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A B S T R A C T   

Background: Accumulating studies have reported that chronic exposure to ambient fine particulate matter (PM2.5) 
can lead to adverse effects on lung cancer mortality; however, such chronic effects are less clear for mortality 
from other site-specific cancers. 
Objective: To explore the causal effect of long-term PM2.5 exposure on mortality from all-site and a variety of site- 
specific cancers in Jiangsu province, China during 2015–2020 using a difference-in-differences analysis. 
Methods: For each of 53 county-based spatial units in Jiangsu province, we calculated annual death counts for all- 
site cancer and 23 site-specific cancers. Using a validated high-resolution PM2.5 grid dataset, long-term PM2.5 
exposure of a spatial unit within a given year was evaluated as the average of population-weighted annual 
concentrations during recent 10 years. Conditional Poisson regression models were employed to evaluate 
exposure-response associations adjusting for spatial and temporal variables, seasonal temperatures, relative 
humidity, and gross domestic product (GDP). 
Results: During the study period, we identified 947,337 adult cancer deaths in Jiangsu province. Each 1 μg/m3 

increment in PM2.5 exposure was significantly associated with a 2.7% increase in the risk of all-site cancer 
mortality. PM2.5-mortality associations were also observed in cancer of lip, oral cavity and pharynx, stomach, 
colorectum, pancreas, lung, bone and joints, ovary, prostate, and lymphoma (all adjusted P < 0.05), with the 
relative risks ranging from 1.028 (95% confidence interval [CI]: 1.011, 1.046) for stomach cancer to 1.201 (95% 
CI: 1.120, 1.308) for bone and joints cancers. Exposure-response curves showed that these associations were 
close to linearity, though most of them had increasing slopes at high exposure levels. Overall, women and 
subjects in low GDP regions were more vulnerable to PM2.5 exposures. 
Conclusions: Long-term exposure to ambient PM2.5 contributes to a higher risk of mortality from multiple site- 
specific cancers.   

1. Introduction 

Ambient fine particulate matter (PM2.5) continues to be a major 
environmental issue, which has raised critical public health concerns 

worldwide (GBD, 2020). It is estimated that 99% of the entire global 
population breathes unhealthy air exceeding the concentration limits of 
the updated World Health Organization (WHO) Air Quality Guidelines 
(annual average PM2.5: 5 μg/m3) in 2022 (WHO, 2022; WHO, 2021). 

Abbreviations: PM2.5, fine particulate matter; RR, relative risk; CI, confidence interval; GDP, gross domestic product. 
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Extensive evidence suggests that ambient PM2.5 exposure is detrimental 
to human health by increasing morbidity and mortality from a number 
of diseases including cancer (Lelieveld et al., 2015; Turner et al., 2020). 
In 2020, cancer caused 9.96 million deaths and was ranked as the second 
primary cause of death globally (Sung et al., 2021). Considering that 
most cancers are attributable to genetic and environmental interactions 
(Mbemi et al., 2020), it is of great necessity to estimate the cancer 
mortality associated with PM2.5 exposure. Accumulating epidemiolog
ical studies have found chronic detrimental effects of PM2.5 exposure on 
mortality from all-site cancer and lung cancer (Chen and Hoek, 2020; 
Chen et al., 2021; Ciabattini et al., 2021; Coleman et al., 2020b; Pope 
et al., 2020; Turner et al., 2020; Wang et al., 2020a; Wong et al., 2016). 
The Global Burden of Disease (GBD) Study 2019 estimated that 308,000 
lung cancer deaths were attributable to PM2.5 exposure worldwide, 
including 171,300 deaths in China (GBD, 2020). 

While most studies explored the association of long-term exposure to 
PM2.5 with mortality from all-site cancer or lung cancer, the chronic 
effects of PM2.5 exposure on mortality from other site-specific cancers 
remain less clear. Only a small number of studies provided epidemio
logical evidence on the associations of long-term PM2.5 exposure with 
mortality from cancer of stomach, colorectum, liver, pancreas, breast, 
ovary, bladder, kidney, and leukemia (Coleman et al., 2020b; Guo et al., 
2020; Guo et al., 2021; Hung et al., 2012; Turner et al., 2017; Wang 
et al., 2019; Wang et al., 2018; Wong et al., 2016; Yeh et al., 2017; Yu 
et al., 2022a–c), and the results are mixed. Note that some of these 
studies are limited by a small sample size, less accurate exposure 
assessment, and/or narrow range of exposure level, which can introduce 
great heterogeneity and make it difficult in comparing the results across 
studies or across different cancers. Given the high disease burden of a 
series of site-specific cancers, it is of great importance to systematically 
quantify the association of long-term PM2.5 exposure with the risk of 
mortality from site-specific cancers in a single study. 

