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Abstract: Background: Although significant correlations have been observed between air pollutants
and the development of pulmonary tuberculosis (PTB) in many developed countries, data are
scarce for developing and highly polluted regions. Method: A combined Poisson generalized linear
regression–distributed lag nonlinear model was used to determine the associations between long-
term exposure (2005–2017) to air pollutants and the risk of PTB in the Beijing–Tianjin–Hebei region.
Results: The monthly PTB cases exhibited a fluctuating downward trend. For each 10 µg/m3 increase
in concentration, the maximum lag-specific risk and cumulative relative risk (RR) were 1.011 (95%
confidence interval (CI): 1.0091.012, lag: 3 months) and 1.042 (1.036–1.048, 5 months) for PM2.5,
and 1.023 (1.015–1.031, 0 months) and 1.041 (1.026–1.055, 2 months) for NO2. The risk of PTB was
negatively correlated with O3 exposure, and the minimum lag-specific risk and cumulative RR were
0.991 (95% CI: 0.987–0.994, lag: 0 months) and 0.974 (0.968–0.981, 4 months), respectively. No age-
dependent effects were observed. Conclusions: Our results revealed potential associations between
outdoor exposure to PM2.5, NO2, and O3 and the risk of PTB. Further research should explore the
corresponding interactions and potential mechanisms.

Keywords: pulmonary tuberculosis; air pollution; epidemic characteristics

1. Introduction

Tuberculosis (TB) is a respiratory infectious disease caused by Mycobacterium tuberculo-
sis, which spreads when people who are sick with TB expel bacteria into the air, for example,
by coughing. It remains one of the top 10 causes of death worldwide, despite a decline in
incidence in recent years [1]. There were approximately 10 million new TB cases worldwide
in 2019, and 1.4 million people died from the disease [2]. TB typically affects the lungs
(pulmonary TB), but can also affect other sites (extrapulmonary TB). Approximately 25% of
the global population is infected with M. tuberculosis; thus, these people are potentially at
risk of developing TB [2]. Therefore, it is crucial to identify the predictors and risk factors
of TB to prevent and control this disease. As risk factors of TB, smoking, diabetes, alcohol
abuse, and indoor air pollution may reduce immunity and allow latent TB to develop into
active TB [1].

Outdoor air pollution is also a risk factor for TB. Exposure to air pollution can directly
affect respiratory organs and reduce lung function through increased pulmonary oxidative
stress and persistent inflammation [3]. Li et al. revealed a potential association between
outdoor exposure to PM2.5, PM10, SO2, and NO2 and active TB [4]. You et al. found that a
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10 µg/m3 increase in the PM2.5 concentration during winter was significantly correlated
with a 3% increase in the number of TB cases during the subsequent spring or summer in
Beijing and Hong Kong [5].

Although many studies have been undertaken in developed countries and regions [6],
the relationship between air pollution and pulmonary tuberculosis (PTB) in regions with
high levels of air pollution has rarely been explored. Compared with other regions, areas
with high levels of air pollution have different seasonal variations, latitudes, photoperiods,
solar radiation, and other chronobiological conditions associated with PTB [7]. In addition,
the composition and severity of air pollution also differ, leading to possible spatial hetero-
geneity in the relationship between air pollution and the lagged effects of TB. Pollutants
that worsen air quality mainly include smoke, inhalable particles, SO2, and O3. China
has set up more than 5000 monitoring stations at national, provincial, municipal, and
county levels, and the ambient air quality monitoring network is now completed. The
Beijing–Tianjin–Hebei region is one of the three largest city clusters in China. The region
has a dense population and high levels of air pollution; thus, many people are exposed
to air pollution that exceeds national standards and poses serious health hazards. The
2018 China Ecological and Environmental Bulletin, released by the Ministry of Ecology
and Environment of China, indicated that 5 of the 13 cities in the Beijing–Tianjin–Hebei
region were among the top 10 most polluted cities in China. The air quality index (AQI)
quantitatively describes the air quality conditions, and the six main pollutants used for
air quality evaluation are fine particulate matter (PM2.5), coarse PM (PM10), SO2, NO2, O3,
and CO. For 338 Chinese cities, the average proportion of days in 2018 with “good” air
quality was 79.3% (the number of days with an AQI of 0–100), whereas this was 50.5% for
the Beijing–Tianjin–Hebei region. The primary pollutant is the pollutant with the highest
individual AQI (IAQI) when the AQI exceeds 50. Among the six air pollutants included
in the air quality evaluation, the number of days with PM2.5 as the primary pollutant
accounted for the highest percentage of total exceedance days (AQI > 100), followed by O3,
PM10, and NO2 [8].

