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A B S T R A C T   

Previous studies assessing adverse health have traditionally focused on a single environmental exposure, failing 
to reflect the reality of various exposures present simultaneously. Air pollution, ambient temperature and 
greenness have been proposed as critical environmental factors associated with metabolic syndrome (MetS). 
However, evidence exploring their joint relationships with MetS is needed for identifying interactive factors and 
developing more targeted public health interventions. The baseline data was obtained from China Multi-Ethnic 
Cohort (CMEC). Environmental data of air pollutants (PM2.5, O3) and NDVI for greenness was calculated from 
satellites data. Ambient temperature data were obtained from European Center for Medium-Range Weather 
Forecasts (ECMWF). MetS was classified based on National Cholesterol Education Program Adult Treatment 
Panel III (NCEP ATP III) using anthropometric measures and biomarkers. Logistic regression models were utilized 
to examine the combined relationship of MetS with three-year exposure to air pollutants, temperature and NDVI. 
Relative excess risk due to interaction (RERI) was calculated to evaluate interaction on an additive scale. We 
found associations between prevalent MetS and interquartile range (IQR) increases in PM2.5 (OR: 1.38; 95% 
confidence interval [95% CI]: 1.23, 1.55) and O3 (OR: 1.15; 95% CI: 1.09, 1.22). Additive and multiplicative 
interactions were observed between air pollutants and temperature exposure. Compared to low-temperature 
level, the relationship between PM2.5 and MetS attenuated (RERI: 0.22, 95% CI: 0.44, − 0.04) at high- 
temperature level, while the relationship between O3 and MetS enhanced (RERI: 0.05, 95% CI: 0.02, 0.11). At 
low NDVI 250 m, the association between PM2.5 and MetS was stronger (RERI: 0.13, 95% CI: 0.05, 0.19) with 
high NDVI 250 m as the reference group. Our findings showed that ambient temperature and residential 
greenness could affect the relationship between air pollutants and MetS.   
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1. Introduction 

Environmental exposure is an important health determinant (Prüs-
s-Ustün et al., 2019). Approximately 90% of the population worldwide is 
under threats of polluted air, with particulate matter (PM) and ozone 
(O3) consistently being of major concerns, especially in industrialized 
areas (”9 out of 10 people worldwide breathe polluted air, but more 
countries are taking action,” n. d.; Wang et al., 2017). Over the past few 
decades, increased greenhouse gas emissions have led to faster global 
warming, with seven of 10 years of the highest annual temperatures 
occurring after 2014 (“More Near-Record Warm Years Are Likely On 
Horizon,” 2020). As rapid urbanization progresses, greenness, which is 
generally thought to benefit health, is an important component of 
infrastructure development and urban planning (Fong et al., 2018; Zhao 
et al., 2013). Based on complex environmental conditions, several 
publications have assessed the deleterious or protective effects of diverse 
environmental factors on individual health but only considered each 
individually or adjusted for the exposure to other factors (Gu et al., 
2020; Sun et al., 2010; Valdés et al., 2014; Wang et al., 2021). 

Indeed, humans are exposed to a mixture of various environmental 
factors acting synergistically or antagonistically with one another 
(Gibson et al., 2019; Kinney, 2018). The scientific community and pol-
icymakers have recommended shifting to a multi-exposure approach to 
better protect the public from the effects of environmental factors as a 
whole (Dominici et al., 2010). The principal motivation is to fully 
characterize the complexity of the exposure and their health impacts 
through identifying interactions arising from combined exposures. In 
addition, the multi-exposure approach allows to inform maximally 
efficient targeted interventions and regulations. 

Metabolic syndrome (MetS) is composed of an assembly of metabolic 
risk factors accompanied by an increasing risk of cardiovascular disease 
(CVD) and type 2 diabetes (Alberti et al., 2009). Metabolic 
syndrome-related diseases (MSRD) and related complications, especially 
atherosclerotic cardiovascular disease, constitute a major disease 
burden in both developed and developing countries (Grundy et al., 
2005; Murray et al., 2020). With an estimated prevalence of approxi-
mately 20–30% of adults worldwide in 2015, MetS has become an ur-
gent global health problem (O’Neill and O’Driscoll, 2015). 

Current research has proposed air pollution, ambient temperature 
and green space as potential environmental risk or protective factors for 
MetS (de Keijzer et al., 2019; Wallwork et al., 2017; Yang et al., 2020; Yu 
et al., 2020). However, the importance of assessing multiple environ-
mental exposures jointly has been increasingly recognized. Whereas 

some studies have proposed that ambient temperature change could 
lead to physiological stress and alter the response to toxic pollutants of 
tissues and organs (Gordon, 2003), others have demonstrated that 
greenness could modify the air pollution and health relationship 
through different pollution mixtures, and increased overall health (e.g., 
physical activity, mental health and wellbeing) in ways that affect sus-
ceptibility (Son et al., 2021). Potential for non-linear or interactive ef-
fects on MetS due to multiple co-existing environmental stressors 
remains inconclusive. The joint analysis may contribute to identifying 
co-exposure factors with higher metabolic risk and further designing 
targeted and cost-effective interventions for them. 

