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A B S T R A C T

The vertical distribution of aerosols is crucial for extensive climate and environment studies but is severely 
constrained by the limited availability of ground-based observations and the low spatiotemporal resolutions of 
Lidar satellite measurements. Multi-spectral passive satellites offer the potential to address these gaps by 
providing large-scale, high-temporal-resolution observations, making them a promising tool for enhancing 
current aerosol vertical distribution data. However, traditional methods, which rely heavily on physical as
sumptions and prior knowledge, often struggle to deliver robust and accurate aerosol vertical profiles. Thus, we 
develop a novel retrieval framework that combines two advanced deep-learning models, locally-feature-focused 
Transformer and globally-feature-focused Fully Connected Neural Network (FCNN), referred to as TF-FCNN, to 
estimate hourly aerosol distributions at different heights (i.e., 0.01–1 km, 1–2 km, and 2–3 km) with 2-km spatial 
resolution, using multi-source satellite data, including Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO), Himawari-8 and Moderate Resolution Imaging Spectroradiometer (MODIS). This 
hybrid framework is thoroughly analyzed using an eXplainable Artificial Intelligence (XAI)-based SHapley Ad
ditive exPlanations (SHAP) approach, which reveals that shortwave bands and brightness temperature are the 
most influential features, contributing approximately 63 % to the model predictions. Validation results 
demonstrate that the model provides reliable hourly aerosol vertical distributions across different heights in 
Australia, achieving high overall sample-based cross-validation coefficients of determination (CV-R2) ranging 
from 0.81 to 0.90 (average = 0.88). Our hourly retrievals indicate higher aerosol loadings at lower altitudes 
(0.01–1 km) than higher ones (1–2 km and 2–3 km) in most areas, likely due to significant anthropogenic and 
natural emissions from the ground. Furthermore, we observe substantial increases in aerosol concentrations over 
time and enhanced diurnal variations across altitudes during highly polluted cases, including urban haze and 
wildfires. These unique insights into the spatial distribution of aerosol vertical layers are crucial for effective air 
pollution control and management.

1. Introduction

Atmospheric aerosols can absorb and scatter solar radiation at 
different wavelengths, which is important for the global radiation bal
ance and climate change (Lee et al., 2023). Also, aerosols rooted in toxic 
metals, organic chemicals, and microorganisms can damage the 

atmospheric environment and pose significant health risks (Feng et al., 
2024; Shiraiwa et al., 2017). Unlike other atmospheric components, 
such as greenhouse gases, aerosols have a localized impact on climate 
and environment, exhibiting strong spatial heterogeneities and temporal 
variabilities (Jiang et al., 2023). In addition to horizontal distribution, 
aerosols also have significant spatiotemporal variations in the vertical 
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direction, especially under conditions with complex sources and rapid 
transmission, such as urban haze and wildfires (Heinold et al., 2022; Sun 
et al., 2018). Therefore, timely obtaining precise aerosol distribution 
information is crucial for mitigating their climatic, ecological, and 
health effects.

However, accurately quantifying aerosol vertical distributions with 
sufficient spatial coverage remains a significant challenge. Traditional 
approaches for retrieving aerosol vertical distributions primarily rely on 
ground-based remote sensing using lidar, such as MPLNET (Micro-Pulse 
Lidar Network) (Campbell et al., 2002; Wang et al., 2020) and EAR
LINET (European Aerosol Research Lidar Network) (Pappalardo et al., 
2014), active space-based lidar like CALIPSO (Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observations) (Kim et al., 2018; Kudo et al., 
2023), and passive satellite measurements combined with radiative 
transfer modeling (Chen et al., 2021; Lemmouchi et al., 2022; 
Maheshwarkar et al., 2024; Sanders et al., 2015; Sanghavi et al., 2012; 
Xu et al., 2019). While these methods provide valuable vertical aerosol 
information, they suffer from several limitations. Ground-based lidar 
networks offer only localized observations and are restricted to clear-sky 
conditions (Gupta et al., 2021; He et al., 2008). CALIPSO plays an 
essential role in studying long-term global aerosol vertical distributions, 
as it has provided more than a decade of global observations since 2011. 
However, its low temporal resolution of ~ 16 days makes it difficult to 
capture short-term variations in rapidly changing aerosols. In addition, 
it has a coarse horizontal spatial resolution (17.6 km in longitude and 
5.6 km in latitude) due to its point-shape observation mode and line- 
shape track, limiting its ability to capture significant aerosol variations 
at medium or small (urban) scales (Adams et al., 2012; Huang et al., 
2015). Passive satellite retrievals depend on complex inverse modeling, 
which is highly sensitive to empirical assumptions, prior knowledge, and 
surface reflectance conditions (Maheshwarkar et al., 2024; Xu et al., 
2017). These approaches are also computationally intensive due to their 
iterative nature, making them less suitable for large-scale applications 
(Choi et al., 2019; Kudo et al., 2023).

Recently, machine learning (ML) has become increasingly popular 
for its strong data mining capabilities and has been applied in a handful 
of studies to retrieve aerosol vertical distributions. Chen et al. (2022)
employed the Extra Trees model, using CALIPSO AOD and auxiliary 
data, to estimate the vertical distribution of PM2.5 at a 16-day resolution 
in East China. Pashayi et al. (2025) adopted the XGBoost model to es
timate instantaneous AOD at four atmospheric layers (1.5, 3, 5, and 10 
km) over Europe, using CALIPSO profiles and SEVIRI (Spinning 
Enhanced Visible and Infrared Imager) data. Li et al. (2025) developed 
an XGBoost-LightGBM-Wavelet (XLW) model to derive an annual three- 
dimensional aerosol extinction coefficient dataset at 167 layers from 
multiple data sources across China. Wang et al. (2025) combined the 
long short-term memory (LSTM) and Transformer models to estimate 
aerosol layer height at a 16-day resolution from the OCO-2 (Orbiting 
Carbon Observatory-2) hyperspectral observations in West Africa. 
However, the application of ML to aerosol vertical distribution retrieval 
remains in its early stages, with most studies relying on traditional tree- 
based models. These models exhibit limited capability to capture intri
cate spatial–temporal dependencies when retrieving weak aerosol ver
tical distributions from satellite observations. In contrast, our model 
effectively captures spatiotemporal correlations and models complex 
nonlinear relationships by extracting fine-scale local features. Further
more, existing products suffer from limited accuracy and, more impor
tantly, typically provide coarse temporal resolutions, often daily or 
multi-day (e.g., 16-day or annual) averages, limiting their ability to 
capture diurnal variability in aerosol distribution, which is especially 
important in local areas (like urban) with highly dynamic emission 
sources.