Here, we performed a validated difference-in-differences (DID) 
analysis to assess the causal effect of long-term PM2.5 exposure on 
multiple cancer mortality, utilizing large-scale and population-based 
mortality surveillance data in Jiangsu province, China during 
2015–2020. We aimed to quantitatively evaluate the association of long- 
term ambient PM2.5 exposure with mortality from all-site and a variety 
of site-specific cancers. Population vulnerability was further investi
gated by demographic characteristic and socioeconomic status (SES). 

2. Materials and methods 

2.1. Study area and population 

Our study was conducted in Jiangsu province, which is a coastal 
province in East China with a total area of 107,200 square kilometers. 
Jiangsu is one of the leading provinces in finance, education, technol
ogy, and tourism in China. As a densely populated province, Jiangsu had 
a population of 84.7 million in 2020, contributing 6.0% of the national 
population in China. In this analysis, we divided Jiangsu province into 
53 spatial units according to China’s county-level administrative di
visions (Table S1). 

We identified 947,337 cancer deaths aged over 20 years who lived in 
Jiangsu province and died from cancer between 2015 and 2020 from the 
mortality surveillance system of Jiangsu province. This system was 
managed by the Jiangsu Provincial Center for Disease Control and 
Prevention and was implemented to routinely monitor causes of death 
among the general population of Jiangsu province. We collected infor
mation for each death on sex, date of birth, date of death, residential 
address, and underlying cause of death coded by the 10th revision of the 
International Statistical Classification of Diseases and Related Health 
Problems (ICD-10). Based on the residential address, we aggregated 
annual death counts for all-site and site-specific cancers by spatial unit 
and calendar year during our study period. 

2.2. Exposure assessment 

Based on the ChinaHighPM2.5 data from the ChinaHighAirPollutants 
(CHAP; available at https://weijing-rs.github.io/product.html) data
sets, we extracted annual average PM2.5 grid data with the spatial res
olution of 0.01◦ in Jiangsu province between 2006 and 2020. The CHAP 
datasets were generated by hybrid machine-learning prediction models 
integrating ground measurement data, satellite remote sensing products, 
and atmospheric reanalysis data (Wei et al., 2020; Wei et al., 2021). The 
cross-validation coefficient of determination (CV-R2) value of the annual 
average PM2.5 grid data was 0.94, which has been validated and used in 
our published studies (Li et al., 2022; Liu et al., 2021; Wang et al., 2021). 
Annual grid data (spatial resolution: 30 arc seconds, equates to about 1 
km at 0◦ latitude) on population distribution in Jiangsu province during 
2006–2020 were obtained from Landscan Global grid datasets (available 
at https://landscan.ornl.gov/). We used a 2-stage approach to evaluate 
long-term PM2.5 exposure. First, we calculated the population-weighted 
annual average PM2.5 concentrations for each spatial unit using the sum 
of the product between the grid population weight and the grid PM2.5 
concentration within each spatial unit’s geographical boundary. The 
population weight was defined as the percentage of the population in 
each grid accounting for the total population of all grids within each 
spatial unit’s geographical boundary. Second, considering the potential 
lag impacts of PM2.5 exposure on cancer death, which generally referred 
to the elapsed duration between exposure to cancer-causing substances 
(e.g., PM2.5) and the occurrence of cancer death, we set the exposure lag 
period to 10 years based on the lowest Bayesian Information Criterion 
(BIC). We extracted the population-weighted PM2.5 exposures of each 
spatial unit in the past 9 years before 2015–2020 and assessed the 
long-term exposure to PM2.5 in a given year during the study period by 
averaging the annual concentrations in the current year and the pre
ceding 9 years. For example, long-term exposure to PM2.5 in the year 
2015 was estimated by averaging population-weighted exposures from 
2006 to 2015. 

2.3. Outcomes 

The study outcomes were mortality from all-site cancer (ICD-10 
codes: C00–C97) and 23 site-specific cancers, including cancer of lip, 
oral cavity and pharynx (C00–C14), nasopharynx (C11), digestive sys
tem (C15–C26), esophagus (C15), stomach (C16), colorectum 
(C18–C21), liver (C22), pancreas (C25), respiratory system (C30–C39), 
lung (C33–C34), bone and joints (C40–C41), breast (C50), female gen
ital system (C51–C58), cervix (C53), ovary (C56), male genital system 
(C60–C63), prostate (C61), urinary system (C64–C68), kidney 
(C64–C65), bladder (C67), brain (C71), lymphoma (C81–C85), and 
leukemia (C91–C95). 