Therefore, this study aimed to examine the role of residential 
greenness and ambient temperature in modifying associations between 
long-term exposures to air pollutants and MetS in Chinese adults. We 
featured participants from a multi-ethnic cohort in Southwest China, 
where air pollution is severe and persistent during the unprecedented 
rapid urbanization and climate change (Kan et al., 2012; Song et al., 
2017). 

2. Methods 

2.1. Study population 

Our study population was drawn from the baseline survey of the 
China Multi-Ethnic Cohort (CMEC). A multi-stage stratified whole-group 
sampling method was used to obtain samples from community-based 
populations in five districts of southwest China. In the first stage, one 
or two minority settlements were selected as our study sites of each 
ethnic group. Special consideration was given to settlements in high-
lands, basins, rural areas, and areas with high air pollution to better 
reflect geography and development status. In the second phase, the local 
Centers for Disease Control and Prevention (CDC) selected 1–8 com-
munities in each settlement (depending on community size), taking into 
account migration status, local health status, and, most importantly, 
ethnic structural bodies. In the final stage, participants who met our 
inclusion criteria were invited to participate in our study, taking sex 
ratios and age ratios into account. The inclusion criteria of the CMEC 
included (i) age 30–79 years on the day of the survey (except for the 
Tibetan population, whose age inclusion criterion was 18–79 years 
given the shorter life expectancy); (ii) permanent residents, with ca-
pacity to complete the baseline survey and the follow-up study; and (iii) 
completion of questionnaires, medical examinations, and blood tests. 
We invited participants in various ways, such as phone calls, social 
networking, and publicizing by local health authorities. From May 2018 
through September 2019, a total of 99,556 adult participants aged 
30–79 years were enrolled in the cohort study. The baseline survey 
included electronic questionnaires with face-to-face interviews, physical 
examinations and clinical laboratory tests. Ethical approval was granted 
by the Sichuan University Medical Ethical Review Board (K2016038). 
All individuals volunteered to participate in the study and signed a 
written informed consent prior to the start of the study. A more detailed 
description of this community-based cohort study is provided in a pre-
viously published study (Zhao et al., 2021). 

We excluded residents in Tibet. The Tibetan population lives on a 
plateau above 3500 m above sea level, where the environment is 
extremely cold, with low atmospheric pressure and hypoxia. People 
living at high altitudes for long periods may display unique circulatory, 
metabolic, and hematological adaptations which may affect the 
comparability with populations in other regions (Beall, 2007; Bigham 
and Lee, 2014; Narvaez-Guerra et al., 2018). Moreover, the lower 
number of monitoring sites in Tibet (less than 20) affects the accuracy of 
exposure data measurements. In addition, participants were excluded if 
any of the criteria were present: (1) absence of available residential 
address information, and (2) resided at the current address for less than 
3 years at the time of cohort entry, and (3) Tibetans in Aba because they 
were nomads without a fixed residence, and (4) diagnosed with 
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malignancy or pregnancy, and (5) absence of any available information 
on outcome, exposure or adjusted covariates. The study population 
consisted of 72,278 participants after the exclusions (Fig. 1). 

2.2. Measurement of MetS 

We classified MetS based on National Cholesterol Education Program 
Adult Treatment Panel III (NCEP ATP III) (Alberti et al., 2009). More 
precisely, MetS was defined as the presence of three or above of the 
following five risk factors: (1) elevated waist circumference (≥102 cm in 
males; ≥88 cm in females); (2) elevated triglycerides (TG) (≥1.7 
mmol/L) or medication for elevated triglycerides; (3) reduced high 
density lipoprotein cholesterol (HDL-C) (<1.0 mmol/L in males; <1.3 
mmol/L) in females) or medication for reduced HDL-C; (4) elevated 
blood pressure (systolic ≥130 or diastolic ≥85 mm Hg) or antihyper-
tensive medication; (5) elevated fasting glucose (GLU) (≥5.6 mmol/L) 
or medication for elevated glucose. In the sensitivity analysis, we also 
classified MetS-China according to diagnostic criteria applicable to the 
Chinese population, which defines abdominal obesity as a lower waist 
circumference (≥85 cm in males; ≥80 cm in females). 

The clinical and laboratory characteristics of participants were 
collected at the baseline survey. Blood pressures were measured by 
trained medical personnel using electronic sphygmomanometers. Sys-
tolic and diastolic blood pressures were taken as the average of three 
repeated measurements. Blood samples were taken from the antecubital 
vein after fasting for at least 8 h and tested for TG, HDL-C, and GLU by an 
AU5800 Automated Chemistry Analyzer (Beckman Coulter Commercial 
Enterprise, Shanghai, China). 