To overcome the limitations of traditional methods (e.g., optimal 
estimation), we develop a novel deep learning framework (TF-FCNN) 
that integrates a Transformer and a Fully Connected Neural Network to 
retrieve high-spatial-resolution, hourly aerosol vertical profiles from 

Himawari-8 satellite observations. This hybrid model leverages their 
complementary strengths: the Transformer excels at capturing long- 
range dependencies (relationships or correlations between data points 
that are far apart in space or time) and spatiotemporal correlations, 
while the FCNN effectively models complex nonlinear relationships and 
extracts fine-scale local features through its strong nonlinear fitting 
capability. By combining global and local information from multi-source 
datasets and incorporating crucial physical parameters, particularly 
bidirectional reflectance distribution function (BRDF) factors, the 
framework significantly enhances both the accuracy and spatial 
completeness of aerosol profile retrievals. Finally, the fidelity of our 
model is demonstrated through comprehensive validation approaches 
and analysis of aerosol vertical distribution patterns across Australia, 
including their diurnal variations under urban haze and wildfire 
conditions.

2. Data and materials

In this study, we selected Australia as the primary analysis region 
because it provides a relatively clean background with episodic yet 
significant aerosol events from both natural (wildfires) and anthropo
genic (urban haze) sources, offering diverse but manageable test cases. 
Moreover, Australia’s relatively simple aerosol environment allows us to 
access the fundamental feasibility and performance of our framework 
without the confounding influence of highly mixed aerosol sources.

2.1. CALIPSO measurements

CALIPSO Level 2 Aerosol Profile, Version 4–51 data product (CAL_
LID_L2_05kmAPro-Standard-V4-20) (Nasa/Larc/Sd/Asdc, 2018) for the 
year 2022 is used to provide aerosol vertical information as the ground 
truth for the ML modeling. This profile product is reported at a uniform 
spatial resolution of 0.06 km vertically and 5 km to 17.6 km horizontally 
over a nominal altitude range from 30 km to − 0.5 km. Due to the on
board data averaging scheme, the vertical resolution of the aerosol 
profile data varies with altitude. In the tropospheric region (20 km to 
− 0.5 km), the resolution is 0.06 km vertically, while in the stratospheric 
region (above 20 km), the vertical resolution is 0.18 km (Table S1). It is 
retrieved based on the attenuated backscatter signal observed by the 
CALIPSO at green (532 nm) and near-infrared (1064 nm) wavelengths. 
The calibration accuracy of CALIPSO attenuated backscatter coefficients 
at 532 nm is 1.0 % ± 3.5 %, as validated against NASA’s airborne High 
Spectral Resolution Lidar (HSRL) measurements (Getzewich et al., 
2018). The validation accuracy of CALIPSO AOD data is − 5.1 % ± 8.5 % 
compared to Aerosol Robotic Network (AERONET) ground-based mea
surements (Kim et al., 2018). Despite the good calibration and valida
tion accuracy, the remaining uncertainties suggest the inherent 
limitations of using CALIPSO as a reference and represent an upper 
bound on the achievable accuracy under real-world conditions when 
interpreting model evaluation results.

In this study, we divide the heights into three groups, including 
0.01–1 km, 1–2 km, and 2–3 km, to reflect typical vertical distributions 
of aerosol layers observed over the study region and to facilitate clearer 
layer-by-layer analysis. The 3 km limit represents the typical vertical 
extent of aerosols in the lower troposphere, where most aerosol loading 
and relevant atmospheric processes occur. Capturing key variations 
within this range is highly relevant to surface air quality and regional 
climate impacts. These ranges roughly correspond to the surface layer, 
boundary layer, and lower free troposphere, which often exhibit distinct 
aerosol characteristics and transport mechanisms. For example, aerosols 
in the low layer (0.01–1 km) reflect near-surface aerosol emissions and 
deposition, while the boundary (1–2 km) layer captures the vertical 
diffusion and transport of aerosols (Liao et al., 2021; Vinjamuri et al., 
2020). Aerosols at higher altitudes (> 2 km) typically exhibit low con
centrations and remain stable, except during extreme events such as 
haze or wildfires that involve significant particulate emissions (Liao 

Y. Fan et al.                                                                                                                                                                                                                                      ISPRS Journal of Photogrammetry and Remote Sensing 229 (2025) 211–222 

212 



et al., 2021). Additionally, binning the data into broader height intervals 
helps reduce the impact of vertical uncertainty and retrieval noise 
inherent in CALIPSO observations, particularly in weakly attenuating 
layers (Yu et al., 2010), thereby improving the robustness of the 
modeling. To ensure the sampling quality, the unreasonable values (< 0) 
from the product are eliminated before use, and only locations with 
valid retrievals at every vertical layer between 0 and 1 km are used to 
generate training labels and for validation purposes. Fig. S1 illustrates 
the spatial distribution of CALIPSO sampling counts corresponding to 
the validation points. The large number of missing values in the CALI
PSO dataset is primarily due to signal attenuation caused by thick 
clouds, which prevent the lidar from detecting lower atmospheric layers. 
Additionally, increased solar background radiation during daytime and 
high surface reflectance over bright surfaces can reduce the signal-to- 
noise ratio and degrade signal quality (Kim et al., 2018; Mao et al., 
2022; Tackett et al., 2023).