2.4. Covariates 

To control potential confounding biases induced by meteorological 
factors (Gasparrini et al., 2015; Renzi et al., 2019; Wang et al., 2016; Yu 
et al., 2022a), we adopted 24-h average grid data (temporal resolution: 
daily; spatial resolution: 0.0625◦ × 0.0625◦) on air temperature (◦C) and 
relative humidity (%) in Jiangsu province during 2015–2020 from the 
China Meteorological Administration Land Data Assimilation System 
(CLDAS version 2.0), which was generated and routinely updated by the 
China National Meteorological Information Center (Liu et al., 2020). 
After converting the meteorological grid data to those with the spatial 
resolution of 0.01◦, annual average temperatures in summer (June, July, 
and August) and winter (January, February, and December) and annual 
mean relative humidity were calculated by averaging values of all grids 
within each spatial unit’s geographical boundary during 2015–2020. 
Information on population size and gross domestic product (GDP) in 
each spatial unit by year was extracted from the Jiangsu Statistical 
Yearbook 2016–2021. 
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2.5. Statistical analysis 

We applied a DID design with multiple periods and spatial units to 
examine the causal effect of long-term PM2.5 exposure on mortality from 
all-site and site-specific cancers (Wang et al., 2016). As a causal 
modeling approach, the DID analysis examined the effects of PM2.5 
exposure on health outcomes by evaluating the relevance of differences 
in PM2.5 exposure with differences in the study outcome in each spatial 
unit over time, and has been widely applied to explore the causal effects 
of long-term ambient pollutant exposures on various health outcomes 
(Leogrande et al., 2019; Renzi et al., 2019; Wang et al., 2016; Yit
shak-Sade et al., 2019; Yu et al., 2020). Because the population in a 
given spatial unit was compared to itself over different periods, un
measured confounders that rarely changed over time or kept constant 
during the study period were naturally controlled; however, factors that 
were correlated with the temporal exposures and varied differently 
across spatial units over time still needed to be adjusted. As proposed in 
previous studies (Renzi et al., 2019; Wang et al., 2016; Yu et al., 2022a,c; 
Yu et al., 2020), we considered seasonal temperatures, relative humid
ity, and GDP as potential spatiotemporal confounders and fitted a con
ditional Poisson regression model to qualify the causal and long-term 
association between PM2.5 exposure and cancer mortality: 

ln
[
E
(
Yc,t

)]
=β0+β1PM2.5 c,t+β2Ic+β3It+ns(β4Tempsum c,t

)
+ns(β5Tempwin c,t

)

+ns
(

β6RHc,t

)
+β7GDPc,t+offset

(
log

(
Popc,t

))

(1)  

where Yc,t means the expected amount of cancer deaths in spatial unit c 
and year t; PM2.5c,t denotes the population-weighted PM2.5 exposure in 
spatial unit c and year t; Ic refers to a dummy variable for each of the 53 
spaces in Jiangsu province, which was adjusted by the eliminate argu
ment of the model; It defines a dummy variable for each calendar year 
during 2015–2020; ct Tempsum c,t , Tempwin c,t and RHc,t represent the 
average temperatures in summer and winter and the average relative 
humidity in spatial unit c and year t, respectively, all of which are 
modeled as natural cubic spline function (function ns) with 3 degrees of 
freedom (df) to consider the possible nonlinear associations of temper
ature and relative humidity with mortality; GDPc,t indicates the value of 
GDP in spatial unit c and year t; log(Popc,t) represents the natural loga
rithm of annual population size in spatial unit c and year t, which was 
adjusted as the offset term in the model; β0 is the intercept term; 
β1represents the regression coefficient for the chronic effect of PM2.5 
exposure on a variety of site-specific cancer mortality; β2 and β3 are 
regression coefficients adjusting for spatial and temporal variables of Ic 
and It , respectively; β4 to β7 are regression coefficients for mean summer 
temperature, mean winter temperature, mean relative humidity, and 
GDP, respectively. 

As proposed previously (Wang et al., 2016; Yitshak-Sade et al., 
2019), the DID approach had two presupposed assumptions. The first 
assumption was the parallel trend assumption, which means that all 
spatial units should have common trends of cancer mortality. If PM2.5 
levels do not fluctuate over time under the counterfactual framework, 
the differences in cancer mortality across spatial units should remain 
stable over time as well. While, in the actual PM2.5 exposure settings, it is 
allowed that the trends of cancer deaths across spatial units vary over 
time because other factors influencing mortality may exist. Therefore, as 
long as the differences in cancer deaths over time by spatial units were 
not correlated with these in PM2.5, the parallel trend assumption would 
hold. Since we were unable to observe the counterfactual hypothesis and 
no statistical method was available to examine this assumption, we used 
the relative change rate (RCc,t) to assess and visualize the corresponding 
fluctuations of differences in PM2.5 and the number of cancer deaths 
across each spatial unit between 2015 and 2020 (Fig. S1) (Hu et al., 
2022; Yu et al., 2020). 

Ec =

∑t=2020

t=2015
Rc,t

6
(2)  

RCc,t =
Rc,t − Ec

Ec
× 100% (3)  

where Rc,t represents population-weighted PM2.5 exposures or cancer 
deaths in spatial unit c and year t; Ec is the mean of PM2.5 or cancer 
deaths in spatial unit c during 2015–2020; RCc,t is the relative change of 
PM2.5 or cancer deaths in spatial unit c and year t. Second, we assumed 
that no spatiotemporal factors other than seasonal temperatures and 
GDP have confounded the association between PM2.5 exposure and 
cancer mortality. 

