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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Long-term exposure to PMs increased 
the risk of neurological hospitalizations. 

• The hazard ratio for PM1 tends to be 
greater on neurological hospitalization. 

• Long-term exposure to PMs enhanced 
the risk of ischemic stroke 
hospitalization. 

• Unmarried residents might be more 
vulnerable than their counterparts. 

• Causal inference models with time- 
varying exposure minimized confound-
ing bias.  
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A B S T R A C T   

With limited evidence on the neurological impact of particulate matter (PM) exposure in China, particularly for 
PM1 which is smaller but more toxic, we conducted a large Chinese cohort study using causal inference ap-
proaches to comprehensively clarify such impact. A total of 36,271 participants in southern China were recruited 
in 2015 and followed up through 2020. We obtained the neurological hospitalizations records by linking the 
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Hospital admission 
Causal inference 

cohort data to the electronic reports from 418 medical institutions across the study area. By using high-resolution 
PM concentrations from satellite-based spatiotemporal models and the cohort data, we performed marginal 
structural Cox models under causal assumptions to assess the potential causal links between time-varying PM 
exposure and neurological hospitalizations. Our findings indicated that increasing PM1, PM2.5, and PM10 con-
centrations by 1 μg/m3 were associated with higher overall neurological hospitalization risks, with hazard ratios 
(HRs) of 1.10 (95% confidence interval (CI) 1.04–1.16), 1.09 (95% CI 1.04–1.14), and 1.03 (95% CI 1.00–1.06), 
respectively. PM1 appeared to have a stronger effect on neurological hospitalization, with a 1% and 7% higher 
impact compared to PM2.5 and PM10, respectively. Additionally, each 1-μg/m3 increase in the annual PM1 
concentration was associated with an elevated risk of hospitalizations for ischemic stroke (HR: 1.15; 95% CI, 
1.06–1.26), which tended to be larger than the estimates for PM2.5 (HR: 1.13, 95% CI, 1.04–1.23) and PM10 (HR: 
1.05, 95% CI, 1.00–1.09). Furthermore, never-married or female individuals tended be at a greater risk compared 
with their counterparts. Our study provides important insights into the health impact of particles, particularly 
smaller particles, on neurological hospitalization risk and highlights the need for clean-air policies that specif-
ically target these particles.   

1. Introduction 

Neurological disorders remain a significant public health issue 
worldwide, responsible for approximately 3.09 million deaths and 38 
million disability-adjusted life-years (DALYs) in 2017 (Collaborators, 
2018). In China, neurological disorders accounted for 2.6 million hos-
pital admissions in 2022, accounting for 3.1% of all hospital admissions 
(Commission, 2022). 

Exposure to particulate matter (PM) is approximated to result in 4.14 
million deaths globally in 2019 (Collaborators, 2020). Previous epide-
miologic research has shown an increased risk of neurological disorders 
following long-term PM exposure. For instance, a previous 
meta-analysis found that long-term exposure to each 10 μg/m3 increase 
in PM2.5 (ambient particles with aerodynamic diameter ≤2.5 μm) was 
associated with a 34% increase in the incidence of Parkinson’s disease 
and a 26% increase in Alzheimer’s disease (Fu et al., 2019). Mechanism 
studies suggested that PM exposure may affect biological pathways of 
oxidative stress, neuroinflammation, or neuronal damage, thereby 
accelerating the occurrence of neurological disorders (Xu et al., 2016). 
These findings suggest that PM exposure may be an important predictor 
underlying the increased risk of neurological disorders. 