2.2. Himawari-8 observations

Himawari-8 L1 full-disk data, with multiple bands ranging from 0.47 
µm to 13.3 µm and a high temporal resolution of 10 min (144 obser
vations per day), is used as input for retrieving aerosol vertical distri
butions. Specifically, the top-of-atmosphere (TOA) reflectance from the 
first six shorted channels from 0.47 µm to 1.6 µm, serves as the primary 
input, and the brightness temperature (BT) at 11.2 µm is also included 
due to its high sensitivity to coarse aerosols like dust and smoke (Liu 
et al., 2024). In the full-disk observation mode, these data are initially 
acquired for a large region (approximately a quarter of the Earth: 
60S–60 N; 80E–160 W), including eastern Asia and Australia, with 
various resolutions from 0.5 km to 2 km across bands. Therefore, the 

spatial resolutions of the Himawari-8 observation at different bands are 
resampled to a consistent 2 km using the bidirectional linear interpo
lation method (Wei et al., 2023). Additionally, observation geometry, 
including satellite viewing zenith angle (VZ), solar zenith angle (SZ), 
and relative azimuth angle (RA), is incorporated to account for the effect 
of the light transmission path on the satellite signal. A series of spectral 
tests were conducted to filter out unsuitable retrieval pixels under cloud 
cover or over snow/ice and water surfaces, as detailed in Table S2.

2.3. MODIS product

The MCD19A3D (Collection 6.1) product at a high spatial resolution 
of 1 km is also employed to characterize the ground surface when 
retrieving aerosol vertical distributions. This dataset is derived from 
MODIS (Moderate Resolution Imaging Spectroradiometer) observations 
using the Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) algorithm (Lyapustin et al., 2018). It provides three co
efficients, isotropic (ISO), volumetric (VOL), and geometric (GEO), of 
the RossThick/Li-Sparse (RTLS) BRDF model for eight bands ranging 
from 0.47 µm to 2.11 µm, effectively characterizing the anisotropic 
reflectance properties of ground targets. Here, BRDF coefficients at three 
short-wavelength channels, including red (0.65 µm), green (0.55 µm), 
and blue (0.47 µm), which are more sensitive to aerosol properties and 
provide a favorable signal-to-noise ratio for aerosol detection compared 
to other spectral bands, are selected as inputs for our model. In this 
study, we utilize monthly BRDF data synthesized from the MCD19A3D 
daily products in our modeling. To minimize the effects of spatial gaps 
caused by cloud contamination, any remaining missing monthly values 
are further filled using seasonal averages, given the relatively small 
temporal variability. Additionally, the MOD14A1 Thermal Anomalies/ 

Fig. 1. Workflow for retrieving hourly aerosol vertical distributions from satellite observations using the developed hybrid deep learning model.
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Fire (daily, 1 km) and MCD12Q1 Land Cover (yearly, 500 m) products 
are also collected to indicate the areas with wildfires and with different 
land-use types, respectively.

3. Aerosol vertical distribution retrieval framework

In this study, we developed an hourly aerosol vertical distribution 
retrieval framework, a novel hybrid deep-learning model, by combining 
active CALIPSO observations and passive Himawari-8 and MODIS im
agery (Fig. 1). Within the framework, eXplainable Artificial Intelligence 
(XAI) technique is employed to enhance the interpretability and reveal 
the physical connections by quantifying the contributions of different 
variables on the model’s outputs at various heights (i.e., 0.01–1 km, 1–2 
km, and 2–3 km).

3.1. Feasibility analysis

The feasibility of retrieving aerosol vertical distributions using 
Himawari-8 imagery was first analyzed from a physical perspective 
using the Second Simulation of a Satellite Signal in the Solar Spectrum 
(6S) radiative transfer model. The 6S model simulates solar radiation 
captured by multi-spectral satellites from visible to near-infrared bands 
(0.25–4 µm) under varying observation geometries, atmospheric con
ditions, and aerosol models (Kotchenova et al., 2008). To evaluate the 
influence of aerosol vertical distributions on satellite signals, we defined 
four idealized profiles: H1 (all aerosols at a base height H), H2 (one-third 
at H, two-thirds at H + 0.24 km), H3 (half at H, half at H + 0.24 km), and 
H4 (two-thirds at H, one-third at H + 0.24 km). The vertical offset of +
0.24 km was selected to reflect small shifts in aerosol layer height 

Fig. 2. Atmospheric radiative transfer simulations for Himawari-8 multi-spectral bands (B1-B4) under different aerosol vertical profiles, including H1 (all aerosols at 
a base height H), H2 (one-third at H, two-thirds at H + 0.24 km), H3 (half at H, half at H + 0.24 km), and H4 (two-thirds at H, one-third at H + 0.24 km). Simulations 
were conducted with fixed parameter settings (AOD = 0.9, aerosol model = urban type, atmospheric model = mid-latitude summer, SZ = 20◦, VZ = 20◦, and RA =
120◦) and various LSR values (0.01, 0.08, 0.1 and 0.2).
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commonly observed in the lower troposphere, which can influence 
satellite-measured radiances (He et al., 2008; Pashayi et al., 2025; Wang 
et al., 2025). Simulations were conducted, assuming a total AOD of 0.9, 
an urban aerosol type, and mid-latitude summer atmospheric condi
tions. A fixed observation geometry (SZ = 20◦, VZ = 20◦, and RA =
120◦) was initially applied to isolate the impact of aerosol vertical dis
tribution from geometric variations, given Himawari-8′s near-constant 
viewing angle over a fixed region.

The results indicate that increasing aerosol height (from H1 to H4) 
alters TOA reflectance, with the magnitude and direction of the effect 
depending on wavelength and land surface reflectance (LSR) (Fig. 2). In 
general, TOA reflectance increases with aerosol altitude when LSR < 0.2 
but decreases when LSR = 0.2 due to the interplay of aerosol scattering 
and surface brightness. Among the profiles, H4 (with most aerosols at 
higher altitudes) produces the strongest satellite signal, while H1 has the 
weakest effect. Shortwave bands (B1 and B2) are more sensitive to 
changes in aerosol height than longer wavelengths. Notably, TOA 
reflectance in B3 and B4 tends to converge at higher altitudes (~3 km), 
whereas B1 retains clearer separation across vertical profiles, demon
strating its stronger sensitivity to vertical distribution. Overall, shifting 
aerosol concentration to higher altitudes consistently increases TOA 
reflectance, especially in shorter wavelength bands, partly due to 
stronger scattering near the top of the atmosphere and reduced ab
sorption in bands such as O2 A (760 nm) and B (687 nm). To further 
evaluate whether variations in viewing geometry could confound the 
interpretation of aerosol layer height, we conducted additional simula
tions of TOA reflectance for bands B1 and B4 across a range of solar 
zenith angles (20◦–60◦), viewing zenith angles (20◦–60◦), and relative 
azimuth angles (10◦–150◦) (Fig. S2). While TOA reflectance may overlap 
under different geometries for a given band, they remain distinguishable 
between different bands, confirming the feasibility of retrieving aerosol 
vertical distributions using Himawari-8′s multi-band observations under 
diverse observing conditions.