Therefore, studies that assess the associations between exposure to air pollutants and
TB risk in the Beijing–Tianjin–Hebei region can help fill the data gap for highly polluted
regions. For the Beijing–Tianjin–Hebei region, this study aims to (i) describe the epidemic
characteristics of PTB from 2004 to 2017, (ii) investigate the links between exposure to PM2.5,
O3, and NO2 and the risk of PTB, and (iii) analyze the corresponding influence of age.

2. Material and Methods
2.1. Study Area

The Beijing–Tianjin–Hebei region includes the Beijing and Tianjin municipalities and
Hebei Province, which are primarily located on the North China Plain (Figure 1). The region
has a total land area of 2 × 105 km2, a population of >108, and a continental temperate
monsoon climate characterized by hot summers and cold winters.

The high levels of air pollution in the Beijing–Tianjin–Hebei region have attracted
considerable attention in recent years. Pollution is largely caused by the large number
of polluting industries in this region, such as cement, iron and steel, oil refining, and
petrochemicals. Moreover, the local topography and climate are not conducive to pollution
dispersion. In this study, we investigated three main air pollutants: PM2.5, O3, and NO2.
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TBMIS received a minor version upgrade, which included TB cases among the floating 
population and AIDS patients, as well as more information on multidrug-resistant cases. 
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Figure 1. Geographical location of the Beijing–Tianjin–Hebei region.

2.2. TB Cases

The number of notified PTB cases and the population of the Beijing–Tianjin–Hebei
region from January 2005 to December 2017 were obtained from the China National Tuber-
culosis Information Management System (TBIMS). A total of 653,373 cases of PTB cases
were identified.

The TBIMS was designed and developed by the China Center for Disease Control and
Prevention (CDC) to collect TB-related information quickly, accurately, and completely,
which played an important role in national TB control and prevention. TBIMS is a National
Tuberculosis Program managed information system which includes all kinds of active
TB, such as pulmonary TB (bacteriologically confirmed or clinically diagnosed) and ex-
trapulmonary TB. A bacteriologically confirmed TB case is defined as a person with any
positive result shown by sputum smear microscopy, culture or a WHO-approved nucleic
acid amplification test. According to the national guidelines on TB control, all diagnosed TB
(any kind) should be referred to TB designated health facilities and reported to TBIMS. All
TB prevention and control facilities can record TB cases in real time on the system, which
also synchronizes information on confirmed and suspected cases of TB reported by non-TB
prevention and control facilities. Thus, it is possible to easily trace patients diagnosed by
every hospital/clinic/primary health center throughout the country [9,10]. The basic demo-
graphic information, laboratory test results, diagnostic information, follow-up information,
and treatment transfer results of every TB patient must be included in the system. The
system includes four major functions: data collection, quality control, statistical analysis,
and system maintenance. The data quality control module is used to ensure the timeliness,
completeness, and accuracy of data entry [10]. In 2009, the TBMIS received a minor version
upgrade, which included TB cases among the floating population and AIDS patients, as
well as more information on multidrug-resistant cases.