Using the conditional Poisson regression model established in the 
previous section, we estimated relative risks (RRs) and corresponding 
95% confidence intervals (95% CIs) of mortality from all-site and site- 
specific cancers associated with per 1 μg/m3 increment in PM2.5 expo
sure. To plot exposure-response curves of PM2.5 with cancer mortality, 
we fitted PM2.5 exposure using natural cubic spline function with 3 
degrees of freedom in our model and further checked the nonlinearity 
using likelihood ratio tests. All P values from multiple testing were 
adjusted using the false discovery rete (FDR) method (Benjamini and 
Hochberg, 1995; Coleman et al., 2020a). 

We performed stratified analyses by sex and GDP (categorized by the 
median of GDP values across 53 spatial units in 2015). The two-sample z 
test was applied to detect the effect modification by stratification vari
ables (Altman and Bland, 2003): 

z =
β1 − β2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(SE1)
2
+ (SE2)

2
√ (4)  

where β1 and β2 represent the regression coefficients of PM2.5 extracted 
from the conditional Poisson regression models in each stratum; SE1 and 
SE2 are the corresponding standard errors. 

Several sensitivity analyses were performed to check the robustness 
of the results, including: (1) using natural cubic spline function with 4 
and 5 df in the adjustment for seasonal temperatures and annual relative 
humidity; (2) adjusting for annual average temperature instead of sea
sonal temperatures; (3) adjusting for ozone (O3) and coarse particulate 
matter (PM2.5-10) exposures in the model, respectively; (4) modifying 
the lag periods of long-term PM2.5 exposure from 10 years to 7–9 years 
which were also commonly used in previous studies in estimating the 
chronic effect of PM2.5 (Crouse et al., 2020; Wang et al., 2020b); (5) 
excluding the current year’s exposure when estimating the long-term 
PM2.5 exposure during the study period. We utilized R software 
(version 4.1.2) to perform all data analyses and data visualizations (R 
Core Team, 2021). The conditional Poisson regression models were 
fitted with the gnm package (Armstrong et al., 2014). The statistically 
significant level of the two-tailed P value was set to 0.05. 

3. Results 

During 2015–2020, we collected 947,337 cancer deaths from 53 
spatial units in Jiangsu province, including 239,087 cancers of lung 
(25.2%), 146,401 of stomach (15.5%), 127,286 of esophagus (13.4%), 
116,236 of liver (12.3%), 64,736 of colorectum (6.8%), 47,206 of 
pancreas (5.0%), 19,492 of breast (2.1%), and 19,273 of leukemia 
(2.0%). Among these deaths, 63.9% were men and 71.0% were over 65 
years. Stomach and lung cancers were the two primary causes of cancer 
death among men, women, and older adults (≥65 years), while liver and 
lung cancers were the two primary causes of cancer death in adults aged 
20–65 years (Table S2). Annual average population-weighted PM2.5 
exposure was 60.3 μg/m3 (standard deviation [SD]: 7.0 μg/m3), with a 
range of 40.2–81.6 μg/m3. Annual average temperatures in summer and 
winter and annual relative humidity were 27.0 ◦C (SD: 0.9 ◦C), 4.6 ◦C 
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(SD: 1.3 ◦C), and 74.7% (SD: 2.5%), respectively (Table 1). 
Fig. 1 displays the distribution of long-term PM2.5 exposure levels 

and all-site cancer deaths in 53 spatial units in Jiangsu province, China 
from 2015 to 2020. The PM2.5 exposure showed an overall decreasing 
trend in Jiangsu province over time. The high-polluted areas were 
mainly located in the northwest of Jiangsu province. Fig. S1 presents the 
relative change rates on both PM2.5 and all-site cancer deaths in each 
spatial unit during 2015–2020. Over the study period, the trend of 
relative change in cancer mortality was generally stable and it was 
slightly opposite to the fluctuation in PM2.5 exposure, which can provide 
evidence to support the parallel trend assumption. 

Table 2 presents the estimated relative risks of mortality from all-site 
and site-specific cancer deaths associated with each 1 μg/m3 increase of 
long-term exposure to ambient PM2.5. With each 1 μg/m3 increment in 
PM2.5 exposure, the estimated RR of all-site cancer mortality was 1.027 
(95% CI: 1.020, 1.034). After the multiple testing adjustment using the 