2.3. Environmental data 

2.3.1. Air pollution 
The study included two indicators of exposure to air pollution: PM2.5 

and O3, which were obtained from the ChinaHighAirPollutants (CHAP) 
datasets (https://weijing-rs.github.io/product.html). Combined with 
satellite-derived aerosol optical depth (AOD) and ground-based moni-
toring data, the daily concentrations of PM2.5 at a 1 km × 1 km reso-
lution and O3 at a 25 km × 25 km were estimated using Space-Time 
Extra-Trees (STET) model. Previous research shows that the data sets 
have good predictability for PM2.5 and O3 with 10-fold cross-validation 
R2s of 0.90 and 0.84 respectively (Wei et al., 2019, 2020, 2021a, 2021b, 
2021b). Based on geocoding matched by the residential address, the 
average concentrations of two air pollutants in the three years before 
participating in the baseline survey were calculated as a substitute for 
long-term exposure to air pollutants for each individual. The selection of 
a three-year exposure window was consistent with most cross-sectional 
studies (Cai et al., 2016). 

2.3.2. Residential greenness 
The green metric was used to assess exposure to residential green-

ness: the Normalized Difference Vegetation Index (NDVI), which was 
derived from Moderate-resolution Imaging Spectroradiometer (MODIS) 
images collected by the National Aeronautics and Space Administra-
tion’s Terra satellite. MODIS offers gridded NDVI values at a 250 × 250 
m spatial resolution every 16 days since 2000. NDVI was evaluated 
based on the land surface reflectance of near-infrared and visible red 
lights and is sensitive to seasonal changes in vegetation, land cover, and 
biophysical parameters (Meroni et al., 2019). Values of NDVI range from 
− 1 to 1, with higher positive values corresponding to higher greenness. 
Negative values were recoded to zero before further analyses are con-
ducted. We calculated the average NDVIs in the three years before the 
baseline survey within buffers with radii of 250 m for each participant’s 
residential address. 

2.3.3. Ambient temperature 
Temperature data were obtained from the Integrated Forecast Sys-

tem (IFS) of the European Center for Medium-Range Weather Forecasts 
(ECMWF) (https://www.ecmwf.int/). Atmospheric model data sources 
include direct or ground-based observations such as ground-based 
weather stations, and indirect or satellite-based observations. The 
spatial scale of the temperature data is 0.1◦ × 0.1◦. This study used 2 m 
air temperature (T2m) to assess ambient temperature exposure. Values 
of T2m were computed via interpolation between surface temperature 
and the level of the lowest atmospheric model level. We also obtained 
the average temperatures in the three years before the baseline survey 
for all addresses in the study. 

2.4. Covariates 

Covariates were chosen as potential confounders between exposures 
and outcomes or predictors of outcomes derived from the baseline sur-
vey. Demographic data included sex, age, rural/urban (rural, urban), 
district (Guizhou, Sichuan, Yunnan, Chongqing), ethnicity (Han, mi-
nority), marital status (married/cohabiting, others), and socioeconomic 
factors including education (elementary school or below, middle or high 
school, college school or above), annual family income ([￥], <20,000, 
20,000–100,000, ≥100,000). Behavioral covariates included smoking 
status (non-smoker, current-smoker, previous-smoker), alcohol con-
sumption (never, low/moderate, high), Mediterranean diet (MED) 
score, physical activity (low, moderate, high), secondary smoke (yes, 
no). MED diet pattern is the most studied a priori dietary pattern asso-
ciated with cardiometabolic diseases (Trichopoulou et al., 2003). 

Fig. 1. Flow diagram for inclusion of exclusion criteria.  
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2.5. Statistical methods 

The Spearman correlations were calculated to evaluate the relations 
between the exposure variables. The study performed single-exposure 
models using logistic regression to investigate associations of each air 
pollutant (PM2.5, O3) and MetS, adjusted for covariates. The models 
included thirteen covariates (age, sex, rural/urban, district, ethnicity, 
income, education, marital status, smoking status, alcohol consumption, 
Mediterranean diet score, physical activity, secondary smoke). Two- 
exposure models were used to evaluate potential mutual confounding 
of residential greenness and temperature. We assessed whether the 
estimated association of the target variable (i.e., PM2.5) is sensitive to 
extra-adjustment of another exposure variable (i.e., NDVI 250 m) using 
two-exposure models. In addition, we characterized the dose-response 
relationship by using spline models with 3 knots to determine the line-
arity of the exposure-response relationship by replacing the linear terms 
of the exposure variables with the thin-splines terms. 

To evaluate whether temperature and green space alter the potential 
impacts of air pollutants, we examined the interaction effects of air 
pollutants (PM2.5, O3) with temperature and NDVI 250 m, respectively, 
both on multiplicative and additive scales. Interaction on a multiplica-
tive scale or an additive scale suggests that the combined effect of the 
two variables is greater/less than the product or sum of their individual 
effects (Knol et al., 2011; Knol and VanderWeele, 2012). Interaction on 
the multiplicative scale was assessed by consisting of a product term for 
two exposure variables in the two-exposure model. We further assessed 
the interaction effect on the additive scale. Two categorical variables 
were generated using continuous variables of NDVI 250 m and tem-
perature, with cut-off values in tertile. Participants with high NDVI 250 
m level or low-temperature level were selected as the reference sub-
groups. We calculated the relative excess risk due to interaction (RERI) 

to estimate the additive interaction using a multiple logistic regression 
model (Hosmer and Lemeshow, 1992; Knol et al., 2011). It was calcu-
lated as 

ln
(

p
1 − p

)

= ln(odds)= β̂0 + β̂1 A+ β̂2 B + β̂3 AB  

RERI = exp(β̂1 + β̂2 + β̂3) − exp(β̂1) − exp(β̂2 ) + 1 

Here, β̂1 is the coefficient of air pollutants (PM2.5 or O3), β2 is the 
coefficient of categorical NDVI 250 m or temperature, and β3 is the 
coefficient of their cross-product. 95% CI of the RERI were computed 
through bootstrapping 1000 times. A RERI of less than, equal to, or more 
than 0 suggests negative additive interaction (joint excess risk < sum of 
individual excess risks), no additive interaction (joint excess risk = sum 
of individual excess risks), or positive additive interaction (joint excess 
risk > sum of individual excess risks), respectively. 