3.2. TF-FCNN model

In this study, two advanced deep learning models, the Transformer 
(Vaswani et al., 2017) and the Fully Connected Neural Network (FCNN) 
(Fan and Sun, 2023; Rumelhart et al., 1986), are integrated to enhance 
the model’s ability to capture nonlinear relationships in retrieving 
aerosol properties from satellite imagery. Transformer, an encode- 
decode framework, has demonstrated strong information extraction 
capabilities, especially for localized and subtle features, making it a 
widely used feature extractor in natural language processing (NLP) tasks 
(Han et al., 2023; Wei et al., 2024). Its robustness and flexibility in 
training and application stem from three key modules, including multi- 
head attention, positional encoding, and residual blocks (Han et al., 
2023; Vaswani et al., 2017). Here, we use two blocks within the decode 
module of the transformer model, which includes multi-head attention 
and residual modules, to construct and improve the model’s training 
time and efficiency. Additionally, layer normalization is applied to 
maintain model stability and accelerate convergence during training. 
Finally, we integrate the FCNN model to further enhance the informa
tion extraction capability by fully utilizing the outputs of the Trans
former model. FCNN consists of multiple neurons and hidden layers and 
is well-suited for quantitative retrieval tasks in remote sensing due to its 
strong ability to fit global features across different samples from satellite 
spectral bands (Fan and Sun, 2023; Fan et al., 2024). Our new hybrid 
framework comprises two stages:

Stage I: For the TF-FCNN model, we initially use the Transformer 
block as a local feature extractor to fit the nonlinear relationship be
tween the CALIPSO measurements and the primary input predictors, 
which include the Himawari-8 TOA reflectance, MODIS BRDF features, 
as well as observation geometry. We decouple aerosols and surface 
signals by leveraging spectral differences across multiple channels 
spanning the visible, near-infrared, and shortwave infrared ranges. 

Specifically, we use the TOA reflectance from the first six bands [i.e., B1 
(0.47 µm), B2 (0.51 µm), B3 (0.64 µm), B4 (0.86 µm), B5 (1.6 µm) and B6 
(2.3 µm)] as the key variables, as they are highly sensitive to aerosol’s 
loadings as well as its vertical distributions. The BT data from the B14 
band (11.2 µm) is also included as an input due to its ability to indicate 
high aerosol load conditions such as dust and smoke (Liu et al., 2024). 
Additionally, three BRDF parameters (i.e., ISO, VOI, and GEO) at blue 
(0.46 µm), green (0.55 µm), and red (0.65 µm) bands serve as indicators 
of surface conditions and are incorporated into the model. The three 
selected bands correspond to key wavelengths within the visible spec
trum that are commonly used for aerosol optical property retrievals, 
balancing sensitivity to aerosol scattering and absorption while mini
mizing surface reflectance interference. The observation angles (SZ, VZ, 
and RA) are also added to the model to decouple aerosols and surface 
information using different spectral channels. The temporal feature, 
represented by the day of the year (DOY), is included to enhance per
formance, considering the short atmospheric lifespan of aerosols and the 
significant day-to-day variations (Wei et al., 2020), especially in regions 
with complex and transient aerosol sources, such as wildfires. Table S3
and Fig. S3 provide detailed information about the input variables and 
their distributions.

Stage II: The outputs of the fTF are then inputted into the FCNN 
model (fFCNN) to further learn and fit the complex relationship between 
the aerosol vertical distribution and the same set of variables, similar to 
the Transformer model, but in a global context. As a result, these two are 
deeply integrated to form the final TF-FCNN model {fFCNN[ fTF(X)]}, 
which has a greater capability to simultaneously extract both global and 
local features from a total of 20 input variables compared to using a 
single model. The two stages work in parallel during the model training 
and can be represented as follows: 

AECh = fFCNN[fTF

(
TOAλi , BT, SA, SZ,RA, ISOγj ,VOLγj ,GEOγj ,DOY

)
] (1) 

where AECh represents the retrieved aerosol extinction coefficient at 
height h. λi and γj represent the B1-B6 bands of Himawari-8 and the B1- 
B3 bands of MODIS, respectively.

In this study, the TF-FCNN model is implemented and trained based 
on the Pytorch module in Python. Specifically, there are two blocks as 
well as 512 and 256 neurons that constitute the Transformer and FCNN 
parts of the TF-FCNN model, respectively. To enhance the model’s sta
bility and convergence speed during training, appropriate hyper
parameters, and loss functions are determined by using a trial-and-error 
approach. After a lot of training, testing, and comparing, we finally 
selected the MSELoss as the loss function to the deviation between 
aerosols and satellite observations and used the Adam as the optimizer 
to avoid results falling into local optimality and speed up training.

3.3. Model interpretation and validation

Here, the SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 
2017) method is adopted to interpret the importance of each feature in 
deriving the aerosol vertical distribution using deep learning. SHAP is an 
advanced XAI technique that assigns a fair contribution value to each 
feature, ensuring consistency and transparency in how the model arrives 
at its predictions. It has unique advantages, including being model- 
agnostic, providing clear and interpretable insights into both global 
and local feature importance, and ensuring fairness by distributing 
contributions according to game-theoretic principles. SHAP has become 
a powerful tool for understanding and communicating the behavior of 
complex deep-learning models in related air quality tasks (Cheng et al., 
2025; Wei et al., 2024). The SHAP analysis method is applied to inter
pret our trained deep-learning model. The SHAP values are calculated 
using the independent test set (20 % of total data samples), which is 
randomly split from the original data and is representative of the overall 
data distribution. This approach ensures that the interpretation reflects 
the model’s behavior on unseen data, aligning with real-world 
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application scenarios. It also balances computational efficiency with 
statistical robustness while maintaining relevance to the model’s 
generalization performance.

