Cox model. The HR esti
mate values in all Models indicated that PM2.5 and each constituent were 
risk factors for all-cause death. In the final model (Model 3), the HR for 
risk of all-cause mortality was 1.45 (95 % CI: 1.35–1.56) for each IQR 
rise in PM2.5 concentration. The HRs for black carbon, ammonium, ni
trate, sulfate, and organic matter were 1.51 (95 % CI: 1.40–1.62), 1.32 
(95 % CI: 1.26–1.38), 1.38 (95 % CI: 1.32–1.46), 1.39 (95 % CI: 
1.31–1.45), and 1.52 (95 % CI: 1.40–1.58) for each IQR rise in the 
concentration, respectively. Comparatively, the ordinary time- 
dependent Cox model (Model 2) estimated the risk of all-cause mortal
ity attributed to PM2.5 and its constituents to be a little lower than the 
estimates obtained from the main model (Model 3). Table 3 presents the 
estimates for the remaining models.

In the subgroup analysis (Fig. 2), we observed significant modifica
tion effects for age (all P for interaction < 0.001), marital status (except 
for sulfate, the other P for interaction < 0.10), medical insurance (all P 
for interaction < 0.05), alcohol consumption (all P for interaction <
0.10) and exercise (all P for interaction < 0.001). Apart from ammo
nium, the impact on the risk for all-cause mortality was greater in the 
< 65 years old group (HR of <65 vs. ≥65, black carbon: 1.92 vs. 1.53, 
nitrate: 1.48 vs. 1.34, sulfate: 1.51 vs. 1.46, organic matter: 1.71 vs. 
1.58). The risk of all-cause mortality related to PM2.5 constituents was 
lowest among married individuals, with HR = 1.44 for black carbon, 
HR = 1.36 for nitrate, and HR = 1.46 for organic matter, followed by 
the HR estimates in the single group and the widowed & divorced group. 
Furthermore, participants with medical insurance for non-working 
urban residents showed the highest susceptibility to the effects of ni
trates (HR = 1.50, 95 % CI, 1.34–1.64), sulfates (HR = 1.53, 95 % CI, 

1.39–1.68), and organic matter (HR = 1.64, 95 % CI, 1.46–1.84), fol
lowed by the estimates in the urban workers medical insurance group 
and other groups. Residents with urban workers medical insurance were 
most vulnerable to black carbon (HR = 1.87, 95 % CI, 1.66–2.10), fol
lowed by the estimates in the medical insurance group for non-working 
urban residents (HR = 1.45, 95 % CI, 1.28–1.64), and in the others 
medical insurance group (HR = 1.34, 95 % CI, 1.11–1.60). In addition to 
the above factors, we did not find modification effect when the estimates 
were stratified by other demographic features, such as gender and 
education.

Similarly, when the results were stratified by lifestyle factors, resi
dents who did not consume alcohol exhibited increased susceptibility to 
PM2.5 constituents exposure (HR of No vs. Yes, black carbon: 1.51 vs. 
1.29, ammonium: 1.34 vs. 1.13, nitrates: 1.40 vs. 1.18, sulfates: 1.42 vs. 
1.01, organic matter: 1.52 vs. 1.04). Additionally, exercise showed a 
statistically significant interaction effect with each constituent. In
dividuals who did not exercise were more susceptible to black carbon 
(HR of No vs. Yes, 2.10 vs.1.41), sulfates (HR of No vs. Yes, 1.48 vs.1.36) 
and organic matter (HR of No vs. Yes, 1.77vs.1.40), while individuals 
who exercise were more susceptible to ammonium (HR of No vs. Yes, 
1.27 vs.1.33) and nitrates (HR of No vs. Yes, 1.36vs.1.38). Effect 
modification regarding smoking was not observed.

The results obtained from the imputed data sets and complete data 
sets demonstrated the robustness of the findings (Table S3). Similarly, 
the results from the final model weighted by GPS using different 
methods (LM, ML, and GEE) were also consistent and reliable (Table S4). 

Table 1 
sociodemographic and lifestyle factors of all participants.