To examine the stability of the results, we conducted sensitivity 
analyses by (1) not adjusting for district; (2) redefining MetS-China 
according to guidelines for the Chinese population; (3) excluding par-
ticipants with self-reported hypertension and diabetes. We also per-
formed subgroup analyses to evaluate associations of air pollutants with 
MetS by different districts and the stratification of air pollutants with 
temperature and greenness to MetS varied by sex. 

The complete statistical analyses were done with R version 4.0.5 and 
significance was set at P < 0.05. 

3. Results 

3.1. Demographic characteristics 

In total, our study population consisted of 72,278 individuals from 

Fig. 2. Spatial distribution of participants with different environmental exposures in 4 districts. Darker spots indicate higher exposure doses. Abbreviations: PM2.5, 
particular matter with aerodynamic diameter≤2.5 μm; NDVI 250 m, normalized difference vegetation index with a buffer of 250 m. 
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four districts in southwest China (Fig. 2). Table 1 shows the baseline 
characteristics of the study participants stratified by MetS. The popu-
lation with a mean age of 52.22 (11.40) years was 60.2% female, and the 
overall MetS prevalence was 19.64% (14,194/72,278). Participants 
with MetS were, on average, older than those without MetS (55.98 
versus 51.30 years), more likely to be female (62.8% versus 59.5%), had 
lower education and income level, and were more likely to consume 
alcohol. 

Fig. 1 presented the spatial distribution of participants with different 

environmental exposures in 4 districts. Detailed exposure values for 
each district and the spearman correlations between the exposure var-
iables were shown in supplementary materials (Table S1-S2). The 
environmental variables were set to the mean exposure values for three 
years before the baseline survey. The median (IQR) estimates of PM2.5, 
O3, NDVI 250 m, and temperature were 38.55 (29.55) μm/m3, 79.92 
(14.23) μm/m3, 0.42 (0.22), and 17.08 (1.94) ◦C, respectively, among 
participants without MetS; and the corresponding estimates were 38.73 
(29.04) μm/m3, 78.50 (14.23) μm/m3, 0.41 (0.22), and 17.17 (1.8) ◦C 
for those with MetS (Table 1). Descriptive characteristics of the five 
components of metabolic syndrome were shown in Table S3. 

3.2. Association between each air pollutant exposure and MetS 

The associations between each air pollutant exposure and MetS are 
presented in Table 2. We observed that PM2.5 and O3 were each asso-
ciated with an increased OR of MetS in the models after adjusting for 
covariates. The ORs (95% CI) of MetS for an IQR increase in PM2.5, O3 
were 1.38 (1.23, 1.55) and 1.15 (1.09, 1.22). Table 2 also presents 
similar results of adjusting NDVI or temperature as a confounder, 
showing that robustness. The association of PM2.5 with MetS attenuated 
moderately when adjusted for NDVI, and temperature with ORs (95% 
CI) decreased from 1.38 (1.23, 1.55) per IQR increment to 1.32 (1.18, 
1.49), and 1.34 (1.2, 1.5) separately. Estimated exposure-response 
curves for MetS are shown in Fig. S1. 

3.3. Joint associations of environmental exposures with MetS 

Table 3 shows odds ratios for air pollutants with the prevalence of 
MetS for each stratum of temperature and the interaction effects of air 
pollutants with temperature respectively on MetS. Specifically, the OR 
of MetS for each IQR increase in PM2.5 was 1.36 (95% CI 1.05, 1.76) for 
people who were exposed to the low temperature level, 1.34 (1.13, 1.6) 
for the medium temperature level, and 1.23 (1.02, 1.48) for the high 
temperature level. The OR of MetS for each increase in IQR of O3 for 
people exposed to different temperature levels was 1.05 (95% CI 0.99, 
1.11), 0.95 (0.79, 1.14) and 1.13 (1.06, 1.21), respectively. The multi-
plicative interactions, by temperature, for the associations of PM2.5 (P 
interaction <0.001) and O3 (P interaction <0.001) with MetS were significant 
(Table S4). On the additive scale, the interaction was statistically sig-
nificant between PM2.5 and temperature on MetS (RERI: 0.40, 95% CI: 
0.01, 11.88). The interactions of PM2.5 and O3 with high temperature 
level respectively on MetS were statistically significant (RERI = − 0.22 
[95% CI: 0.44, − 0.04]; 0.05 [0.02, 0.11]) with participants in low 
temperature level as the reference group. A RERI of − 0.22 means that 
the relative risk of having MetS with high temperature is 0.22 less with 
each IQR increase in PM2.5 than if there were no interaction between 

Table 1 
Descriptive characteristics for the 72,278 participants by metabolic syndrome 
(MetS).   