However, current studies on the neurological impact of PM exposure 
suffer from multiple research gaps. First, the majority of the current 
evidence is originated from western countries with relatively low PM 
concentrations. In contrast, China, one of the world’s most densely 
populated areas, has been suffering from the highest levels of air 
pollution globally, where the annual PM2.5 concentration was 7–8 times 
higher than the World Health Organization (WHO) interim target (5 μg/ 
m3) (Organization, 2019). Therefore, high-quality studies from Chinese 
cohorts are urgently needed to clarify the neurological impact of PM 
exposure so as to inform policy and public health interventions to 
improve the wellbeing of residents in such heavily polluted settings. 
Furthermore, existing studies usually are focused on the impact of 
regular-sized particles such as PM2.5 and PM10, resulting in a significant 
gap in our knowledge regarding the detrimental neurological effects of 
PM1 (Wang et al., 2021). PM1 is a significant constituent of PM2.5 and 
PM10, and despite being smaller in size, it is more toxic than the 
regular-sized particles (Wang et al., 2015). The smaller size of PM1 
particles allows them to reach deeper into the lung or brain, while the 
disproportionately large surface area increases the possibility of car-
rying large amounts of absorbable harmful components (Chen et al., 
2017; Shih et al., 2018). In recent years, there has been a growing body 
of epidemiological research suggesting a potential association between 
PM1 exposure and health issues. For example, a large cross-sectional 
study of 33 communities in northeast China found that the risk of hy-
pertension from PM1 tended to be 2% greater than that from PM2.5 
(Yang et al., 2019). Another population-based study conducted in China 
found that a 10 μg/m3 increase in exposure to PM1, in comparison to 
PM2.5, was linked to a 3% higher risk of hospital admission for total 
respiratory diseases (Zhang et al., 2020). However, limited evidence is 

available on the neurological impact of PM1 exposure, and as of now, no 
air quality standards have been established for PM1. Last but not least, 
existing studies largely rely on traditional association assessment 
methods (e.g., Cox proportional hazards regression), which may suffer 
from residual confounding bias (Robins et al., 2000a). Over the last 
decade, novel modeling approaches have been developed under a set of 
causal assumptions. The basic idea underlying the causal inference ap-
proaches is to mimic a randomized controlled trial where both the 
measured confounders are well balanced by certain weighting proced-
ures (Cole and Hernán, 2008a). These methods have been applied to 
observational data in recent studies, although far too little attention has 
been paid to the causal association between PM exposure and neuro-
logical hospitalizations (Qiu et al., 2020). 

This study aims to investigate the association between long-term 
exposure to PMs, with a particular focus on PM1, and neurological 
hospitalizations. We further examined the variation in effect estimates 
across the particle size, sociodemographic characteristics and health 
behaviors. The state-of-the-art causal inference approach for observa-
tional data were utilized to investigate the potential causal associations. 

2. Methods 

2.1. Cohort design and population 

The present study includes individuals from over 35 communities 
randomly selected in Guangzhou area, as a part of the Major Projects of 
Science Research for the 11th and 12th Five-year Plans of China (Ruan 
et al., 2019). Based on the availability of outcome data, our study par-
ticipants were all selected from 35 communities in Guangzhou, 
randomly selected based on sociodemographic characteristics. In this 
study, we included participants who were permanent residents, capable 
of undergoing a physical examination, and willing to sign an informed 
consent form. Meanwhile, the exclusion criteria involved individuals 
who were unable to undergo long-term follow-up or under the age of 18. 
More details about cohort have been described elsewhere (Zhang et al., 
2023). More details about cohort have been described elsewhere. 
Beginning in January 2016, hospitalization reporting became manda-
tory in the study area. For this study, we focused on individuals who 
were hospitalized due to neurological disorders that occurred at least 
one year after enrollment. As a result, we included 36,271 participants 
recruited between January and December 2015, and followed them up 
until December 2020. Trained staff conducted in-person interviews, as 
well as clinical and laboratory examinations to obtain individual infor-
mation on demographics (e.g., age, sex, ethnicity, body weight status, 
marital situation, educational attainment, medical insurance), lifestyle 
variables (e.g., exercise level, smoking habit status, alcohol consump-
tion. The institutional review board (IRB) at Sun Yat-sen University 
approved this study, and all participants provided with a completed 
informed consent. 
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2.2. Outcome definition 

We obtained information on the causes of hospitalization by linking 
records with electronic hospitalization reports from 418 medical in-
stitutions, including 71 tertiary medical institutions, 100 secondary 
medical institutions, 71 primary medical institutions, and 176 other 
medical institutions, covering the entire Guangzhou area. We identified 
the causes of hospitalization using the International Classification of 
Diseases, Tenth Revision (ICD-10) codes. The primary outcome of this 
study was the overall neurological hospitalizations (G00-99), as well as 
the major subtypes including ischemic stroke (G45-46), Parkinson dis-
ease (G20-G22) and Alzheimer disease (G30-G31). Each participant was 
followed until the occurrence of outcomes of interest or the end of the 
study period, whichever came first. 