Three independent approaches are adopted to validate the model’s 
performance: i.e., the sample-based 10-fold cross-validation (10-CV) is 
used to evaluate the overall accuracy of the TF-FCNN model in retrieving 
hourly aerosol vertical distributions, while time-based and space-based 
10-CV are employed to access the model’s predictive ability in areas and 
on dates where the truth values from CALIPSO observations are not 
available (Wei et al., 2023). Sample-based cross-validation refers to 
randomly dividing all data samples into 10 folds, with 9 folds used for 
training and the remaining one for validation in each iteration. Time- 
based cross-validation divides the data by day of the year into 10 tem
poral folds (i.e., 365 days grouped into 10 folds), with each fold used 
once as the test set while training on the remaining 9 folds. Space-based 
cross-validation involves dividing the study domain into approximately 
658 1◦ × 1◦ grid cells, which are randomly grouped into 10 spatial folds. 
In each round, one fold is held out for validation while the model is 
trained on the remaining nine. This setup ensures that model perfor
mance is robustly assessed across random sampling, temporal variation, 
and spatial heterogeneity.

To further strengthen the spatial evaluation, we implement an 
additional stratified spatial partitioning scheme by dividing the sample 
sets into seven geographically distinct regions in Australia (Fig. S4), and 
then apply a leave-one-region-out cross-validation approach, in which 
one region is used for validation and the remaining regions for training. 
Lastly, given the absence of CALIPSO observations in other hours, we 
implemented a leave-one-hour-out cross-validation approach (Wei 
et al., 2024) to validate the model’s performance in predicting different 
aerosol layer heights at unobserved times. In this approach, data sam
ples from one hour were used for independent validation, while data 
samples from the remaining three hours were used for training.

The cross-validated coefficients of determination (R2), correlation 
coefficient (R), root mean square error (RMSE), and mean absolute error 
(MAE) are used to quantitatively assess the model’s performance and 
uncertainty. Note that the validation is performed for each hour during 
the period from 02:00 to 07:00 UTC.

4. Results and discussion

4.1. Model interpretation and feature analysis

The XAI − SHAP method is employed to evaluate the contribution of 
each feature on the retrieval of hourly aerosol vertical distributions from 
space using the developed TF-FTNN model (Fig. S5). At the low layer (i. 
e., 0.01–1 km), shortwave bands (B1 and B2) have significant impacts on 
the model, contributing ~ 24 % to the outputs. This is attributed to 
aerosols exhibiting stronger extinction (e.g., scattering and absorption) 
of solar light at shorter wavelengths (e.g., blue) compared to longer 
wavelengths (e.g., shortwave infrared) (Hsu et al., 2013). Additionally, 
the thermal infrared band (B14) accounts for 9 % of the model’s 
importance, likely due to its strong sensibility to high-loading aerosols, 
such as dust and smoke. Multiple BRDF features from various wave
lengths exhibit a high cumulative contribution of 19 %, as they effec
tively explain the interaction between surface and solar light, 
influencing satellite signals at the top of the atmosphere. Observation 
geometry, particularly the VZ, has a substantial contribution (~11 %) 
due to its strong correlations with satellite signals under varying surface 
and atmospheric conditions and its wide range of values (approximately 
from 0 to 90◦) in the full-disc image for the geostationary satellites. The 
remaining variables collectively contribute 37 % to the retrieval, indi
cating their important auxiliary roles in the model. For the 1–2 km and 
2–3 km layers, the contributions of these variables are similar to those at 
0.01–1 km, with slight variations: B1 and B2 contribute ~ 32.6 % and 
39.58 %, B14 contributes ~ 22 % and 17 %, BRDF contributes ~ 14 % 
and 13 %, VZ contributes ~ 8 % and 12 %, and the remaining variables 

collectively contribute ~ 25 % and 18 % of the model’s final outputs, 
respectively. Overall, XAI provides unique insights into the physical 
connections within the deep learning model for aerosol vertical distri
bution retrieval and reveals that approximately 63 % of the contribu
tions to the TF-FCNN model come from shortwave and bright 
temperature bands, as well as BRDF characteristics.

4.2. Validation of aerosol extinction coefficient retrievals

The TF-FCNN model is first validated using the sample-based 10-CV 
approach at three height layers in Australia (Fig. 3). The absence of data 
points in central Australia is due to the limited coverage of high-quality 
CALIPSO observations, as this region, dominated by vast deserts and 
bare land, restricts data availability. In space, the model demonstrates 
reliable retrievals in most regions of Australia at all three height layers, 
with an average high CV-R2 (> 0.7) and low RMSE (< 0.1) across over 
62 %, 61 %, and 62 % of the 1◦ × 1◦ grids for the 0–1 km, 1–2 km, and 
2–3 km layers, respectively (Fig. 3a–c). At the 0–1 km height, the hourly 
AEC retrievals (N = 77374) are highly consistent with CALIPSO mea
surements (CV-R2 = 0.903), exhibiting low uncertainties, with an 
average RMSE of 0.037 and MAE of 0.018 across Australia in 2022 
(Fig. 3d). At the 1–2 km and 2–3 km layers, the retrieval accuracy 
gradually worsens but still shows good consistency with CALIPSO 
measurements (CV-R2 = 0.872 and 0.814, respectively), with average 
RMSEs (MAEs) of 0.031 (0.014) and 0.041 (0.023), respectively (Fig. 3e- 
f). However, the retrievals at these layers tend to be underestimated, 
potentially due to the smaller sample size of high-loading aerosol cases, 
but the bias is minimal, as evidenced by the strong line regression slopes 
(0.83–0.9). Our model performs well and remains relatively stable 
across different times of day (i.e., 04:00–07:00 UTC) at all height layers, 
with CV-R2 ranging from 0.7 to 0.92 and RMSE ranging from 0.02 to 
0.05 (Fig. 4). In addition, the combined TF-FCNN achieves better per
formance, improving the CV-R2 by 4–6 % and reducing RMSE by 14–19 
%, respectively, compared to the individual FCNN or Transformer 
models (Fig. S6).