Overall (N =
72,278) 

Not MetS (N =
58,084) 

MetS (N =
14,194) 

Demographics 
Age (mean (SD)) 52.22 (11.40) 51.30 (11.39) 55.98 (10.66) 
Sex, n (%) 

Female 43,481 (60.2) 34,571 (59.5) 8910 (62.8) 
Male 28,797 (39.8) 23,513 (40.5) 5284 (37.2) 

Rural/urban, n (%) 
Rural 45,775 (63.3) 36,823 (63.4) 8952 (63.1) 
Urban 26,503 (36.7) 21,261 (36.6) 5242 (36.9) 

District, n (%) 
Guizhou 15,367 (21.3) 12,153 (20.9) 3214 (22.6) 
Sichuan 17,559 (24.3) 14,176 (24.4) 3383 (23.8) 
Yunnan 20,418 (28.2) 16,606 (28.6) 3812 (26.9) 
Chongqing 18,934 (26.2) 15,149 (26.1) 3785 (26.7) 

Ethnicity, n (%) 
Han 46,012 (63.7) 37,207 (64.1) 8805 (62.0) 
Minority 26,266 (36.3) 20,877 (35.9) 5389 (38.0) 

Marital status, n (%) 
Married/cohabiting 64,454 (89.2) 52,144 (89.8) 12,310 (86.7) 
Single/divorced/ 
widowed/separated 

7824 (10.8) 5940 (10.2) 1884 (13.3) 

Education, n (%) 
Elementary school or 
below 

35,209 (48.7) 27,461 (47.3) 7748 (54.6) 

Middle or high school 28,654 (39.6) 23,421 (40.3) 5233 (36.9) 
College school or above 8415 (11.6) 7202 (12.4) 1213 (8.5) 

Annual family income, ￥a, n (%) 
<20,000 25,163 (34.8) 20,023 (34.5) 5140 (36.2) 
20,000-100 k 37,099 (51.3) 29,868 (51.4) 7231 (50.9) 
≥100 k 10,016 (13.9) 8193 (14.1) 1823 (12.8) 

Behavioral factors 
Smoking status, n (%) 

Non-smoker 53,478 (74.0) 42,818 (73.7) 10,660 (75.1) 
Current-smoker 15,126 (20.9) 12,337 (21.2) 2789 (19.6) 
Previous-smoker 3674 (5.1) 2929 (5.0) 745 (5.2) 

Alcohol consumption, n (%) 
Never 40,145 (55.5) 31,720 (54.6) 8425 (59.4) 
Low/moderate 24,512 (33.9) 20,151 (34.7) 4361 (30.7) 
High 7621 (10.5) 6213 (10.7) 1408 (9.9) 

Physical activity, n (%) 
Low 42,093 (58.2) 34,476 (59.4) 7617 (53.7) 
Moderate 9826 (13.6) 8089 (13.9) 1737 (12.2) 
High 20,359 (28.2) 15,519 (26.7) 4840 (34.1) 

Mediterranean diet score 
(mean (SD)) 

24.85 (4.43) 24.85 (4.43) 24.85 (4.43) 

Secondary smoke, n (%) 
Yes 37,315 (51.6) 30,097 (51.8) 7218 (50.9) 
No 34,963 (48.4) 27,987 (48.2) 6976 (49.1) 

Environmental exposures 
PM2.5, (μm/m3), (median 
[IQR]) 

38.55 (29.48) 38.55 (29.55) 38.73 (29.04) 

O3, (μm/m3), (median 
[IQR]) 

79.03 (14.23) 79.92 (14.23) 78.50 (14.23) 

NDVI 250 m (median 
[IQR]) 

0.42 (0.22) 0.42 (0.22) 0.41 (0.22) 

Temperature, (◦C), 
(median [IQR]) 

17.09 (1.94) 17.08 (1.94) 17.17 (1.8) 

Abbreviations: MetS, metabolic syndrome; SD, standard deviation; IQR, inter- 
quartile range; PM2.5, particular matter with aerodynamic diameter≤2.5 μm; 
NDVI 250 m, normalized difference vegetation index with a buffer of 250 m. 

a $1.00 was equivalent to ¥6.62 in 2018 and ¥6.90 in 2019. 

Table 2 
Odds ratios of metabolic syndrome associated with each IQR increase of air 
pollutants (PM2.5, O3) from single- and two-exposure models.  