2.3. Pollution and Meteorological Data

“ChinaHighPM2.5” and “ChinaHighO3” were collected from long-term, full-coverage,
high-resolution, and high-quality datasets of ground-level air pollutants in China (Chi-
naHighAirPollutants). ChinaHighPM2.5 data were generated using MODIS/Terra + Aqua
MAIAC aerosol optical depth products and other auxiliary data (e.g., ground-based mea-
surements, satellite remote sensing products, atmospheric reanalysis, and model simula-
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tions). The monthly 0.01◦ (≈1 km) gridded ground-level PM2.5 products for the Beijing–
Tianjin–Hebei region from 2000 to 2018 were used [11,12].

ChinaHighO3 data were similarly generated from big data using artificial intelligence
by considering the spatiotemporal heterogeneity of air pollution [13]. Monthly Level-3
NO2 tropospheric VCD products are on a 0.25◦ × 0.25◦grid, spatially aggregated from
the Level-2 data, and included in the POMINO v2 dataset. The algorithm is based on the
AMFv6 package called the LIDORT v3.6 Radiative Transfer Model [14–16].

Monthly air pollutant concentrations in the Beijing–Tianjin–Hebei region from 2005 to
2017 were obtained using the “Zonal Statistics” tool. The analysis was performed using
ArcMap 10.2. We considered the entire region and aggregated the air pollution levels
monthly. Population weighting of air pollutant concentrations at the district/county level
was used to calculate air pollution exposure for the entire region. The specific steps are
as follows: First, calculate the weight of the population of the district/county to the total
population of the region. Second, the air pollutant concentration of the district/county is
multiplied by the weight obtained in the previous step. Finally, the population-weighted
air pollution exposure of the study area is obtained by summing the counties and districts
across the region.

The distribution of the three air pollutants in Beijing, Tianjin and Hebei was relatively
consistent (Figure 2), and the time series of air pollution concentrations in the three sub-
regions also had high Pearson correlation coefficients (Table 1). It indicated that the spatial
heterogeneity of air pollutant concentrations in Beijing–Tianjin–Hebei region was not strong,
so air pollution averaged over the whole region was representative for the whole region.
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Figure 2. The distribution of the three air pollutant concentrations in Beijing, Tianjin and Hebei.

Table 1. Pearson correlation coefficients of the time series of air pollution concentrations in Beijing,
Tianjin and Hebei.

NO2 PM2.5 O3

Beijing Hebei Beijing Hebei Beijing Hebei

Hebei 0.96 0.89 0.98
Tianjin 0.97 0.95 0.89 0.86 0.98 0.99

Daily meteorological data were obtained from the China Surface Climate Information
Daily Values Dataset (V3.0). We used the average values of the observations from 27 meteo-
rological stations in the Beijing–Tianjin–Hebei region as the values of each meteorological
factor in the region. Sunshine duration indicated the accumulation of actual sunshine hours
for each day of the month. Precipitation represented the accumulation of rainfall for each
day of the month. Relative humidity represented the ratio of absolute humidity in air to
saturated absolute humidity at the same temperature and air pressure, and this study used
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the monthly average relative humidity. The monthly average values of temperature, wind
speed and air pressure were used.

2.4. Socioeconomic Variables

Data regarding the per capita gross domestic product (PGDP), population density
(PD), and number of medical technical personnel (MTP) from 2000 to 2015 were obtained
from the China Statistical Yearbook. As they were found to be highly correlated, only PGDP
was selected for inclusion in the model.

2.5. Statistical Analyses

Spearman’s rank correlation coefficients were used to explore the correlations between
air pollutants and meteorological factors (Table 2). To avoid multi-collinearity, we included
variables with correlation coefficients of <0.7 in the model.

Table 2. Spearman correlation coefficients among ambient air pollutants and climatic factors.