Furthermore, our results show higher accuracy with BRDF inputs 
(CV-R2 = 0.81–0.90) compared to without (CV-R2 = 0.46–0.60) across 
different aerosol layers (Table S4). Importantly, including BRDF vari
ables improves retrieval accuracy by over 10 % across different land-use 
types, particularly for forest and cropland (Fig. S7). This improvement is 
mainly because BRDF captures the anisotropic scattering of surface 
reflectance, which varies significantly with observation geometry and 
land cover types, particularly in forests and croplands. These land cover 
types exhibit high variability due to factors such as vegetation structure, 
leaf orientation, and canopy density, all of which strongly influence 
surface reflectance. By capturing these directional effects, BRDF features 
help account for such variability, leading to more accurate surface 
reflectance modeling. This, in turn, improves the model’s ability to 
distinguish aerosol signals from surface background, enhancing retrieval 
accuracy in complex regions.

Moreover, we examine the spatial and temporal predictive ability of 
our model in retrieving aerosol extinction coefficient retrievals using the 
space- and time-based 10-CV methods in Australia. In general, over 60 % 
of regions across the domain show good grid-based CV-R2 (> 0.5) and 
low RMSE values (< 0.1) for all height layers (Fig. S8a-c). The model 
performs well at the low height level (0–1 km) where CALIPSO mea
surements are unavailable (i.e., CV-R2 = 0.636 and RMSE = 0.072), and 
shows comparable predictive abilities at 1–2 km and 2–3 km (CV-R2 =

0.579 and 0.51, RMSE = 0.056 and 0.057) (Fig. S8d-f). The predictions 
are relatively stable over time, but accuracy slightly decreases with 
increasing height layers, likely due to varying aerosol transport and 
vertical distributions across Australia, with moderate CV-R2 values 
ranging from 0.43 to 0.68 (Fig. S9).

The day-based CV results showed a similar spatial pattern to grid- 
based CV, with good AEC retrievals (i.e., CV-R2 > 0.5 and RMSE <
0.1) at the same 60 % of grids across Australia (Fig. S10a-c). These 
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results demonstrate the model’s reliable ability to provide aerosol ver
tical distribution information at moments without CALIPSO measure
ments (i.e., CV-R2 = 0.68–0.78 and RMSE = 0.04–0.06; Fig. S10d-f). 
Temporal predictions of the model are relatively reliable at varying 
hours, with CV-R2 ranging from 0.6 to 0.86, except for the early hour 
(04:00 UTC), where the much smaller number of data samples leads to 
reduced accuracy (Fig. S11). Overall, the predictive accuracy is gener
ally lower than the estimated accuracy but does not drop significantly 
(~15 %), and these comprehensive validation results demonstrate 
acceptable AEC retrievals for studying aerosol vertical distributions at 
different heights in Australia.

Lastly, our model also demonstrates consistent performance across 
different validation hours (R = 0.64–0.79) with low variability (RMSE 
= 0.05–0.08), showing only slight decreases when extended to earlier or 
later times using the leave-one-hour-out cross-validation approach 
(Table S5). This indicates overall stable temporal generalizability and 
suggests that our model effectively captures temporal features and is 
minimally sensitive to diurnal sampling bias. Moreover, our model 
demonstrates consistent predictive skill in retrieving aerosol vertical 
distributions across different altitudes, as evidenced by moderate to high 
correlations (R = 0.41–0.77) and relatively low uncertainties (RMSE =
0.07–0.15) across all regions using the leave-one-region-out crossing 
validation (Table S6). These results illustrate our model’s strong spatial 
and temporal ability to retrieve reliable aerosol layer heights.

4.3. Diurnal variations in aerosol vertical distributions

Anthropogenic emissions from urban areas can significantly alter 
aerosol distribution at various heights, making the study of aerosol 
vertical distribution crucial for air pollution control. Using our TF-FCNN 

model, we first provide the spatially continuous hourly aerosol vertical 
distributions from 02:00 to 07:00 UTC in Australia, highlighting their 
diurnal variation in densely populated urban areas (Fig. 5). On February 
14, 2022, the aerosol loading (average = ~0.14 ± 0.05) at 0.01–1 km is 
notably higher than at 1–2 km (~0.11 ± 0.04) and 2–3 km (~0.07 ±
0.03), reflecting the typical upward transport of aerosols from ground- 
level emissions. In major urban areas like Canberra, this difference be
tween 0.01–1 km and 2–3 km is even more pronounced at 71 % due to 
the increase in the contributions of human activities to aerosols. At 
0.01–1 km, aerosols, mainly from human emissions such as industry and 
transportation (Froehlich et al., 2015), are typically precursors in the 
form of fine particulate matter (e.g., PM2.5), which can contribute heavy 
urban haze and pose high health risks (Feng et al., 2024; Shiraiwa et al., 
2017). In contrast, the lower aerosol concentrations at 1–2 km and 2–3 
km are possibly due to their more widespread aerosol dispersion and 
transmission to the surrounding areas (Li et al., 2022). Additionally, the 
diurnal relative variation of aerosols at 0.01–1 km (~20 %) is much 
greater than at 1–2 km (~17 %) and 2–3 km (~5%), with more pro
nounced around Canberra. Specifically, the averaged AEC for core urban 
areas of Canberra (a window of 10 × 10 pixels) at 0–1 km is 0.17 at 2:00 
and decreases to 0.08 after five hours, representing a more than 52 % 
reduction. In comparison, the averaged AECs at 1–2 km (2–3 km) are 
0.12 (0.09) at 2:00 and 0.08 (0.07) at 7:00, reflecting a 35 % (21 %) 
change. Similar spatiotemporal differences and variations in aerosol 
vertical distribution were also observed during different heavy urban 
haze events, such as on July 15, 2022, in Canberra (Fig. S12) and on 
January 21, 2022, in Melbourne (Fig. S13).