Overall 
(N = 341,098)

Survived 
(n = 330,415)

All-cause death 
(n = 10,683)

P

N (%) n (%) n (%)

Age (m±s) 43.57 ± 16.75 42.69 ± 16.07 70.54 ± 14.58 < 0.001
Age group ​ ​ ​ < 0.001
< 65 299,126 (87.7) 295,635 (89.5) 3491 (32.7)

≥ 65 41,972 (12.3) 34,780 (10.5) 7192 (67.3)
Gender ​ ​ ​ < 0.001

Male 170,243 (49.9) 164,011 (49.6) 6232 (58.3)
Female 170,855 (50.1) 166,404 (50.4) 4451 (41.7)

Education ​ ​ ​ < 0.001
Elementary 39,326 (11.5) 35,959 (10.9) 3367 (31.5)
Middle 99,047 (29.0) 95,549 (28.9) 3498 (32.7)
High 153,413 (45.0) 150,210 (45.5) 3203 (30.0)

College 49,312 (14.5) 48,697 (14.7) 615 (5.8)
Marital status ​ ​ ​ < 0.001
Single 78,385 (23.0) 77,648 (23.5) 737 (6.9)
Married 254,997 (74.8) 246,225 (74.5) 8772 (82.1)
Widowed & 

Divorced
7716 (2.3) 6542 (2.0) 1174 (11.0)

Ethnic ​ ​ ​ < 0.001
Han 334,453 (98.1) 323,880 (98.0) 10,573 (99.0)
Others 6645 (1.9) 6535 (2.0) 110 (1.0)

Medical 
insurance

​ ​ ​ < 0.001

Urban 
workers

117,033 (34.3) 111,269 (33.7) 5764 (54.0)

Non- 
working 
urban 
residents

72,394 (21.2) 69,331 (21.0) 3063 (28.7)

New rural 
cooperative

34,616 (10.1) 34,181 (10.3) 435 (4.1)

Others 117,055 (34.3) 115,634 (35.0) 1421 (13.3)
Smoke ​ ​ ​ < 0.001

No 331,680 (97.2) 321,634 (97.3) 10,046 (94.0)
Yes 9418 (2.8) 8781 (2.7) 637 (6.0)

Alcohol ​ ​ ​ < 0.001
No 320,280 (93.9) 310,652 (94.0) 9628 (90.1)
Yes 20,818 (6.1) 19,763 (6.0) 1055 (9.9)

Exercise ​ ​ ​ < 0.001
No 98,193 (28.8) 93,642 (28.3) 4551 (42.6)
Yes 242,905 (71.2) 236,773 (71.7) 6132 (57.4)
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In the multi-constituent model, the HR of each main constituent 
remained significant, suggesting the results were robust compared with 
the single-constituent model (Table S5). Moreover, the E-values were all 
greater than 1, indicating that unmeasured confounding factors were 
unlikely to substantially change our observed findings (Table S6).

4. Discussion

In this large cohort study employing causal inference methods, we 
discovered a significant potential causal relationship between long-term 
PM2.5 constituents exposure and an elevated risk of 32–52 % in all-cause 

mortality. Among PM2.5 constituents, black carbon and organic matter 
had the highest health risk, followed by ammonium, nitrate and sulfate. 
Furthermore, our findings indicate potential modification effects of age, 
marital status, medical insurance, alcohol consumption, and exercise.

We observed significant associations between long-term exposure to 
PM2.5 constituents and the increased mortality, which was consistent 
with previous findings (Hvidtfeldt et al., 2019; Goobie et al., 2022; He 
et al., 2024; Ostro et al., 2010). When the effect size of this study is 
converted to reflect a 1 μg/m³ increase rather than an IQR increase in 
the exposure, it ranges from 1.10 to 1.83, also consistent with the range 
of estimates in existing studies. For instance, Ostro et al. (2010) reported 

Table 2 
Annual exposure concentration of PM2.5 and its constituents (mean ± sd).

PM2.5 Black carbon Ammonium Nitrate Sulfate Organic matter

2013 52.14 ± 3.10 4.25 ± 0.36 5.82 ± 0.18 9.24 ± 0.65 11.2 ± 0.60 19.8 ± 1.93
2014 45.11 ± 4.21 3.76 ± 0.39 5.16 ± 0.31 8.02 ± 0.87 9.91 ± 1.00 16.1 ± 2.59
2015 38.18 ± 2.51 3.44 ± 0.38 4.51 ± 0.20 6.54 ± 0.52 8.80 ± 0.70 13.1 ± 1.67
2016 34.55 ± 2.19 3.21 ± 0.33 4.06 ± 0.20 5.81 ± 0.51 7.89 ± 0.63 11.7 ± 1.55
2017 35.40 ± 1.46 3.22 ± 0.27 4.13 ± 0.22 6.34 ± 0.46 8.00 ± 0.35 12.1 ± 1.02
2018 33.05 ± 2.65 3.12 ± 0.36 3.93 ± 0.18 6.10 ± 0.65 7.45 ± 0.53 10.8 ± 1.85
2019 29.57 ± 1.62 2.96 ± 0.29 3.49 ± 0.16 5.33 ± 0.42 7.12 ± 0.42 9.18 ± 1.26
2020 22.25 ± 1.77 2.41 ± 0.29 2.65 ± 0.14 4.10 ± 0.36 5.62 ± 0.49 6.23 ± 1.18

Fig. 1. HR and 95 % CI of PM2.5 and its constituents to all-cause mortality in two different models.The red represents the marginal structure Cox model, which is 
weighted based on the ordinary Cox model using GPS obtained by GEE (Model 3). And the blue represents the time-dependent Cox model (Model 2).