PM2.5 NO2 O3 PRE PRS WIN TEM RHU SSD PGDP PD MTP

PM2.5 1
NO2 0.67 ** 1

O3
−0.68
**

−0.90
** 1

PRE −0.58
**

−0.85
** 0.79 ** 1

PRS 0.66 ** 0.89 ** −0.94
**

−0.83
** 1

WIN 0.24 ** 0.30 ** −0.17
**

−0.45
** 0.19 ** 1

TEM −0.67
**

−0.92
** 0.93 ** 0.88 ** −0.94

** −0.37 1

RHU −0.24
**

−0.51
** 0.38 ** 0.74 ** −0.42

** −0.82 0.57 ** 1

SSD −0.39
**

−0.16
** 0.34 ** −0.05 −0.27

** 0.48 0.20 ** −0.50
** 1

PGDP −0.41
** −0.02 0.06 0.02 −0.06 −0.36

** 0.03 −0.01 0.04 1

PD −0.41
** −0.02 0.06 0.02 −0.06 −0.36

** 0.03 −0.01 0.04 0.99 ** 1

MTP −0.41
** −0.02 0.06 0.03 −0.06 −0.36

** 0.03 −0.01 0.04 0.99 ** 0.99 ** 1

Note: **: p < 0.01.

The distributed lag nonlinear model (DLNM) is commonly used to investigate the
health effects of air pollution and can describe associations by revealing potentially non-
linear and delayed effects for a time-series. This methodology is based on the definition
of a “cross-basis”, a bi-dimensional space of functions that simultaneously describes the
shape of the relationship along both the space of the predictor and the lag dimension of its
occurrence [17].

In this study, we used a DLNM combined with Poisson regression to determine the
nonlinear exposure–response relationship and lagged effects of PTB. Taking Yt as the
number of PTB cases in the entire study area and assuming it follows a Poisson distribution,
we obtain Equation (1):

Yt|µt ∼ Poisson(µt) (1)

where t is the number of months of observation, Yt and µt represent the actual and expected
numbers of PTB cases in t months, respectively.
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The single-pollutant model is as follows:

Log(µt) = α + WT
Xη + ns(time, d f × year) + ns(RHU, 3) + ns(SSD, 3)

+η × Days + γ×Optimization + β× PGDP
= α + WT

Xη + COVs
(2)

where α is the intercept and WT
Xη represents the cross-basis matrix of each pollutant. We

adopted a linear and a natural cubic spline function to fit the exposure–response relationship
and the response relationships between PTB cases and exposure to air pollutants [18]. A
“time” variable (from 1 to 156 months) was used to control the long-term trends, and the
degree of freedom (df) was set to “1 × years” by comparing Akaike information criterion
(AIC) value, deviance of the model and the statistical significance of model parameters, the
width of the confidence interval of estimated parameter [19]. Natural cubic splines with a
priori 3 df were fitted to control meteorological variables as covariates [18]. Sunshine could
reduce TB infection in the population by increasing the production of vitamin D in the
human body, which plays a role in the host response to Mycobacterium tuberculosis [20].
And higher air humidity could cause M. tuberculosis to remain in the air longer, increasing
the risk of tuberculosis infection. In addition, “Days” was the number of days per month.
“Optimization” was used to control the impact of the TBMIS optimization and upgrade,
which was a binary variable with a value of 0 in 2009 and earlier, and 1 in 2010 and later.

The progression from M. tuberculosis infection to clinically observed symptoms takes
several months to years, and some latent infections can last a lifetime. Air pollution
primarily causes M. tuberculosis, which is dormant in the human body and becomes active.
In addition, the diagnosis and reporting of TB also require time, which can cause case
finding delays. Leung et al. recommended a maximum case finding delay of 6 months [21].
Therefore, we assumed that it would take an average of 6 months for PTB cases activated
by air pollution exposure to be diagnosed and recorded in the TBIMS, this period includes
the manifestation of PTB, diagnosis and reporting; thus, we set the maximum lag time to
6 months.