2.3. Data on PMs and environmental exposures 

PMs data were obtained from the China High Air Pollutants (CHAP) 
database, which was estimated by satellite-based spatiotemporal models 
and space-time extremely randomized trees. The ground observations 
matched well with the anticipated levels of PM1, PM2.5, and PM10, with 
cross-validation coefficient of determination (CV-R2 value, a statistical 
measure used to assess the goodness of fit between a statistical model 
and the actual observed data) of 0.77, 0.89, and 0.86, and root mean 
square errors (RMSEs) of 14.60, 10.33, and 24.28 μg/m3, respectively 
(Wei et al., 2019, 2020, 2021a, 2021b). The relatively lower R-squared 
value for PM1 may be attributed to the sparse distribution of monitoring 
stations across mainland China, which might not adequately represent 

all possible surface types and atmospheric conditions, as well as the 
limited number of data samples, potentially affecting the model’s 
training and overall accuracy. However, it was still within an acceptable 
range. The database has been widely used in previous studies (Ao et al., 
2022; Wu et al., 2022). We estimated the annual PM1, PM2.5, and PM10 
concentrations during the study period (i.e., 2016–2020) for each 
participant by linking the pollution data with the cohort data via the 
residential address. To account for the potential confounding impacts of 
residential greenness, data on the normalized difference vegetation 
index (NDVI) were obtained from the Land Processing Distributed 
Active Archive Center (LPDAAC, https://lpdaac.usgs.gov), and the 
annual average NDVI within 500 m surrounding an address was 
computed for each participant (Twohig-Bennett and Jones, 2018). 

2.4. Statistical analysis 

We employed a marginal structural Cox proportional hazards model 
with time-dependent exposures to estimate the causal relationship be-
tween long-term PM exposure and neurological hospitalizations (Robins 
et al., 2000b; Bind, 2019). This approach imitates a randomized 
controlled trial by using inverse probability weights (IPWs) to balance 
confounding variables, thus, is believed to generate causal insights from 
a observational data (Cole and Hernán, 2008b). We developed models 
using distinct different methods to create IPWs including the linear 
model (LM), generalized estimating equation (GEE), and gradient 
boosting machine learning (ML) (van der Wal and Geskus, 2011; Chen 
and Guestrin, 2016). The average absolute correlation (AC) values were 
used to identify the optimal model with the best performance in the 

Table 1 
Description of the study participants and annual average PM concentrations.  

Characteristics Overall 
（N = 36,271) 

Control group 
（N = 35,548) 

Neurological hospitalization 
（N = 723) 

P 

Demographics 
Age (mean (SD)) 50.93 (17.76) 50.66 (17.74) 64.20 (12.76) <0.01 
Body Mass Index (mean (SD)) 22.60 (2.95) 22.59 (2.94) 23.25 (3.15) <0.01 
Gender (male %) 14,727 (40.60) 14,419 (40.56) 308 (42.60) 0.30 
Ethnicity (%)    0.15 

Han 67,147 (98.81) 65,769 (98.79) 1378 (99.42)  
Minority 280 (0.77) 278 (0.78) 2 (0.28)  

Marital status (%)   <0.01 
Single 9664 (14.22) 9573 (14.38) 91 (6.57)  
Married 55,611 (81.83) 54,423 (81.75) 1188 (85.71)  
Widowed 2107 (3.10) 2019 (3.03) 88 (6.35)  
Divorced 576 (0.85) 557 (0.84) 19 (1.37)  

Education level (%)   <0.01 
Illiterate or semiliterate 741 (2.04) 711 (2.00) 30 (4.15)  
Elementary school 5052 (13.93) 4893 (13.76) 159 (21.99)  
Middle school 7545 (20.80) 7397 (20.81) 148 (20.47)  
High school 16,310 (44.97) 15,989 (44.98) 321 (44.40)  
College or above 6623 (18.26) 6558 (18.45) 65 (8.99)  