Table 3 
Hazard ratio (HR) of PM2.5 and its constituents to all-cause death.

Model 0 Model 1 Model 2 Model 3

HR 95 % CI HR 95 % CI HR 95 % CI HR 95 % CI

PM2.5 2.72*** (2.54–2.90) 1.35*** (1.35–1.45) 1.35*** (1.25–1.35) 1.45*** (1.35–1.56)
Black carbon 3.53*** (3.38–3.69) 1.33*** (1.27–1.39) 1.33*** (1.26–1.41) 1.51*** (1.40–1.62)
Ammonium 1.13*** (1.07–1.18) 1.34*** (1.28–1.40) 1.30*** (1.25–1.36) 1.32*** (1.26–1.38)
Nitrate 1.97*** (1.88–2.08) 1.40*** (1.34–1.46) 1.31*** (1.25–1.38) 1.38*** (1.32–1.46)
Sulfate 2.55*** (2.47–2.66) 1.26*** (1.20–1.30) 1.23*** (1.17–1.28) 1.39*** (1.31–1.45)
Organic matter 3.48*** (3.37–3.60) 1.29*** (1.24–1.40) 1.29*** (1.19–1.34) 1.52*** (1.40–1.58)

Model 0: ~one of PM2.5 or its constituents.
Model 1: model 0 +age+gender.
Model 2: model1 +education+marital status+ethnic+medical insurance+smoke+alcohol+exercise.
Model 3: model 2 weighted by generalized estimating equation (GEE).
***: P < 0.001.
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in a study in California that the HRs for all-cause mortality ranged from 
1.06 to 1.93 following each 1 μg/m³ increase in long-term exposure to 
PM2.5 constituents. Similarly, a Danish study suggested HRs of mortality 
ranging from 1.07 to 4.66 per 1 μg/m³ increment in the concentration of 
PM2.5 constituents (Hvidtfeldt et al., 2019). Furthermore, several studies 
have reported on the health effects of long-term exposure to PM2.5 
constituents from the perspective of cause-specific mortality, and the 
estimates in these studies tended to be even greater than the estimates in 
this study. For example, a global multi-center study reported that each 
1 μg/m³ increase in the concentration of PM2.5 and its constituents 
including sulfate, nitrate, and ammonium, was associated the HRs of 
mortality of 1.18, 8.02, 3.78, and 50.99, respectively, among patients 
with fibrotic interstitial lung disease (Goobie et al., 2022). Another 
cohort study focusing on Chinese children found that among all the 
components, black carbon had the greatest impact on mortality in 
childhood-onset lupus nephritis, with an HR of 2.14 for each 
1 μg/m³ increase in its concentration (He et al., 2024). These findings 
not only corroborated the connection between PM2.5 constituents and 
mortality but also underscored the global heterogeneity in the risk of 
mortality (Chen et al., 2024). Consequently, our study furnished 
compelling evidence regarding the impact of exposure to PM2.5 chemical 
constituents on all-cause mortality specifically within the Pearl River 
Delta region, contributing to the growing body of knowledge in this 
area.

We found that among the PM2.5 constituents, black carbon and 
organic matter had the highest association with the risk of all-cause 
mortality, which was consistent with previous findings (Wang et al., 
2019; He et al., 2024; Yang et al., 2019) and was supported by plausible 
biological mechanisms. Black carbon and organic matter, which are 
major constituents of PM2.5, are directly released from the burning of 
fossil fuels and can adhere to ambient particulate matter (Liu et al., 
2013). Black carbon has been linked to DNA methylation and oxidative 
stress (Niranjan and Thakur, 2017), which could contribute to cardio
vascular damage and lung injury (Hvidtfeldt et al., 2019), thereby 
increasing the risk of suffering from cardiovascular diseases and the 
associated mortality (Yang et al., 2019). Similarly, organic matter has 
been associated with elevated blood pressure, raised heart rate vari
ability, inflammation, and oxidative stress (Chen et al., 2021). These 