The interim target levels in the Global Air Quality Guidelines (AQGs) of the World
Health Organization (WHO) were used as reference data to calculate the effects of ambient
air pollutant exposure on the number of PTB cases. The annual PM2.5 concentration in the
Beijing–Tianjin–Hebei region is still within the interim targets 1 (IT-1) stage of the AQGs
(2021); hence, we used a PM2.5 reference of 35 µg/m3. For O3 and NO2, the reference
values were taken as 60 µg/m3 (peak season) and 10 µg/m3, respectively, as no targets are
included in the AQGs (2021) for the monthly concentrations of O3 and NO2. Relative risk
(RR) estimates and 95% confidence intervals (CI) were used to represent the lag-specific and
cumulative risks of PTB cases for a 10-unit increase in the concentration of an air pollutant.

After modeling the single-pollutant regressions, we separately modeled the effects of
air pollution on PTB cases by age group. Statistically significant differences in RRs with
point estimates and 95% CIs between the <65 and≥65 age groups were calculated as follows:

(
Q̂1 − Q̂2

)
± 1.96

√( ˆSE1
)2

+
( ˆSE2

)2 (3)

where Q̂1 and Q̂2 are the point estimates of the RRs for the two age categories, and ˆSE1
and ˆSE2 are their standard errors, respectively [22]. If the 95% CI contained a value of zero,
there was no evidence showing modification by age [23].

We assessed the stability of the model by changing the df of calendar time (12–14 df)
and meteorological factors (4–6 df) individually. All analyses were conducted using the
“dlnm” and “splines” packages in R software (version 3.5.2). Statistical significance was set
at p < 0.05.
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3. Results
3.1. Descriptive Results

From 2005 to 2017, 653,373 cases of PTB were recorded in the Beijing–Tianjin–Hebei
region, 86.48% of which were people below 65 years of age and 13.52% were people aged
65 years or more. For cases involving people aged below 65 years, the highest number of
cases were mainly observed in March and April of each year, whereas the lowest number of
cases were observed in December. For cases involving people aged ≥65 years, the monthly
maxima occurred in January and February in 6 of the 13 years considered. The monthly PTB
cases exhibited a fluctuating downward trend and a noticeable seasonal pattern (Figure 3),
with a high incidence in the spring and summer months. The mean monthly concentrations
of PM2.5, NO2, and O3 were 87.72 µg/m3 (range of 28.28–178.24 µg/m3), 11.90 µg/m3

(3.45–41.66 µg/m3), and 89.41 µg/m3 (34.30–174.94 µg/m3), respectively (Table 3).
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Table 3. Summary statistics of the number of pulmonary tuberculosis (PTB) cases, air pollutant
concentrations, and meteorological factors in the Beijing–Tianjin–Hebei region.

Variables Number (%) Mean SD
Percentile

Minimum P25 P50 P75 Maximum IQR

Monthly recorded counts
Total 653,373 (100) 4188.29 747.28 2043.00 3722.00 4100.00 4656.50 5893.00 934.50

Age < 65 565,029 (86.48) 3621.98 640.44 1776.00 3220.50 3595.00 4034.00 5118.00 813.50
Age ≥ 65 88,344 (13.52) 566.31 118.24 267.00 481.00 546.50 643.25 962.00 162.25

Atmospheric pollutants
(µg/m3)
PM2.5 / 87.72 30.23 28.28 65.57 83.44 103.51 178.24 37.94

O3 / 89.41 36.61 34.30 54.44 87.27 121.75 174.94 67.30
NO2 / 11.90 8.27 3.45 5.66 9.62 15.50 41.66 9.84

Meteorological factors
Precipitation (mm) / 43.69 50.16 0.02 4.12 19.23 74.28 244.83 70.16
Air pressure (hPa) / 987.39 7.78 973.48 980.16 988.09 993.61 1001.78 13.45

Relative humidity (%) / 54.63 12.99 28.00 44.00 53.04 65.63 76.57 21.63
Temperature (◦C) / 11.63 11.14 −7.72 1.43 12.71 21.92 27.39 20.49

Sunshine duration (h) / 200.95 40.45 63.53 176.59 200.65 229.36 310.57 52.77
Wind speed (m/s) / 1.89 0.34 1.24 1.64 1.82 2.09 2.82 0.45

Note: IQR: Inter-Quartile Range; SD: Standard Deviation; PM: particulate matter.