Wildfires are a major natural pollutant source affecting aerosol 
vertical distributions, especially considering the significant increase in 
wildfire emissions in Australia in recent years (Boer et al., 2020; 

Fig. 3. Overall accuracy and uncertainty distribution (a-c) at each 1◦ × 1◦ grid in Australia and (d-f) density scatter plot between our hourly (from 02:00 to 07:00 
UTC) aerosol extinction coefficient (AEC) retrievals and CALIPSO AEC measurements at three height levels (0–1 km, 1–2 km, and 2–3 km) in 2022, using the sample- 
based 10-CV approach. The black line represents the 1:1 line, and the red line represents the fitted line. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Richardson et al., 2022; Salawitch and McBride, 2022). In this study, we 
provide unique insights into both the vertical and horizontal transport of 
smoke particles from the ground to the upper atmosphere by offering 
hourly aerosol extinction coefficients at different heights. On February 
7, 2022, significant wildfire activities (indicated by red dots extracted 
from the MOD14A1 fire product) in both western and eastern Australia 
led to a notable increase in aerosol loads at all height layers (Fig. 6). For 
example, the 0.01–1 km AECs exhibited significantly higher levels near 
the fire regions (a window of 10 × 10 pixels), showing an increase of ~ 
30 % compared to the 1–2 km layer (average = 0.16 ± 0.04) during 
02:00–07:00 UTC. In contrast, aerosols in the 2–3 km layer continued to 
reduce slightly by ~ 25 % over the same period. The changes at 0.01–1 
km and 1–2 km are more dramatic than those in urban haze caused by 
human emissions, particularly at the temporal scale, as aerosol loads 
increase significantly over time due to the rapid growth and spread of 
the fires. Our retrievals successfully capture these strong diurnal varia
tions caused by wildfires: prior to 5:00, aerosol loads remained rela
tively steady, with relative changes of 5 % for 0.01–1 km, 7 % for 1–2 
km, and 4 % for 2–3 km, respectively. In contrast, between 4:00–5:00, 
aerosol levels suddenly increase by 29 %, 22 %, and 21 % at the three 
heights. After 5:00, aerosols continued to increase at 0.01–1 km and 1–2 
km by 36 % and 39 %, while the 2–3 km aerosols decreased by 53 %. By 
contrast, CALIPSO cannot provide timely aerosol changes during wild
fires, as it only passes over Australia once or twice a day. As most 
wildfires occur in densely vegetated areas on the ground, they initially 
release large amounts of smoke and dust into the lower atmosphere. This 
leads to increased AECs at 0.01–1 km, with some dispersion to the 1–2 
km layer. However, aerosol concentrations in the 2–3 km layer decrease, 
likely because wildfire smoke is not strong enough to reach such high 
altitudes and because of the stronger diffusion and sedimentation at 
higher altitudes. A similar conclusion can be drawn from other wildfire 

events that occurred on January 19, 2022, in Northwestern Austria 
(Fig. S14) and on January 21, 2022, in Southeastern Austria (Fig. S15).

Last, we compare our retrievals (black) with CALIPSO measurements 
(red) as a function of latitude for the 0.01–1 km, 1–2 km, and 2–3 km 
layers under the aforementioned polluted conditions (Fig. S16). It is 
clear that our aerosol extinction coefficient retrievals closely align with 
individual CALIPSO measurements taken at discrete locations under 
both the urban haze and wildfire conditions (R2 = 0.96 and 0.92) while 
also providing critical aerosol vertical profile information in regions 
where CALIPSO measurements are typically absent. More importantly, 
our retrievals offer greater spatial continuity than the CALIPSO mea
surements, which provide limited coverage with fewer than two obser
vations per day across the domain and are sometimes hindered by low 
signal-to-noise ratio and invalid observations (Kim et al., 2018; Mao 
et al., 2022; Tackett et al., 2023). Therefore, these results further 
demonstrate the suitability of our unique approach for studying aerosol 
vertical distributions across vast regions, particularly under highly 
polluted conditions.

4.4. Comparison with previous studies

Compared with previous studies on aerosol vertical distribution 
estimation (Table 1), our proposed TF-FCNN model demonstrates clear 
advantages in both spatiotemporal resolutions and accuracy. Most 
earlier approaches are often limited by coarse temporal coverage, 
typically providing annual estimates from MODIS (Kudo et al., 2023; Li 
et al., 2025) or multi-day estimates from SCIAMACHY (Scanning Im
aging Absorption Mpectrometer for Atmospheric CHartographY) 
(Sanghavi et al., 2012) and OCO-2 (Wang et al., 2025). Even studies 
using (TROPOMI (TROPOspheric Monitoring Instrument) or GOME-2A 
(Global Ozone Monitoring Experiment–2 onboard MetOp-A) (Chen 

Fig. 4. Density scatter plots between our aerosol extinction coefficient (AEC) retrievals and CALIPSO AEC measurements at (a-d) 0–1 km, (e-h) 1–2 km, and (i-l) 2–3 
km from 04:00 to 07:00 UTC in 2022, using the sample-based 10-CV approach. The black line represents the 1:1 line, and the red line represents the fitted line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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et al., 2021; Lemmouchi et al., 2022; Maheshwarkar et al., 2024; 
Sanders et al., 2015) data are typically constrained to daily resolution. In 
contrast, our approach leverages high-temporal-frequency Himawari-8 
geostationary observations to generate hourly estimates at the highest 2 
km spatial resolution, finer than the 3-hour, 10-km resolution estimates 
derived from EPIC (Earth Polychromatic Imaging Camera) observations 
(Xu et al., 2019) and hourly, 3-km resolution estimates from SEVIRI 
observations (Pashayi et al., 2025).

In terms of accuracy, our model achieves an average R2 of 0.88, 
outperforming most existing methods, including Look-Up-Table-based 
approaches (0.52–0.76; Chen et al., 2021; Xu et al., 2019), Spectral Fit 
methods (R2 = 0.41–0.76; Maheshwarkar et al., 2024; Sanders et al., 
2015), AEROS5P (R2 = 0.69; Lemmouchi et al., 2022), and Optimal 
Estimation Techniques (R2 = 0.73; Kudo et al., 2023). Our model also 
performs better than recent machine learning models (R2 = 0.79–0.86), 
such as LSTM-TF (Wang et al., 2025), XLW (Li et al., 2025), and XGBoost 
(Pashayi et al., 2025) models. These improvements stem from the TF- 
FCNN’s unique integration of temporal fusion and spatial feature 
learning, enabled by combining advanced deep learning architectures 
with additional physical factors (e.g., BRDF parameters), allowing for a 
more effective representation of complex spatiotemporal patterns in 

aerosol vertical structures.