FDR method, long-term PM2.5 exposure was significantly associated 
with elevated risks of cancer mortality from lip, oral cavity and pharynx 
(RR: 1.069; 95% CI: 1.011, 1.130), digestive system (1.020; 1.011, 
1.030), stomach (1.028; 1.011, 1.046), colorectum (1.029; 1.004, 
1.055), pancreas (1.065; 1.035, 1.096), respiratory system (1.035; 
1.022, 1.049), lung (1.035; 1.021, 1.049), bone and joints (1.201; 1.120, 
1.308), ovary (1.108; 1.031, 1.190), male genital system (1.088; 1.034, 
1.145), prostate (1.089; 1.034, 1.148), urinary system (1.061; 1.012, 
1.112), and lymphoma (1.106; 1.049, 1.168). As shown in Fig. 2, we 
plotted nonlinear exposure-response curves of long-term PM2.5 exposure 
with cancer mortality. The risk of all-site cancer mortality showed a 
monotonically increasing trend with incremental PM2.5 exposure across 
the entire exposure range, with increasing slopes at high exposure levels 
(P for nonlinear trend <0.001; Table 2). Similar nonlinear trends 
significantly associated with PM2.5 exposure were also found for mor
tality from cancer of digestive system, stomach, colorectum, pancreas, 

Table 1 
Characteristics of cancer deaths and summary statistics of demographic, socioeconomic, and environmental data for 53 spatial units in Jiangsu province, China during 
2015–2020.  

Characteristic Total Mean (SD) Min P25 Median P75 Max IQR 

Death data 
Cancer deaths 947,337 2,979 (2,158) 744 1,643 2,338 3,256 12,877 1,613 
Sex 

Male 605,452 (63.9) 1,904 (1,375) 454 1,064 1,468 2,071 8,248 1,007 
Female 341,885 (36.1) 1,075 (785) 261 580 871 1,176 4,712 596 

Age 
<65 years 274,619 (29.0) 864 (597) 178 497 678 966 3,766 470 
≥ 65 years 672,718 (71.0) 2,115 (1,582) 511 1,146 1,666 2,282 9,705 1,137 

Demographic data 
Population size, 106 84.7 1.5 (1.4) 0.3 0.8 1.0 1.6 9.3 0.8 
Sex         
Male 43.0 0.8 (0.7) 0.1 0.4 0.5 0.8 4.8 0.4 
Female 41.7 0.8 (0.7) 0.1 0.4 0.5 0.8 4.6 0.4 

Socioeconomic data 
GDP, 108, CNY NA 1,700 (2,200) 217 505 859 1,960 14,800 1,460 
Environmental data 

PM2.5, lag 0-year, μg/m3 NA 47.6 (8.7) 25.9 41.6 47.3 52.9 74.8 11.3 
PM2.5, lag 09-year, μg/m3 NA 60.3 (7.0) 40.2 55.7 60.2 64.3 81.6 8.6 
Summer temperature, ◦C NA 27.0 (0.9) 24.9 26.4 27.0 27.6 28.9 1.2 
Winter temperature, ◦C NA 4.6 (1.3) 1.6 3.5 4.6 5.8 7.5 2.2 
Relative humidity, % NA 74.7 (2.5) 65.2 73.2 74.9 76.4 80.6 3.2 

Abbreviations: SD, standard deviation; IQR, interquartile range; GDP, gross domestic product; CNY, Chinese Yuan; PM2.5, fine particulate matter; NA, not available. 
Column percentages are expressed as n (%) and the averages of continuous variables are given as mean (SD). 

Fig. 1. Spatial distribution of the annual PM2.5 exposures and cancer deaths in 53 spatial units in Jiangsu province, China during 2015–2020.  
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respiratory system, lung, ovary, and lymphoma (all P for nonlinear trend 
<0.05; Table 2). 

Fig. 3 demonstrates the associations of PM2.5 exposure with mor
tality from all-site and site-specific cancers stratified by sex and GDP 
(Data are displayed in Table S3 and Table S4 in Supplementary Mate
rials). No significant effect modification by sex was identified, except 
that the association of pancreas cancer mortality was significantly 
greater in women (P for effect modification = 0.045). Subjects in low 
GDP regions had significantly stronger associations for all-site and 
stomach cancer (all P for effect modification <0.05), while the risk of 
ovary cancer mortality was higher in subjects living in high GDP areas (P 
for effect modification = 0.03). 

In sensitivity analyses, no substantial change was observed when 
adjusting for seasonal temperatures and relative humidity with different 
dfs or adjusting for annual average temperature (Table S5). The analyses 
with the adjustment for O3 and coarse particulate matter exposures 
yielded similar results (Table S6). The analyses adopting 7- to 9-year 
average exposure to PM2.5 also yielded similar results to those of the 
main analyses using 10-year average exposure (Table S7). When 
applying the long-term exposure with excluding the current year’s 
exposure, similar PM2.5-mortality associations were observed 
(Table S6). 

4. Discussion 

This is the first DID analysis to investigate the causal effect of long- 
term ambient PM2.5 exposure on site-specific cancer mortality in 
China. We identified that long-term exposure to PM2.5 was positively 
associated with mortality from all-site cancer and cancer of lip, oral 
cavity and pharynx, stomach, colorectum, pancreas, lung, bone and 
joints, ovary, prostate, and lymphoma. Stratified analyses revealed that 
women and people living in low GDP regions had higher risks of mor
tality from certain site-specific cancer. 