Medical insurance (%)   <0.01 
Medical insurance for urban workers 24,922 (68.71) 24,405 (68.65) 517 (71.51)  
Medical insurance for urban residents 7308 (20.15) 7144 (20.10) 164 (22.68)  
The new rural cooperative medical insurance 677 (1.87) 673 (1.89) 4 (0.55)  

Others 3364 (9.27) 3326 (9.36) 38 (5.26)  
Lifestyle behaviors 
Physical activity (%)  <0.01 

Low 17,357 (47.85) 17,066 (48.01) 291 (40.25)  
Moderate 2574 (7.10) 2510 (7.06) 64 (8.85)  
High 16,340 (45.05) 15,972 (44.93) 368 (50.90)  

Smoking status (%)   <0.01 
Non-smoker 25,192 (69.45) 24,698 (69.48) 494 (68.33)  
Ever smoker 529 (1.46) 506 (1.42) 23 (3.18)  
Current smoker 10,550 (29.09) 10,344 (29.10) 206 (28.49)  

Alcohol consumption (%)  0.01 
Never 25,551 (70.44) 25,050 (70.47) 501 (69.29)  
Ever 10,720 (29.56) 10,498 (29.53) 222 (30.71)  

Land-use variable     
NDVI (500), mean (SD) 0.22 (0.04) 0.22 (0.04) 0.22 (0.04) 0.20 

Abbreviations: PM, particulate matter; SD, stand deviation; NDVI, normalized difference vegetation index. 
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confounding balancing (Fig. S1). More methodological details have been 
described elsewhere (Wang et al., 2022, 2023). This study employs the 
LM-IPWS method to explore the impact of PMs on overall and 
neurological-specific hospitalization rates with each increase of 
1-μg/m3. Additionally, we conducted a traditional Cox proportional 
hazards model with time-dependent exposures for comparison. Directed 
acyclic graph (DAG) was applied to identify potential covariates, 
including age, sex, ethnicity (Han or non-Han), marital status (single, 
married, widowed, or divorced), highest educational attainment (illit-
erate or semiliterate, elementary school, middle school, high school, or 
college and above), medical insurance (medical insurance for urban 
workers, for urban residents, the new rural cooperative medical insur-
ance, or others), smoking status (non-smoker, former smoker, or current 
smoker), NDVI (500 m), physical activity (low, moderate, or high) 
(Fig. S2). Multivariate imputation by chained equations (MICE) was 
performed to impute missing data for confounding variables in our study 
(Table S1) (van Buuren and Groothuis-Oudshoorn, 2011). 

The study employed four different models to analyze the data. Model 
0 was a conventional Cox proportional hazards model that did not 
include any covariate adjustment. Model 1 added age as a covariate to 
Model 0. Model 2 included additional covariates such as sex, ethnicity, 
education level, marital status, smoking status, medical insurance, 
physical activity, and NDVI (500 m). Finally, Model 3 was a refitted 
version of Model 2, using the marginal structural Cox proportional 
hazards model. 

We included the air pollution exposure as a penalized B-spline 
function with 3 degrees of freedom in the model to test nonlinearity of 
the association and visualize the exposure-response relationship be-
tween PMs and neurological hospitalizations. The lowest PM exposure 
level was used as the reference in estimating the association of exposure 
to PM with neurological hospitalizations. Using the Model 3, we also 
further stratified our results by sex (male or female), age (<65 years or 
≥65 years), marital status (never married or ever married), education 
level (elementary school and below, middle and high school, college 
degree or above), and physical activity (low, moderate, or high) of the 

participants. 

2.5. Sensitivity analyses 

Sensitivity analyses were performed to evaluate the reliability of our 
results. First, we assessed the impact of missing data imputation by 
comparing the estimates based on the dataset before and after imputa-
tion. We also considered the potential confounding impact of NDVI by 
defining exposure using different buffer sizes (250 m, 500 m, and 1000 
m) and performed sensitivity analyses. We utilized meta-regression 
models to assess whether there were differences in estimating between 
the main model and the sensitivity models. Additionally, to further 
evaluate the reliability of the findings, we applied three marginal 
structure Cox models and E-values (VanderWeele and Ding, 2017). All 
analyses were performed using R version 4.1.3. 