3.2. Effects of Air Pollution Exposure on the Risk of PTB
3.2.1. PM2.5

The RR–lag relationship of PM2.5 with reference to 35 µg/m3 is shown in Figure 4a.
A 10 µg/m3 increase in the PM2.5 concentration was associated with an increased risk of
PTB for a lag period of between 0 month (RR = 1.002, 95% CI: 1.000–1.003) and 5 months
(RR = 1.004, 95% CI: 1.003–1.005). The RR increased gradually during a lag of 0–3 months,
peaked at a lag of 3 months (RR = 1.011, 95% CI: 1.009–1.012), and then decreased to the
lowest RR at a lag of 5 months. The cumulative RR (hereafter “cumRR”) peaked at a
lag of 5 months (cumRR = 1.042, 95% CI: 1.036–1.048). Subgroup analyses revealed that
the effect of PM2.5 exposure remained significant in people aged <65 years (cumRR = 1.039,
95% CI: 1.033–1.045, lag: 5 months) and people aged ≥65 years (cumRR = 1.058, 95% CI:
1.042–1.075, lag: 5 months), with no significant differences between the two age
groups (Figure 5a).

Int. J. Environ. Res. Public Health 2022, 19, x 9 of 14 
 

 

3.2. Effects of Air Pollution Exposure on the Risk of PTB 
3.2.1. PM2.5 

The RR–lag relationship of PM2.5 with reference to 35 μg/m3 is shown in Figure 4a. A 
10 μg/m3 increase in the PM2.5 concentration was associated with an increased risk of PTB 
for a lag period of between 0 month (RR = 1.002, 95% CI: 1.000–1.003) and 5 months (RR = 
1.004, 95% CI: 1.003–1.005). The RR increased gradually during a lag of 0–3 months, 
peaked at a lag of 3 months (RR = 1.011, 95% CI: 1.009–1.012), and then decreased to the 
lowest RR at a lag of 5 months. The cumulative RR (hereafter “cumRR”) peaked at a lag 
of 5 months (cumRR = 1.042, 95% CI: 1.036–1.048). Subgroup analyses revealed that the 
effect of PM2.5 exposure remained significant in people aged <65 years (cumRR = 1.039, 
95% CI: 1.033–1.045, lag: 5 months) and people aged ≥65 years (cumRR = 1.058, 95% CI: 
1.042–1.075, lag: 5 months), with no significant differences between the two age groups 
(Figure 5a). 

3.2.2. NO2 
The RR–lag relationship of NO2 with reference to 10 μg/m3 is shown in Figure 4b. A 

10 μg/m3 increase in the NO2 concentration was associated with an increased risk of PTB 
for a lag period of between 0 months (RR = 1.023, 95% CI: 1.015–1.031) and 2 months (RR 
= 1.004, 95% CI: 1.001–1.008). The RR showed a decreasing trend and decreased to 0 in the 
3rd month. The cumRR was 1.041 (95% CI: 1.026–1.055, 2 months). Subgroup analyses 
revealed that the effect of NO2 exposure was significant in people aged <65 years (cumRR 
= 1.035, 95% CI: 1.020–1.051, lag: 2 months) and people aged ≥65 years (cumRR = 1.077, 
95% CI: 1.037–1.118, lag: 2 months), with no significant differences between the two age 
groups (Figure 5b). 

3.2.3. O3 
A 10 μg/m3 increase in the O3 concentration was associated with a decreased risk of 

PTB for a lag period of between 0 month (RR = 0.991, 95% CI: 0.987–0.994) and 4 months 
(RR = 0.999, 95% CI: 0.998–1.000). The RR showed an increasing trend and rose to 0 in the 
fifth month (Figure 4c). The cumRR was 0.974 (95% CI: 0.968–0.981, 4 months). Subgroup 
analyses revealed that the effect of O3 exposure was significant in people aged <65 years 
(cumRR = 0.977, 95%CI: 0.970–0.984, lag: 4 months) and people aged ≥65 years (cumRR = 
0.958, 95%CI: 0.942–0.975, lag: 4 months), with no significant difference between the two 
age groups (Figure 5c). 