The positive PM2.5-mortality association for all-site cancer was 
generally in line with those in prior studies. A national DID analysis in 
Brazil during 2010–2018 reported that with per 10 μg/m3 increment in 
3-year average PM2.5 exposure, the risk of all-site cancer mortality 
significantly increased by 16% (Yu et al., 2022a), which was lower than 
that in our results (27%). Results from the Hong Kong, China and the US 
cohorts showed that with per 10 μg/m3 increment in long-term PM2.5 
exposure, the estimated risk of all-site cancer mortality increased by 
22.0%, 15.0%, and 2.5%, respectively (Coleman et al., 2020b; Wang 
et al., 2020a; Wong et al., 2016), which were also lower than our esti
mates. The difference in the magnitude of the effect estimates can be due 
to: (1) Diverse PM2.5 exposure ranges. The PM2.5 exposures of studies in 
Brazil and the US covered a range of less than 30 μg/m3, whereas our 
results were derived from a much higher and wider PM2.5 exposure 
range (40.2–81.6 μg/m3); (2) Different populations. The cohorts from 
Hong Kong and the US only included people over 65 years, while our 
analysis was conducted among adults 20 years or older. 

Similar with some previous studies conducted in China (Guo et al., 
2017; He et al., 2018; Li et al., 2020; Yin et al., 2017), we found a 
negative effect of PM2.5 exposure on lung cancer mortality (per 10 
μg/m3 increase in PM2.5, RR: 1.35), though our estimated value was 
higher than that in a national men cohort (per 10 μg/m3 increase in 
PM2.5, hazard ratio: 1.12) and a study using lung cancer death data from 
75 Chinese communities (per 10 μg/m3 increase in PM2.5, RR: 1.08) 
(Guo et al., 2017; Yin et al., 2017). In addition, in line with the cohort 
study of the China-PAR project (Li et al., 2020), our findings showed that 

Table 2 
Estimated RR (95% CI) of cancer mortality associated with each 1 μg/m3 in
crease of long-term exposure to ambient PM2.5 in Jiangsu province, China during 
2015–2020.  

Site-specific cancer 
(ICD-10 codes) 

Per 1 μg/m3 

increase 
FDR-adjusted P 
for linear trend 

FDR-adjusted P for 
nonlinear trend 

All sites (C00–C97) 1.027 
(1.020, 
1.034) 

<0.001 <0.001 

Lip, oral cavity and 
pharynx (C00–C14) 

1.069 
(1.011, 
1.130) 

0.03 0.25 

Nasopharynx (C11) 1.080 
(1.001, 
1.165) 

0.07 0.11 

Digestive system 
(C15–C26) 

1.020 
(1.011, 
1.030) 

<0.001 0.004 

Esophagus (C15) 1.015 
(0.992, 
1.037) 

0.24 0.56 

Stomach (C16) 1.028 
(1.011, 
1.046) 

0.002 0.03 

Colorectum 
(C18–C21) 

1.029 
(1.004, 
1.055) 

0.03 0.01 

Liver (C22) 1.000 
(0.980, 
1.020) 

0.98 <0.001 

Pancreas (C25) 1.065 
(1.035, 
1.096) 

<0.001 <0.001 

Respiratory system 
(C30–C39) 

1.035 
(1.022, 
1.049) 

<0.001 <0.001 

Lung (C33–C34) 1.035 
(1.021, 
1.049) 

<0.001 <0.001 

Bone and joints 
(C40–C41) 

1.201 
(1.120, 
1.308) 

<0.001 0.16 

Breast (C50) 0.976 
(0.933, 
1.022) 

0.34 0.09 

Female genital system 
(C51–C58) 

1.028 
(0.986, 
1.072) 

0.24 0.05 

Cervix (C53) 0.942 
(0.885, 
1.003) 

0.08 0.41 

Ovary (C56) 1.108 
(1.031, 
1.190) 

0.01 0.03 

Male genital system 
(C60–C63) 

1.088 
(1.034, 
1.145) 

0.002 0.39 

Prostate (C61) 1.089 
(1.034, 
1.148) 

0.002 0.41 

Urinary system 
(C64–C68) 

1.061 
(1.012, 
1.112) 

0.03 0.65 

Kidney (C64–C65) 1.092 
(1.006, 
1.185) 

0.06 0.39 

Bladder (C67) 1.054 
(0.994, 
1.119) 

0.11 0.58 

Brain (C71) 1.024 
(0.976, 
1.075) 

0.36 0.38 

Lymphoma (C81–C85) 1.106 
(1.049, 
1.168) 

<0.001 0.04 

Leukemia (C91–C95) 0.998 
(0.952, 
1.046) 

0.98 0.39 

Abbreviations: RR, relative risk; CI, confidence interval; PM2.5, fine particulate 
matter; ICD-10, International Statistical Classification of Diseases and Related 
Health Problems 10th Revision; FDR, false discovery rate. 
The P values for linear trend and nonlinear trend were adjusted by the FDR 
method. 
A FDR-adjusted P value < 0.05 was considered significant. 