Exposure variable OR (95% CI)a for an IQR increase 

Single exposure Two exposures (adj. for) 

NDVI 250 m Temperature 

PM2.5 1.38 (1.23, 1.55) 1.32 (1.18, 1.49) 1.34 (1.20, 1.50) 
O3 1.15 (1.09, 1.22) 1.17 (1.10, 1.24) 1.12 (1.05, 1.19) 

N = 72,278. 
Abbreviations: OR, odds ratio; CI, confidence interval; IQR, inter-quartile range; 
NDVI 250 m, normalized difference vegetation index with a buffer of 250 m; 
PM2.5, particular matter with aerodynamic diameter ≤ 2.5 μm. 
Bold indicates statistically significant results P < 0.05. 
IQR for PM2.5: 29.48 μg/m3, O3: 14.23 μg/m.3. 

a Adjusted for confounders (age, sex, rural/urban, district, ethnicity, income, 
education, marital status, smoking status, alcohol consumption, Mediterranean 
diet score, physical activity, secondary smoke). 
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PM2.5 and high temperature. The RERI of 0.05 means that the relative 
risk of having MetS with high temperature is 0.05 more with each IQR 
increase in O3 than if there were no interaction between O3 and high 
temperature. 

Table 4 represents the associations between air pollutants and MetS 
stratified by NDVI 250 m and the interaction effects of air pollutants 
with NDVI 250 m respectively on MetS. The OR of MetS for each IQR 
increase in PM2.5 was 1.08 (95% CI 0.99, 1.17) for people who were 
exposed to the high NDVI 250 m level, 1.43 (1.12, 1.81) for the NDVI 
250 m level, and 1.47 (1.18, 1.82) for the low NDVI 250 m level. The OR 
of MetS for each increase in IQR of O3 for people exposed to different 
NDVI 250 m levels was 1.15 (95% CI 1.03, 1.27), 1.16 (1.04, 1.29) and 
1.23 (1.10, 1.38), respectively. The multiplicative interactions, by NDVI 
250 m, for the associations of PM2.5 (P interaction <0.001) with MetS were 
significant (Table S4). Significant interaction on the additive scale was 
observed between PM2.5 and NDVI 250 m on MetS (RERI = 0.13 [95% 
CI: 0.05, 0.19]) with participants in high NDVI 250 m level as the 
reference group, which means that the relative risk of having MetS 
among low NDVI 250 m level is 0.13 more with each IQR increase in 
PM2.5 than if there were no interaction. However, no significant 

interaction was observed on both multiplicative and additive scale be-
tween O3 and NDVI 250 m on MetS. 

Sensitivity analyses showed that the estimated ORs of MetS for air 
pollutant exposures became lower without adjusting for district and the 
results for O3 lost statistical significance (Table S5). Sensitivity analyses 
for interaction analyses did not materially change our findings 
(Table S6-S11). In the district-specific subgroup analyses (Table S12), 
the ORs (95% CIs) of MetS for PM2.5 were 1.11 (1.07, 1.14) and 1.19 
(1.14, 1.25) in Sichuan and Yunnan province. The ORs (95% CIs) of 
MetS for O3 were 1.15 (1.12, 1.18) and 1.10 (1.02, 1.19) in Yunnan and 
Chongqing province. In the gender-specific subgroup analyses 
(Table S13-S15), we observed significant interactions between PM2.5 
and NDVI 250 m on additive and multiplicative scales only in females. 
The results for males showed interactions between air pollutants and 
temperature in the consistent direction of the pool analysis, but lost 
statistical significance. 

4. Discussion 

This work is the first epidemiological research to evaluate the asso-
ciations between joint exposure to various environmental factors and 
MetS in developing countries to the best of our knowledge. The 
constellation of findings suggested that exposure to higher air pollutants 
levels was associated with MetS. We also observed significant in-
teractions between air pollutants (PM2.5, O3) and temperature exposure 
on MetS at both multiplicative and additive scales. More specifically, 
interactions showed that PM2.5 is more strongly associated with MetS at 
a lower temperature, while O3 is more strongly linked with MetS at a 
higher temperature. We also observed interaction between PM2.5 and 
greenness at both multiplicative and additive scales but no interaction 
between O3 and residential greenness. 

In this work, we found that air pollutants (PM2.5, O3) were associated 
significantly with MetS, which was in accordance with previous findings 
(Wallwork et al., 2017; Yang et al., 2018). A number of epidemiological 
studies have observed the long–term associations between air pollutants 
and metabolic diseases (Yang et al., 2018; Yu et al., 2020). Several hy-
potheses have been proposed to explain the effects of air pollution, 
especially PM2.5, on metabolic health. First, air pollutants could increase 
oxidative stress and inflammation in the lungs. Some pollutants can also 
migrate through the lung epithelium into the bloodstream. These 
pathways may lead to systemic and vascular inflammation, increasing 
the risk of dyslipidemia, hypertension and thrombosis (Wei et al., 2016; 
Xu et al., 2011). Other evidence also found that environmental PM in-
duces DNA hypomethylation, associated with increased blood pressure 
(Bellavia et al. n.d.). 

Research from developing countries reported a higher prevalence of 
metabolic syndrome and more severe air pollution concentrations than 
studies from developed regions. However, previous studies frequently 
investigated the effects of air pollutants on MetS with little consideration 
of its joint association with ambient temperature and greenness. The 
only one evaluated the associations between MetS and multiple air 
pollutants while including greenness as a confounder (Voss et al., 2021). 
Evidence of potential interaction between air pollutants with environ-
mental factors has emerged in studies on other health outcomes (Gar-
cia-Menendez et al., 2015; Ji et al., 2020; Orru et al., 2013). 