 
Figure 4. Lag-specific relative risks (%) of pulmonary tuberculosis (PTB) for 10-unit increases in the 
mean monthly concentrations of air pollutants based on single-pollutant models. (a) Air pollutant: 
PM2.5. (b) Air pollutant: NO2. (c) Air pollutant: O3. 

Figure 4. Lag-specific relative risks (%) of pulmonary tuberculosis (PTB) for 10-unit increases in the
mean monthly concentrations of air pollutants based on single-pollutant models. (a) Air pollutant:
PM2.5. (b) Air pollutant: NO2. (c) Air pollutant: O3.



Int. J. Environ. Res. Public Health 2022, 19, 5752 9 of 13
Int. J. Environ. Res. Public Health 2022, 19, x 10 of 14 
 

 

 
Figure 5. Lag-specific relative risks (95% confidence interval (CI)) of pulmonary tuberculosis (PTB) 
by age group for 10-unit increases in the mean monthly concentrations of air pollutants based on 
single-pollutant models. (a) Air pollutant: PM2.5. (b) Air pollutant: NO2. (c) Air pollutant: O3. 

4. Discussion 
The Beijing–Tianjin–Hebei urban cluster is a cultural center in China with a high pop-

ulation density. Although the high level of air pollution in this region probably poses sig-
nificant health risks, the relationship between air pollution exposure and the risk of PTB 
has not yet been investigated. Therefore, this study estimated the risk of developing PTB 
following exposure to three common pollutants (PM2.5, NO2, and O3) in the Beijing–Tian-
jin–Hebei region. We found that exposure to PM2.5 and NO2 was significantly associated 
with an increased risk of PTB, while exposure to O3 was associated with a decreased risk 
of PTB. In the subgroup analysis, no age-dependent effects were observed. The sensitivity 
results indicated that the model results were robust. After controlling other pollutants, the 
abovementioned relationships did not change despite changes in the RR values. 

The results showed that exposure to PM2.5 led to an increased risk of PTB, with a 
lagged effect of up to five months. This finding is supported by the results of previous 
studies [4,5,24,25]. Exposure to PM2.5, may increase the risk of PTB in two ways: (1) by 
affecting the immune system response, and (2) by creating a lung environment conducive 
to the survival of M. tuberculosis. First, inhalation exposure to PM2.5 impairs important 
components of the protective human lung and systemic immune response against M. tu-
berculosis [26]. Studies have shown that exposure to PM2.5 could impair the immune func-
tion of anti-mycobacterial T cells [27,28]. Irrespective of seasonal variability, it has been 
observed that exposure to PM2.5 can decrease the release of pro-inflammatory cytokines 
and impair phagocytic functions of peripheral blood mononuclear cells in response to M. 
tuberculosis infection [29]. Sarkar et al. found that exposure to PM2.5 could increase the rate 
of developing TB and alter TB treatment outcomes [30]. Second, PM2.5 contains compo-
nents that can promote the growth and reproduction of M. tuberculosis, such as transition 
metals [31,32]. In addition, due to its small diameter, PM2.5 can directly invade the human 
lungs, carrying harmful substances from the air into the bronchi and alveoli [6,7]. How-
ever, some studies are inconsistent with our findings [33,34]. Such inconsistencies may 
relate to confounder adjustment and differences in the methods used for exposure assess-
ments. Therefore, the relationship between PM2.5 pollution and PTB should be further in-
vestigated. 