Z. Fan et al.                                                                                                                                                                                                                                      



Environmental Research 222 (2023) 115405

6

the PM2.5-mortality association for lung cancer exhibited a similar 
nonlinear exposure-response shape, with a monotonically increasing 
trend at low PM2.5 exposure levels and steeper slopes at the high PM2.5 
exposure levels. This exposure-response pattern can be useful in devel
oping effective strategies to minimize the burden of lung cancer death. 
Moreover, we observed that long-term exposure to PM2.5 showed sig
nificant adverse effects on the risks of mortality from a variety of 
site-specific cancers including lip, oral cavity and pharynx, stomach, 
colorectum, pancreas, lung, bone and joints, ovary, prostate, and lym
phoma, which have rarely been investigated and the results remain 
inconclusive. For digestive system cancer, existing studies reported 
PM2.5 exposure was associated with cancer mortality from stomach, 
colorectum, and digestive accessory organs (e.g., liver and pancreas) 
(Coleman et al., 2020b; Guo et al., 2020; Turner et al., 2017; Wang et al., 
2018; Wong et al., 2016). For urinary system cancer, two cohort studies 
in the US and one spatial analysis in Taiwan, China consistently reported 
a positive association with the risk of bladder cancer mortality (Coleman 
et al., 2020b; Turner et al., 2017; Yeh et al., 2017); however, we did not 
observe significant PM2.5-mortality associations either from kidney 
cancer or bladder cancer. Studies have also observed negative associa
tions of exposure to PM2.5 with cancer mortality from breast, ovary, 
prostate, lymphoma, and leukemia (Coleman et al., 2020b; Guo et al., 

2021; Hung et al., 2012; Turner et al., 2017; Wang et al., 2019). Overall, 
our findings and previous studies provide evidence on the harmful effect 
of PM2.5 exposure on mortality from cancer of many organs. Further 
studies focusing on site-specific cancers are warranted to facilitate the 
assessment of cancer burden concerning long-term exposure to ambient 
PM2.5. 

The risk of mortality from certain site-specific cancers in our study 
was higher than several previous studies (Chen et al., 2021; Coleman 
et al., 2020b; Turner et al., 2017; Wang et al., 2020a; Wong et al., 2016; 
Yu et al., 2022a–c) with possible reasons including: (1) Different study 
design. Most previous studies used a cohort design to control only a 
limited number of measured confounding factors (Chen et al., 2021; 
Coleman et al., 2020b; Turner et al., 2017; Wang et al., 2020a; Wong 
et al., 2016), and were usually subject to residual confounding that can 
induce biased estimates. In this DID analysis, we considered temporal 
variables, spatial variables, and measured confounders (i.e. tempera
ture, relative humidity, and socioeconomic status), which can indirectly 
control a number of common factors that changed across areas over 
time. Since the population of a spatial unit was compared with itself at 
different periods, unmeasured confounders that rarely changed over 
time or kept constant during the study period were also controlled 
through the study design. (2) Different exposure level. Most previous 

Fig. 2. Exposure-response curve of long-term exposure to ambient PM2.5 with cancer mortality with a significant nonlinear association. The solid blue lines with 
shaded regions indicate RRs of cancer mortality and their 95% CIs, respectively. Abbreviations: PM2.5, fine particulate matter; RR, relative risk; CI, confi
dence interval. 
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Fig. 3. Estimated RR (95% CI) of cancer mortality associated with each 1 μg/m3 increase of long-term exposure to ambient PM2.5 stratified by sex and GDP. Ab
breviations: RR, relative risk; CI, confidence interval; PM2.5, fine particulate matter; GDP, gross domestic product. 
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studies on PM2.5 exposure and site-specific cancer mortality were mainly 
conducted in the US and Brazil (Coleman et al., 2020b; Turner et al., 
2017; Wang et al., 2020a; Yu et al., 2022a–c). The exposure level of 
PM2.5 and its constituents in China were different from that in these 
regions, which can lead to various susceptibility to PM2.5 exposure 
across site-specific cancers. (3) Limited sample size. Consistent with 
published literature, the sample size of site-specific cancers with higher 
effect estimates was typically smaller (Turner et al., 2017), which can 
add more uncertainties and warrants large-scale investigations in future. 

We assessed exposure-response curves of PM2.5 with mortality from a 
variety of site-specific cancers in China. Our results suggest that the 
associations of long-term exposure to PM2.5 with cancer mortality were 
approximately linear across the exposure range of 40.2–81.6 μg/m3, 
though there was a steeper increase of mortality risk in higher exposure 
levels. One possible explanation is that PM2.5 exposure interacts with 
other factors (e.g., socioeconomic status and medical accessibility) to 
synergistically increase the mortality risk at higher exposure levels (Han 
et al., 2021; Zhao et al., 2021). Note that these curves did not indicate a 
potential exposure threshold for risk of cancer mortality, suggesting that 
reducing PM2.5 exposures in any level within our exposure range 
(especially at high exposure levels) can yield significant health benefits. 
It should also be noted that more uncertainties were observed for the risk 
of cancer mortality associated with high level of PM2.5 exposures, which 
needs to be confirmed in further studies. 