findings were consistent with epidemiological studies that suggested 
black carbon and organic matter increases risk of cardiovascular- and 
respiratory-related mortality (Yang et al., 2020). Ammonium, nitrate, 
and sulfate are the secondary pollutants formed through atmospheric 
reactions involving sulfur dioxide and nitrogen oxides (Pateraki et al., 
2020). Nitrate could exert effect on the central nervous system by 
stimulating the hypothalamic-pituitary-adrenal (HPA) axis. This acti
vation could either amplify or inhibit cardiometabolic responses. 
Consequently, nitrate demonstrated a more pronounced correlation 
with the onset of human cardiovascular diseases (Niu et al., 2018). 
Furthermore, research had indicated that nitrates were associated with 
lung inflammatory cells and respiratory tract damage (Zhang et al., 
2021). Such associations could precipitate the onset and progression of 
respiratory diseases. Moreover, the acidity of nitrate and sulfate could 
directly induce airway hyper-reactivity and impair airway clearance, 
leading to lung injury and facilitating the uptake, conversion, and 
application of toxic substances (Yang et al., 2020). Notably, sulfate has 
been demonstrated to exhibit a positive correlation with biomarkers 
indicative of oxidative stress (Li et al., 2016). Cumulatively, these as
pects constitute significant risk factors contributing to the development 
of cardiovascular disease (Yang et al., 2020). Ammonium, usually 
combined with nitrate and sulfate in the form of ammonium nitrate 
(NH4NO3) and ammonium sulfate((NH4)2SO4), had uncertain biological 
mechanisms (Hao et al., 2023).

When results were stratified by demographic characteristics, we 
observed effect modification by age, marital status, and medical insur
ance. The subgroup analysis revealed that individuals under the age of 
65 were more vulnerable to the detrimental health impacts of PM2.5 
constituents. Nevertheless, there remained a lack of unanimity 
regarding the influence of age on modifying the health risks associated 
with particulate matter exposure (Liu et al., 2021; Qi et al., 2024). For 
instance, in an analysis of the associations between PM2.5 constituents 
and cardiovascular diseases in China, Liu et al. (2021) discovered that 
the elderly exhibited greater sensitivity to such effects. Conversely, 
another study in China, carried out by Qi et al. (2024) which explored 
the association between PM2.5 constituents and cognitive function, 
indicated that young individuals demonstrated stronger susceptibility. 
These discrepant outcomes can be ascribed to factors such as 

Fig. 2. The modification effects on the causal association between PM2.5 constituents and all-cause mortality.
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geographical location, pollution concentrations, differences in pollutant 
composition, along with other latent health factors relevant to the spe
cific group of people (Mokoena et al., 2019). In particular, factors such 
as increased outdoor activities and varied lifestyle leading to higher 
exposure to PM2.5 constituents among younger individuals (Zhou et al., 
2022). As an illustration, in this study, we discovered that 72.55 % of 
young people and 61.71 % of older individuals engaged in regular ex
ercise. The disparity between the two groups were statistically signifi
cant (P < 0.001). Moreover, given that elderly individuals have a 
diminished lung capacity, younger people might potentially inhale a 
greater quantity of environmental pollutants (Enright et al., 1994). This 
could also constitute a possible underlying reason. Additionally, we 
observed that married individuals demonstrated greater tolerance to the 
adverse health effects of black carbon, organic matter, and other PM2.5 
constituents. This could be ascribed to the presence of social support and 
a more structured lifestyle among married individuals, which might help 
reduce stress levels and promote positive overall health (Manvelian and 
Sbarra, 2020). Specifically, married couples typically pooled their eco
nomic resources, affording them enhanced living conditions and 
consequently facilitating access to facilities and amenities that served to 
alleviate the impact of environmental hazards (Cohen and Wills, 1985). 
Moreover, compared to their unmarried counterparts, married in
dividuals generally possess more expansive social networks (Manvelian 
and Sbarra, 2020). When confronted with health problems related to 
PM2.5 exposure, these supplementary connections can offer tangible 
forms of assistance. This might involve providing care and support 
during periods of illness or disseminating valuable information 
regarding preventive strategies (Tucker, 2002). The emotional suste
nance derived from this broader social nexus further cushions the stress 
that accompanies potential health risks, bolstering the resilience of 
married individuals (Cohen and Wills, 1985). Moreover, our findings 
indicated that individuals with medical insurance for urban workers 
were more sensitive to the health hazards associated with black carbon. 
This could be linked to their higher exposure to road traffic pollution 
during daily commutes (Setton et al., 2008), as black carbon is a major 
constituent of vehicular emissions. Another potential rationale is that 
the distribution and sources of PM2.5 constituents varied across urban 
and rural areas, with urban areas often experiencing higher levels of 
pollution compared to rural regions (Yang et al., 2019, 2020). Therefore, 
we suggested that cities should pay more attention to pollution emis
sions from transportation sources (Jiang et al., 2017), while rural areas 
may need to consider more pollution from the burning of crop residues 
(Wu et al., 2020b). Conversely, participants with medical insurance for 
non-working urban residents were more vulnerable to other PM2.5 
constituents. This might be attributed to individuals with medical in
surance for non-working urban residents may encounter challenges in 
accessing adequate medical resources compared to those with insurance 
for urban workers (Li et al., 2018). Evidently, the current study revealed 
that the medical insurance for urban workers enjoyed a high level of 
financing and a diverse range of treatment options, whereas the 
comparatively lower-cost insurance for non-working urban residents 
and insurance for new rural cooperative offered more limited treatment 
(Wang et al., 2024b; Fan et al., 2021). Thus, the construction of more 
basic medical service facilities in rural areas and the optimization of 
medical services for non-employed people in cities should also be taken 
into account (Fan et al., 2021).