5. Conclusions

Aerosol vertical distributions are highly valuable for studying par
ticle transport, but obtaining them with spatial continuity and timeliness 
is very challenging, especially when relying solely on active Lidar ob
servations. To address this, we introduced a novel aerosol vertical dis
tribution retrieval framework that combines two deep-learning models 
(Transformer + FCNN) to enhance the extraction of global and local 
features during nonlinear relationship building and produce hourly 
aerosol vertical distributions from multi-source satellite data (including 
CALIPSO, Himawari-8, and MODIS). An XAI-based SHAP approach is 
employed to quantify each variable importance and reveal the physical 
connections within the deep learning model. The model’s performance 
is comprehensively validated using various spatiotemporal cross- 
validation approaches to ensure the reliability of the retrievals.

We find that the Himawari-8 shortwave band TOA reflectance (0.45 
µm and 0.51 µm) contributed approximately 32 %, while the BT (11.2 
µm) contributed ~ 16 % to the hourly aerosol extinction coefficient 
retrievals across Australia. Ten-fold cross-validations at random, daily, 

Fig. 5. Diurnal variations in aerosol vertical distributions across Australia, showing aerosol extinction coefficient (AEC) retrievals at different heights (0–1 km, 1–2 
km, and 2–3 km) from 02:00 to 07:00 UTC on February 14, 2022. The red rectangle highlights the zoomed-in urban region around Canberra in Southeastern Australia 
during a heavy haze event. The colored dots represent the available CALIPSO AEC observations crossing the domain. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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and gridded levels demonstrate the robust performance of the model at 
different heights (0.01–1 km, 1–2 km, and 2–3 km) and hours 
(02:00–07:00 UTC) throughout the day, achieving high overall accuracy 
(e.g., CV-R2 = 0.81–0.9, RMSE = 0.031–0.041) and strong predictive 

capabilities in areas (e.g., CV-R2 = 0.51–0.64, RMSE = 0.056–0.072) as 
well as on dates (e.g., CV-R2 = 0.69–0.78, RMSE = 0.044–0.057) where 
CALIPSO observations are not available. The TF-FCNN demonstrated 
superior feature extraction ability compared to individual FCNN and 

Fig. 6. Diurnal variations in aerosol vertical distributions during a heavy wildfire event across Australia, showing aerosol extinction coefficient (AEC) retrievals at 
different heights (0–1 km, 1–2 km, and 2–3 km) from 02:00 to 07:00 UTC on February 7, 2022. The red rectangle highlights the zoomed-in region with widespread 
wildfires in Western Australia. The fire circle symbols indicate fire points extracted from the MOD14A1 fire product, and colored dots indicate the available CALIPSO 
AEC observations crossing the domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Comparison with previous studies on aerosol vertical distribution estimation.

Model Accuracy (CV-R2) Satellite sensor Spatial resolution Temporal resolution Reference

OST 0.73 MODIS 50 × 20 km Annual Kudo et al. (2023)
XLW 0.84–0.85 MODIS 5 × 5 km Annual Li et al. (2025)
LSTM-TF 0.79 OCO-2 2.25 × 1.29 km 16-day Wang et al. (2025)
OST 0.85 SCIAMACHY 30 × 60 km 6-day Sanghavi et al. (2012)
SF 0.41 GOME-2A 40 × 40 km Daily Sanders et al. (2015)
LUT 0.76 TROPOMI 3.5 × 5.5 km Daily Chen et al. (2021)
AEROS5P 0.69 TROPOMI 3.5 × 5.5 km Daily Lemmouchi et al. (2022)
SF 0.76 TROPOMI 3.5 × 5.5 km Daily Maheshwarkar et al. (2024)
LUT 0.72 EPIC 10 × 10 km 3-hour Xu et al. (2019)
XGBoost 0.59–0.86 SEVIRI 3 × 3 km Hourly Pashayi et al. (2025)
TF-FCNN 0.88 Himawari-8 2 × 2 km Hourly This study

LSTM-TF: Long Short-Term Memory and Transformer model; LUT: Look-Up-Tale approach; OST: Optimal Estimation Technique; SF: Spectral Fit; XLW: XGBoost- 
LightGBM-Wavelet model.
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Transformer models. We applied this model to generate and analyze 
aerosol vertical distributions and variations over Australia during haze 
and wildfire events, revealing higher aerosol loading at lower altitudes 
in core urban and wildfire regions due to anthropogenic and smoke 
emissions, with more significant changes observed at 0.01–1 km 
compared to higher layers (1–3 km). Additionally, the model success
fully captured strong diurnal aerosol variability on individual days, 
particularly the increasing aerosol loadings over time driven by the 
spread and intensification of wildfires.

In general, our study first provides unique insights into hourly 
aerosol vertical distributions, a task very challenging for CALIPSO due to 
its 16-day revisit time. Nevertheless, limitations exist in our study, 
particularly regarding inherent uncertainties in CALIPSO aerosol ob
servations. Additionally, the current use of three limited layers restricts 
the ability to study finer aerosol vertical distributions, particularly in 
regions with significant aerosol variations. Therefore, we will extend our 
deep-learning framework to retrieve aerosol distributions across finer 
vertical layers in future work to better support the research community. 
In addition, we will extend our analysis to more complex regions, such as 
East Asia, which exhibit higher aerosol loadings and more complex 
pollution mixtures, to further assess our model’s robustness and adapt
ability across varying aerosol regimes. Based on this, an in-depth 
quantitative analysis of aerosol variability drivers, including both 
meteorological and anthropogenic factors during heavy pollution epi
sodes, will be explored to advance the understanding of aerosol vertical 
distributions and their variability on short-term scales in our future 
studies.
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