In stratified analysis, we found that the association of pancreas 
cancer mortality was significantly stronger in women than that in men. 
This finding can be explained by the difference in individual habits on 
cooking oil fumes exposure and the sexual discrepancy in metabolism. 
For the GDP level, subjects living in low GDP regions showed stronger 
PM2.5-mortality associations of all-site cancer and stomach cancer. 
Perhaps these differences are related to the inhabitants in these areas 
spending more time on outdoor activities, which further leads to higher 
exposure to ambient air pollution (Han et al., 2021). Moreover, low 
socioeconomic status regions may have the insufficient budget to control 
air pollution, which can aggravate the vulnerability of populations to air 
pollution (Zhao et al., 2021). 

Several possible pathways could explain the potential biological 
mechanisms between PM2.5 exposure and cancer mortality. First, PM2.5 
contains various mutagens and carcinogenic substances including 
polycyclic aromatic hydrocarbons, volatile organic compounds, and 
heavy metals, which can transport and metabolize in the body and 
trigger the progression of cancer (Castano-Vinyals et al., 2004; Man
isalidis et al., 2020; Moorthy et al., 2015). Second, previous studies have 
connected air pollution exposure with epigenetic modifications 
including DNA hypermethylation and hypomethylation, both of which 
are considered as cancer-related and early-effect biomarkers (Demetriou 
and Vineis, 2015; Sanchez-Guerra et al., 2015; Zhang et al., 2020). 
Third, PM2.5 may cause oxidative stress and inflammation, which are 
proven to be connected with several cancers such as breast, colorectum, 
and stomach cancer (Baulig et al., 2007; Kruk and Aboul-Enein, 2017). 
Finally, PM2.5 can penetrate the alveolar-blood barrier and blood-brain 
barrier (Cristaldi et al., 2022). PM2.5-bound toxic substances are then 
able to enter the bloodstream, transport throughout the body, and cause 
adverse effects on different organs (Anderson et al., 2012; Choi et al., 
2018). 

Our study has the following advantages. First, we enrolled over 80 
million general population with 0.95 million cancer deaths across 53 
spatial units during 6 consecutive years. Our sample size is large enough 
to provide sufficient statistical power and allow u to make a novel 
contribution to the causal effect of long-term PM2.5 exposure on mor
tality from multiple site-specific cancers using the DID analysis in China. 
Second, the PM2.5 exposure was assessed using a high-quality and high- 
resolution (0.01◦ × 0.01◦) dataset, which can reduce the uncertainty in 
exposure measurement (Wei et al., 2022). Third, the use of historical 
estimates on long-term ambient concentrations over a 10-year exposure 
window can give better evaluations of the cumulative chronic impacts of 

PM2.5 exposure on the progression of cancer death. 
There are also some limitations. First, we only adjusted for seasonal 

temperatures, relative humidity, and GDP in the model. Other spatio
temporal variables, including employment rates and behavior trends in 
smoking and alcohol consumption, may confound the associations be
tween PM2.5 exposure and cancer mortality (Wang et al., 2016; Yit
shak-Sade et al., 2019). Although these unmeasured confounders were 
unable to be adjusted in the model, the dummy variables for years and 
spatial units in the model can in part control the corresponding change 
trends of these confounders and reduce potential bias. Second, we were 
unable to consider the individuals’ residential mobility and used expo
sure estimates at the county of death as a proxy of long-term exposure 
indicators. Nonetheless, it is suggested that the exposure misclassifica
tion due to the lack of residential history is probably non-differential and 
may lead the bias of estimated associations to null effects (Cheng et al., 
2020; Crouse et al., 2015). Finally, since the lack of historical ambient 
pollutants data, we were unable to conduct analyses by further adjusting 
for other gaseous pollutants (e.g., nitrogen dioxide, sulfur dioxide, car
bon monoxide) in the models. Given that published literature also linked 
other pollutant exposures to cancer mortality (Turner et al., 2020; W. 
Wei et al., 2021), future studies can account for co-pollutants exposure 
when estimating PM2.5-mortality associations. 

5. Conclusion 

In summary, our results established causal associations between 
long-term exposure to PM2.5 and the increased risk of mortality from all- 
site cancer and site-specific cancers including the digestive system, the 
respiratory system, the reproductive system, the urinary system, and the 
hematopoietic system. Our findings suggest that women and people 
living in low SES regions are more vulnerable to PM2.5 exposures. Our 
study provides further evidence that ambient PM2.5 can be a contributor 
to mortality from a number of site-specific cancers and highlights the 
needs to take effective measures for both policymakers and individuals 
to reduce exposures to PM2.5 pollution. 
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