The main contribution of this work to the published literatures is the 
statistically significant interaction between air pollution and ambient 
temperature on MetS. Our study found that individuals living in areas 
with lower temperatures appear to be affected more by PM2.5. This work 
suggests that reducing the concentration of particulate matter in a cold 
climate may have a synergistic effect on metabolic health, with greater 
health benefits than controlling particulate matter separately. Although 
the exact mechanisms remain to be elucidated, a possible explanation is 
that ambient temperature could be a primary driver of fine particle 
composition and the different particulate compositions may lead to 
different toxicity. Lower temperatures are linked to higher nitrate 

Table 3 
Odds ratios for metabolic syndrome according to PM2.5 or O3 by temperature.  

Air 
pollutants 

Low temperature 
(13.5, 16.6] 

Medium 
temperature (16.6, 
18] 

High temperature 
(18, 19.3] 

OR (95% CI)a OR (95% CI) OR (95% CI) 

PM2.5 (Per 
IQR) 

1.36 (1.05, 1.76) 1.34 (1.13, 1.6) 1.23 (1.02, 1.48) 

RERI (95% 
CI)b 

- − 0.07 (− 0.21, 0.05) ¡0.22 (-0.44, 
-0.04) 

O3 (Per IQR) 1.05 (0.99, 1.11) 0.95 (0.79, 1.14) 1.13 (1.06, 1.21) 
RERI (95% 

CI)  
− 0.08 (− 0.36, 0.03) 0.05 (0.02, 0.11) 

Abbreviations: OR, odds ratio; CI, confidence interval; RERI, relative excess risk 
due to interaction; NDVI 250 m, normalized difference vegetation index with a 
buffer of 250 m; PM2.5, particular matter with aerodynamic diameter≤2.5 μm. 
Bold indicates statistically significant results P < 0.05. 
IQR for PM2.5: 29.48 μg/m3, O3: 14.23 μg/m.3. 

a The models were fully adjusted for age, sex, rural/urban, district, ethnicity, 
income, education, marital status, smoking status, alcohol consumption, Medi-
terranean diet score, physical activity, secondary smoke. 

b The RERIs and their 95% CIs were calculated using each IQR increase in air 
pollutants (PM2.5 or O3) and levels of temperature. 

Table 4 
Odds ratios for metabolic syndrome according to PM2.5 or O3 by NDVI 250m.  

Air 
pollutants 

High NDVI 250 m 
(0.47, 0.74] 

Medium NDVI 250 m 
(0.33, 0.47] 

Low NDVI 250 m 
(0, 0.33] 

OR (95% CI)a OR (95% CI) OR (95% CI) 

PM2.5 (Per 
IQR) 

1.08 (0.99, 1.17) 1.43 (1.12, 1.81) 1.47 (1.18, 1.82) 

RERI (95% 
CI)b 

– 0.1 (0.03, 0.16) 0.13 (0.05, 0.19) 

O3 (Per IQR) 1.15 (1.03, 1.27) 1.16 (1.04, 1.29) 1.23 (1.10, 1.38) 
RERI (95% 

CI) 
– 0.01 (− 0.02, 0.05) 0.03 (− 0.01, 

0.09) 

Abbreviations: OR, odds ratio; CI, confidence interval; RERI, relative excess risk 
due to interaction; NDVI 250 m, normalized difference vegetation index with a 
buffer of 250 m; PM2.5, particular matter with aerodynamic diameter≤2.5 μm. 
Bold indicates statistically significant results P < 0.05. 
IQR for PM2.5: 29.48 μg/m3, O3: 14.23 μg/m.3. 

a The models were fully adjusted for age, sex, rural/urban, district, ethnicity, 
income, education, marital status, smoking status, alcohol consumption, Medi-
terranean diet score, physical activity, secondary smoke. 

b The RERIs and their 95% CIs were calculated using each IQR increase in air 
pollutants (PM2.5 or O3) and levels of NDVI 250 m. 
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concentrations, while sulfate levels increased for higher temperatures 
(Kavouras and Chalbot, 2017). In addition, an extensive systematic re-
view in humans has assembled physiological evidence that cold tem-
peratures induce supersaturated conditions in airways, consequently 
enhancing pulmonary particulate deposition (Ishmatov, 2020). Similar 
evidence was found in short-term studies on metabolic-related diseases 
and respiratory diseases, such as respiratory inflammation and chronic 
obstructive pulmonary disease (COPD) (Li et al., 2017; Qiu et al., 2018; 
Wu et al., 2015; Zhang et al., 2015). 

Our findings of interaction between ozone and temperature on MetS 
were in line with most current studies that ozone effects were worse at 
the higher temperature (Lim et al., 2019; Orru et al., 2019; Ren et al., 
2008). One study assessed the acute impact of ozone, heat, and their 
interaction, on mortality in 15 British conurbations though the inter-
action was significant in London only (Pattenden et al., 2010). Signifi-
cant environmental temperature changes may lead to physiological and 
psychological stress, which can alter an individual’s physiological 
response to toxic agents (Jörres et al., 2000). Also, recent literature 
explained the acute effects of temperature and ozone on heart rate 
variability, of which imbalance has been linked to adverse cardiovas-
cular outcomes (Tang et al., 2021; Thayer et al., 2010; Wang et al., 
2022). Ambient temperature and ozone might interact to affect cardio-
vascular function via the autonomic nervous system (Ren et al., 2011). 
This study provides new evidence that long-term co-exposure to high 
levels of temperature and ozone may lead to synergistic effects, espe-
cially on metabolic diseases. 