3. Results 

At baseline, the mean (SD) age was 51 (18) years, and 40.6% (n =
14,727) were men. During 209,676 person-years of follow-up, 723 
(2.0%) participants were ever hospitalized due to neurological disor-
ders, including 323 from ischemic stroke, 49 from Alzheimer disease and 
41 from Parkinson disease (Table 1). Participants who had been hospi-
talized for neurological disorders were more likely to be older, ever 
married, less educated, or having medical insurance for urban workers 
or residents. Additionally, these participants tended to have no history 
of smoking and drinking, or engaging in more frequent exercise. The 5- 
year average concentration of PM1, PM2.5, PM10 was 17.41 μg/m3 (SD =
2.75), 33.73 μg/m3 (SD = 5.23), and 56.09 μg/m3 (SD = 6.52), 
respectively (Fig. 1). 

The associations between long-term PM exposure and risk of hospital 
admissions due to overall neurological disorders and subtypes are pre-
sented in Table 2. The causal inference model revealed that PM1, PM2.5, 
and PM10 concentrations were associated with increased overall 
neurological hospitalization risk, with HRs of 1.10 (95% CI 1.04–1.16), 
1.09 (95% CI 1.04–1.14) and 1.03 (95% CI 1.00–1.06) following each 1- 
μg/m3 increment in the PM concentrations (Fig. 2). Interestingly, the 
estimates tended to increase with the decreasing size of PM particles 
with the HR for PM1 exposure being 1–7% greater than the estimates for 
PM2.5, and PM10 exposures. These findings were consistent with the 
traditional Cox proportional hazards model. We observed a significant 
non-linear association between PM exposure and the risk of neurological 
hospitalization with reference to the lowest PMs exposure level (P for 
nonlinear trend <0.05, Fig. 3). Specifically, as PM1 exposure increased, 
there was a steady increase in the risk of neurological hospitalization, 
which then leveled off at higher concentrations. The risk of neurological 
hospitalization increased steadily up to 38 μg/m3 and 58 μg/m3 for 
PM2.5 or PM10 exposures but attenuated at higher exposure levels. 

In subgroup analysis by neurological subtype (Table 2), we also 
observed an increased risk of hospitalization following PM exposure, 
with HRs ranging from 1.05 to 1.15. However, the estimates generally 
were not significant, probably due to the sample size limit. Nevertheless, 
we observed that the risk of hospitalization for ischemic stroke increased 
with the average annual PM concentration, with PM1 being the most 
harmful (HR: 1.15, 95% CI 1.06–1.25), followed by PM2.5 (1.13, 95% CI 
1.04–1.23), then, PM10 (1.05, 95% CI 1.00–1.09). 

Table 3 presents the HRs of causal link between long-term PM 
exposure and neurological hospitalization stratified by demographics 
and lifestyle factors. We observed that results were generally consistent 
across different subgroups. However, we found that compared with the 
never-married participants (HRs ranging 1.03–1.25 across PMs), those 
who were ever married (i.e., married, widowed, divorced) generally had 
a reduced hazard for neurological hospitalization following long-term 
PM exposures (HR ranging 1.03–1.10), although the inter-group differ-
ence was only statistically significant for PM10. We also observed that 
female participants tended to be more vulnerable when exposed to PM 

Fig. 1. Annual mean concentrations of PM 
Abbreviations: PM, particulate matter; PM1, particulate matter with an aero-
dynamic diameter ≤1 μm; PM2.5, particulate matter with an aerodynamic 
diameter ≤2.5 μm; PM10, particulate matter with an aerodynamic diameter 
≤10 μm. 
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(Table 3). The HR estimates were generally statistically significant 
among the females (HRs ranging 1.05–1.13 across different PMs, with P 
< 0.05), while not significant among the males (HRs ranging 1.00–1.07, 
with the 95% CIs overlapping with the null). 