When results were stratified according to lifestyle indicators, we 
observed effect modification for alcohol consumption and exercise. In
dividuals who consumed alcohol exhibited greater tolerance to the risk 
of death associated with PM2.5 constituents exposure, a result consistent 
with prior studies (Yao et al., 2022). We hypothesized that individuals 
with poorer health conditions might tend to abstain from alcohol, and 
therefore, non-alcohol consumption might serve as a marker of poor 
health conditions and a higher risk of mortality, rather than being a 
causal factor for vulnerability to PM2.5 constituents exposure. While this 
finding may be the result of selection bias, additional studies are needed 

to support our hypothesis. Additionally, the modification effect of ex
ercise observed in this study was complex, as exercise could lead to 
increased inhalation of PM2.5, resulting in higher health risks. However, 
exercise also provides overall health benefits (Tainio et al., 2021). 
Additional research is needed to have a more profound comprehension 
of the connection between exercise and the effects of PM2.5 constituents 
on health.

This study has several notable strengths. First, this is the initial study, 
to our knowledge, to explore the potential causal association between 
PM2.5 constituents and all-cause mortality using causal inference 
methods. This approach provides valuable insights into the potential 
causal links between these factors. Second, the large population size of 
the community survey ensured high statistical power and thereby 
greater generalizability of findings for similar populations.

Some limitations should be noted. First, the assumption of no un
measured confounding factors, a prerequisite for causal inference, is 
challenging to meet in practice. Nonetheless, the sensitivity analysis 
conducted in this study, particularly the E-value analysis, indicated that 
the results remained robust even when considering potential unmea
sured confounders. Second, the exposure assessment of PM2.5 constitu
ents was based on residential addresses rather than individual-level 
data. This approach introduced the possibility of exposure misclassifi
cation, as individuals living in the same street were allocated the same 
exposure values. However, in reality, even when people are close 
geographically, their actual exposures vary due to their unique activity 
patterns. This type of error, known as a combination of Berkson error 
and classical error, might result in bias towards the null and an under
estimation of the true effect (Bateson et al., 2007; Zeger et al., 2000). 
Finally, the pollutants concentrations in this study did not conform to a 
normal distribution, even after transformations, but we still used 
Gaussian distribution as the link function in propensity score. Gaussian 
distribution is still the optimal option based on the existing statistical 
theory and the limited number of link functions available. In this 
context, we have developed multiple models for estimating the gener
alized propensity score including a machine learning algorithm 
(XGboost) which does not depend on the distribution of pollutant con
centrations. Moreover, based on the AC values, the generalized pro
pensity score in this study can effectively balance the covariates, even 
when the pollutant concentrations did not follow a normal distribution. 
The same framework of methodology has been commonly used in pre
vious studies (Wang et al., 2023; Robins et al., 2000; Zhang et al., 2024).

5. Conclusion

In conclusion, this large population-based cohort study in southern 
China established an independent potential causal relationship between 
each PM2.5 constituents and all-cause mortality. The findings high
lighted the diverse health risks associated with different constituents, 
owing to variations in their sources and distribution patterns. Further
more, the study demonstrated that individuals under 65 years old, un
married, urban medical insured, not consuming alcohol, or not 
exercising exhibited a more pronounced relationship between PM2.5 
constituents and all-cause mortality. Therefore, it is recommended that 
pollution control policies better shift their focus from PM2.5 mass to 
chemical composition, recognizing the importance of specific constitu
ents. Furthermore, environmental health policies should prioritize the 
needs of vulnerable populations.
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