The negative modification of greenness on the association between 
PM2.5 and MetS was observed in this study, similar to the findings of 
some previous studies exploring how green space affects the health ef-
fects of PM. However, the results of previous studies are mixed with no 
consensus on the role of green as a buffer against air pollution-related 
exposure pathways (Ji et al., 2020; Kim et al., 2019; Sun et al., 2020). 
After adjusting for various personal and contextual characteristics in 
analyses, it remains possible that there were differences in mental health 
or stress levels and susceptibilities to the effects of exposure among 
people living in different green spaces (Dadvand et al., 2016). There may 
also be important differences in particulate matter components and 
pollutant sources between more and less green areas. Studies have 
previously suggested that PM2.5 composition varies with local traffic, 
human activities, and industrial land-use, which are also associated with 
green vegetation fraction (Bell et al., 2007; Hu et al., 2009). Based on the 
complexity of the mechanism and the structural diversity of green space, 
further research on metabolic diseases with more precise data is needed 
to comprehensively understand the interaction between air pollution 
and green space. 

Sensitivity and stratification analyses suggested the importance of 
the district in the relationship between air pollution and MetS. The 
district variable could partially reflect area-level socioeconomic status 
(SES), which is a key confounder in epidemiological studies of air 
pollution and health (Hajat et al. n.d.). The associations between air 
pollutants and MetS differ across districts. This variability may be 
attributed to socioeconomic status varying across the province or dif-
ferences in particulate matter composition (Bell and Ebisu, 2012). An 
increasing number of studies have included gender in their analyses to 
explore its effect modifications. In this study, we found that the inter-
action of air pollutants and ambient temperature or greenness on MetS 
differed by gender. Such difference could be explained by exposure 
patterns (e.g. activity patterns, co-exposures, or exposure measurement 
accuracy) and sex-linked biological responses (e.g. lung volume, depo-
sition, and hormonal influences on chemical transport and systemic 
regulation) proposed in previous evidence (Clougherty, 2010). Disen-
tangling these effects is challenging yet necessary for fully understand-
ing the relevant pathways for differential environmental effects on 
health. 

The interaction results for the multiplicative and additive scales in 
this work were consistent in direction but differ in statistical 

significance, which reflects the fact that interaction is scale-dependent 
(Knol and VanderWeele, 2012). It is always best for both to be re-
ported generally because both can be informative. For public health 
interventions, interactions on additive scale quantitatively show which 
subpopulation is more vulnerable to the environmental risk factor, 
which is important in resource allocation and in targeting specific 
populations for public health policy, and thus relevant also for 
cost-effectiveness (Greenland, 2009; Knol and VanderWeele, 2012). 

This study also has several limitations. First, this cross-sectional 
study could not make inferences of causal associations. Second, our 
exposure datasets did not include information on time spent in traffic or 
outdoors, nor did they contain information on potential contact with 
indoor exposures, which might introduce misclassification bias. Third, 
we obtained an overall green cover area from NDVI without information 
of specific vegetation type, which may ignore the differences in effects 
due to different vegetation. Fourth, the exclusion of residents who had 
lived in their current residence for less than three years may reduce the 
generalizability of this work, but it also reduces the misclassification 
bias. In addition, the composition of PM2.5 was not available, which 
might vary by region and over time and the spatial resolution of air 
pollution measures is not fine enough. Finally, although this study 
examined and compared the association of four widely studied envi-
ronmental factors with metabolic syndrome, we may still have over-
looked associations between other environmental exposures and 
metabolic health. 

In addition to the limitations mentioned above, this study also has 
several strengths. Our large population size, high quality of the data, and 
well-examined participants ensured the validity of the results. Specif-
ically, The baseline survey of CMEC was based on the standardized 
survey approach and multiple stringent quality control (QC), such as the 
interviewer-administered electronic questionnaire with real-time audio 
recording, and the cohort-developed online system allowing for retro-
spective access (Sun et al., 2022). We had detailed demographic and 
behavioral information, allowing to control for confounding factors as 
comprehensively as possible. 

5. Conclusion 

Collectively, this study provides suggestive evidence for the joint 
associations of ambient air pollutants (PM2.5, O3), ambient temperature 
and residential greenness with MetS based on a large population sample 
from the CMEC cohort study. Our findings suggested that long-term 
exposure to higher temperature might attenuate the association be-
tween PM2.5 and MetS, while enhancing the association between O3 and 
MetS. Thus, ambient temperature should be considered in the assess-
ment of air pollutants’ effects. Increased greenness may also weaken the 
relationship between PM2.5 and MetS. Our findings could help explain 
the complexities underlying the epidemiological linkage between 
metabolic syndrome and multiple environmental factors. These findings 
may also have public health implications for future policies to mitigate 
environmentally induced health risks that would benefit from broader 
coordination. 
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