We found that the associations did not significantly change across 
different buffer sizes for NDVI. The estimated HRs of neurological hos-
pitalizations were also similar between the entire population dataset and 
the complete case dataset (all P-values >0.05) (Table S2). Furthermore, 
the association estimates also remained unchanged using three different 
weighting approaches in establishing the causal inference model, as 
described in Table S3. The E values shown in Table S4 suggested that the 
conclusions were less likely to be overturned by the potential unmea-
sured confounding bias. 

4. Discussion 

For this study, we identified an adverse association between PM 
exposure and neurological disorders in this cohort study from 2016 
through 2020, which included over 36,000 adults. We observed that this 
association increased with decreasing size of particles, with the greatest 

risk observed for PM1 exposure. Our results further indicated that the 
risks were generally consistent across subgroups, however, participants 
that were never-married tended to be more vulnerable to the long-term 
neurological impact of PMs exposures. 

According to our estimates, there was a 2.90%–9.90% increased rate 
of neurological hospitalizations following each 1-μg/m3 increment in 
the exposed concentrations of PMs. While studies on the prolonged 
impacts of PM exposure on neurological disorders, particularly based on 
large cohorts, remains quite limited in heavily polluted area, some 
existing findings on short-term PM exposure provide some clues. For 
example, a study utilizing time-series and aggregated data has revealed 
that an increase of 10 μg/m3 in daily exposure to PM2.5 is associated 
with a 2% rise in hospital admissions for neurological disorders (Gu 
et al., 2020). The long-term PM exposure may share similar biological 
mechanisms with the short-term exposure regarding the neurological 
toxicity. Mechanistic studies suggest that PM may affect the neurological 
system by direct absorption through olfactory tract or blood-brain bar-
rier (Oberdörster et al., 2004; Wang et al., 2018). Animal and laboratory 
studies have suggested that the biological pathways might include 
mitochondrial damage, NLRP3 inflammasome activation, microglial 

Table 2 
Associations between 1-μg/m3 increase in long-term PM exposure and hospital admission for neurological disorders.   

PM1 PM2.5 PM10  

HR (95% CI) P HR (95% CI) P HR (95% CI) P 
Overall neurological disorders 1.10 (1.04–1.16) <0.01 1.09 (1.04–1.14) <0.01 1.03 (1.00–1.06) 0.04 
Parkinson disease 1.12 (0.91–1.39) 0.29 1.09 (0.94–1.27) 0.26 1.01 (0.93–1.10) 0.81 
Alzheimer disease 1.20 (0.89–1.62) 0.23 1.11 (0.88–1.40) 0.39 1.07 (0.93–1.24) 0.35 
Ischemic stroke 1.15 (1.06–1.25) <0.01 1.13 (1.04–1.23) <0.01 1.05 (1.00–1.09) 0.04 

Abbreviations: PM, particulate matter; PM1, particulate matter with an aerodynamic diameter ≤1 μm; PM2.5, particulate matter with an aerodynamic diameter ≤2.5 
μm; PM10, particulate matter with an aerodynamic diameter ≤10 μm; HR, hazard ratios; CI, confidence interval. 

Fig. 2. Association between 1-μg/m3 increase in long-term PM exposure and neurological disorders hospitalization under conventional and causal inference method 
Note: Model 0 as the conventional Cox proportional hazards model with no covariate adjustment. Model 1 as the model additionally adjusted for age based on Model 
0. Model 2 as the model additionally adjusted for gender, ethnicity, education level, marital status, smoking status, medical insurance, physical activity, and NDVI 
(500 m) based on Model 1. Model 3 as the marginal structural Cox proportional hazards model based on model 2. 
Abbreviations: HR, hazard ratio; CI, confidence interval; PM, particulate matter; PM1, particulate matter with an aerodynamic diameter ≤1 μm; PM2.5, particulate 
matter with an aerodynamic diameter ≤2.5 μm; PM10, particulate matter with an aerodynamic diameter ≤10 μm. 

S. Chen et al.                                                                                                                                                                                                                                    



Chemosphere 345 (2023) 140397

6

activation, blood-brain barrier change, and neuronal damage (Block and 
Calderón-Garcidueñas, 2009; Wang et al., 2018). In addition, we 
assessed the exposure-response curve for PM-related hospitalizations 
due to neurological disorders. Our findings suggested that there was no 
identifiable safe threshold in the exposure range of 10–25 μg/m3 for PM1 
and neurological hospitalization. The risk of neurological hospitaliza-
tion increased steadily for PM2.5 or PM10 exposures but attenuated at 
higher exposure levels, which was also consistent with the existing ev-
idence (Gu et al., 2020; Shim et al., 2023). Thus, protective measures are 
needed to mitigate the adverse neurological impact of PM exposures, 
particularly in highly-polluted areas. 

Our results demonstrate a potential greater neurological toxicity as 
the particle diameter decrease. Specifically, the hospitalization risk for 
overall neurological disorders with PM1 was higher than PM2.5 and PM10 
(7.40%, 7.10% and 3.30% for each 1-μg/m3). This is consistent with 
previous studies that have observed that smaller particles to be more 
hazardous to human health (Lin et al., 2016). For example, a 2-year 
cohort study on the admission risk for total respiratory diseases in 
China, wherein the estimate for PM1 was 3% larger than that for PM2.5. 

The size fraction of ambient PM is a significant component in deter-
mining its toxicity (Kelly and Fussell, 2012; Zhang et al., 2020). PM1 
particles, with a disproportionally greater surface area than the regular 
particles, tend to penetrate more deeply into the lung and remain there 
longer, subsequently leading to a greater inflammatory response (Brown 
et al., 2001). Therefore, in addition to the health impacts of regular sized 
particles, we should also focus on the negative health impacts of PM1. 

Furthermore, although the estimates for subtypes were generally not 
statistically significant, probably due to limited sample size, we still 
found a significant link between PM exposure and the hospital admis-
sion due to ischemic stroke. Similar findings were reported in a 
nationwide case-crossover study in China, which found that every 10 
μg/m3 increase in PM1 exposure was linked to an increase of 0.6% in 
hospital admissions for transient ischemic attack (Liu et al., 2022). 
Previous studies also suggested that PM exposure may increase the risk 
of ischemic stroke through disturbance of the regulation of blood pres-
sure and blood lipid dynamics, and subsequently decrease the blood 
vessel elasticity (Cascio et al., 2015; Yang et al., 2019). 

Stratified analysis indicated that the never-married adults were 

Fig. 3. Exposure-Response Association of long-term exposure to PM with neurological disorders hospitalization 
The solid blue lines with shaded regions indicate HRs of neurological disorders hospitalization and their 95% CIs, respectively. Abbreviations: HR, hazard ratio; CI, 
confidence interval; PM, particulate matter; PM1, particulate matter with an aerodynamic diameter ≤1 μm; PM2.5, particulate matter with an aerodynamic diameter 
≤2.5 μm; PM10, particulate matter with an aerodynamic diameter ≤10 μm. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Table 3 
The modification effect of basic characteristics and lifestyle factors on the association between PM concentration and neurological disorders hospitalization.  

Effect modifiers PM1 PM2.5 PM10  

HR (95% CI) Pinteraction HR (95% CI) Pinteraction HR (95% CI) Pinteraction 

Gender 
Male 1.06 (0.97–1.17) 0.78 1.07 (0.99–1.16) 0.39 1.00 (0.96–1.04) 0.82 
Female 1.13 (1.05–1.21)  1.10 (1.03–1.17)  1.05 (1.01–1.09)  

Age 
<65 years 1.12 (1.04–1.21) 0.56 1.12 (1.05–1.20) 0.85 1.05 (1.02–1.09) 0.81 
≥65 years 1.10 (1.01–1.20)  1.05 (0.98–1.14)  1.01 (0.97–1.05)  

Marital status 
Never married 1.16 (0.96–1.40) 0.22 1.25 (1.01–1.56) 0.09 1.03 (0.95–1.13) 0.03 
Ever married 1.10 (1.04–1.17)  1.07 (1.02–1.13)  1.03 (1.00–1.06)  

Education level 
Elementary school and below 1.17 (1.03–1.34) 0.71 1.08 (0.97–1.20) 0.37 1.01 (0.96–1.07) 0.42 
Middle and high school 1.04 (0.97–1.11)  1.10 (1.03–1.17)  1.03 (1.00–1.07)  
College degree or above 1.02 (0.88–1.19)  0.97 (0.86–1.09)  0.98 (0.93–1.05)  

Physical activity 
Low 1.09 (0.99–1.21) 0.70 1.04 (0.97–1.12) 0.83 1.01 (0.97–1.05) 0.81 
Moderate 1.17 (1.03–1.32)  1.14 (1.00–1.30)  1.08 (1.00–1.16)  
High 1.12 (1.03–1.21)  1.13 (1.04–1.22)  1.04 (1.00–1.08)  

Abbreviations: PM, particulate matter; PM1, particulate matter with an aerodynamic diameter ≤1 μm; PM2.5, particulate matter with an aerodynamic diameter ≤2.5 
μm; PM10, particulate matter with an aerodynamic diameter ≤10 μm; HR, hazard ratios; CI, confidence interval. 
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likely to be more vulnerable than their ever-married counterparts when 
chronically exposed to PMs. This finding was understandable as marital 
status is considered to be a surrogate of social support, which has been 
linked to reducing the risk of neuropathological damage by increasing 
daily social interaction and elevating cognitive reserve (Perry et al., 
2022). For instance, a meta-analysis reported lifelong single people had 
a higher vulnerability to dementia compared to those who were married 
(Sommerlad et al., 2018). Therefore, social engagement may be 
considered a modifiable risk factor among individuals never married. 

Additionally, we observed that female participants generally had a 
greater vulnerability to the neurological impact of long-term PM expo-
sure. Although previous studies have documented that males tended to 
have a higher prevalence of neurological disorders, emerging findings 
suggested that the severity of these conditions may be greater in females 
(Hanamsagar and Bilbo, 2016). For instance, a study conducted in South 
Korea found that women were more likely to experience cognitive 
decline with every 10 μg/m3 increase in PM10 compared to men (Kim 
et al., 2019). Findings documented that compared with males, females 
have been shown to have more microglia, which played a crucial role in 
modulation of inflammatory dysregulation (Schwarz et al., 2012). 
However, further research is needed to evaluate this hypothesis. 

As far as we know, this study has been one of the few to estimate the 
potential causal relationship between long-term exposure to PM1 and 
regular-sized particulate exposure with neurological hospitalizations. In 
this study, we recruited participants from a variety of socioeconomic 
background in China, which enhances the generalizability of our results. 
Furthermore, we used advanced causal inference approaches combined 
with time-varying exposures, thereby providing more robust and reli-
able conclusions. Nevertheless, there are some limitations with our 
study. First, since participants with certain neurological symptoms are 
usually not required inpatient treatment, some patients with neurolog-
ical disorders may not be captured in the hospital database. This could 
lead to an underestimation of the true impact of PM exposure on health 
in our results. Second, the study used grid-scale PM to simulate pollutant 
exposure, which means that residents from neighboring areas may be 
matched with the same PM concentration value, leading to exposure 
misclassification. However, this measurement error may be Berkson and 
classical error, causing bias toward a null (Zhang et al., 2018). Third, 
information on individual-level socioeconomic status was not collected 
in the baseline survey, however, similar variables (e.g., education, 
medical insurance) were included as surrogates. Furthermore, our 
findings were not significantly affected by residual confounding bias, as 
indicated by the E-values. 

5. Conclusions 

Our study, which followed a large group of participants over time, 
indicated that there may be a causal association between long-term 
exposure to PMs and hospital admissions for neurological disorders. 
PM1 appears to have a slightly stronger effect on neurological hospi-
talization, with a 1% and 7% higher impact compared to PM2.5 and 
PM10, respectively. In addition, the effect associated with PM exposure 
to ischemic stroke was stronger than other neurological subtypes. Fe-
males or unmarried individuals appeared to be more susceptible to 
neurological hospitalization due to PM-related factors compared to their 
counterparts, respectively, representing potential vulnerable subgroups. 
Therefore, it is crucial that environmental policies focus on reducing PM 
exposure levels, particularly PM1, and protecting vulnerable populations 
from the harmful impacts of pollution. 
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