In our analysis, we observed a significant statistical relationship between exposure 
to NO2 and the risk of PTB. The delay might be varied in different regions due to different 
environmental and social-economic factors. A study in London showed that the median 
case finding delays were approximately 3 months [35]. However, a study in China showed 
a case finding delay of 29 days (1 to 505d) for the Xicheng District of Beijing, China [36]. 
Another study showed patient delays and diagnosis delay of 15 and 10 days, respectively 
[37]. Since the Beijing–Tianjin–Hebei urban cluster is a political and cultural center in 
China with a high level of medical services, and the people living there are more aware of 
the importance of health screening, it might have a relative short case finding delay. Pro-
duced from combustion sources, such as motor vehicle exhaust and electricity generating 

Figure 5. Lag-specific relative risks (95% confidence interval (CI)) of pulmonary tuberculosis (PTB)
by age group for 10-unit increases in the mean monthly concentrations of air pollutants based on
single-pollutant models. (a) Air pollutant: PM2.5. (b) Air pollutant: NO2. (c) Air pollutant: O3.

3.2.2. NO2

The RR–lag relationship of NO2 with reference to 10 µg/m3 is shown in Figure 4b.
A 10 µg/m3 increase in the NO2 concentration was associated with an increased risk of
PTB for a lag period of between 0 months (RR = 1.023, 95% CI: 1.015–1.031) and 2 months
(RR = 1.004, 95% CI: 1.001–1.008). The RR showed a decreasing trend and decreased to 0 in
the 3rd month. The cumRR was 1.041 (95% CI: 1.026–1.055, 2 months). Subgroup analyses
revealed that the effect of NO2 exposure was significant in people aged < 65 years (cumRR
= 1.035, 95% CI: 1.020–1.051, lag: 2 months) and people aged ≥ 65 years (cumRR = 1.077,
95% CI: 1.037–1.118, lag: 2 months), with no significant differences between the two age
groups (Figure 5b).

3.2.3. O3

A 10 µg/m3 increase in the O3 concentration was associated with a decreased risk of
PTB for a lag period of between 0 month (RR = 0.991, 95% CI: 0.987–0.994) and 4 months
(RR = 0.999, 95% CI: 0.998–1.000). The RR showed an increasing trend and rose to 0 in the
fifth month (Figure 4c). The cumRR was 0.974 (95% CI: 0.968–0.981, 4 months). Subgroup
analyses revealed that the effect of O3 exposure was significant in people aged < 65 years
(cumRR = 0.977, 95%CI: 0.970–0.984, lag: 4 months) and people aged ≥ 65 years
(cumRR = 0.958, 95%CI: 0.942–0.975, lag: 4 months), with no significant difference between
the two age groups (Figure 5c).

4. Discussion

The Beijing–Tianjin–Hebei urban cluster is a cultural center in China with a high
population density. Although the high level of air pollution in this region probably poses
significant health risks, the relationship between air pollution exposure and the risk of PTB
has not yet been investigated. Therefore, this study estimated the risk of developing PTB
following exposure to three common pollutants (PM2.5, NO2, and O3) in the Beijing–Tianjin–
Hebei region. We found that exposure to PM2.5 and NO2 was significantly associated with
an increased risk of PTB, while exposure to O3 was associated with a decreased risk of
PTB. In the subgroup analysis, no age-dependent effects were observed. The sensitivity
results indicated that the model results were robust. After controlling other pollutants, the
abovementioned relationships did not change despite changes in the RR values.

The results showed that exposure to PM2.5 led to an increased risk of PTB, with
a lagged effect of up to five months. This finding is supported by the results of previ-
ous studies [4,5,24,25]. Exposure to PM2.5, may increase the risk of PTB in two ways:
(1) by affecting the immune system response, and (2) by creating a lung environment
conducive to the survival of M. tuberculosis. First, inhalation exposure to PM2.5 impairs im-
portant components of the protective human lung and systemic immune response against
M. tuberculosis [26]. Studies have shown that exposure to PM2.5 could impair the immune
function of anti-mycobacterial T cells [27,28]. Irrespective of seasonal variability, it has been
observed that exposure to PM2.5 can decrease the release of pro-inflammatory cytokines
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and impair phagocytic functions of peripheral blood mononuclear cells in response to
M. tuberculosis infection [29]. Sarkar et al. found that exposure to PM2.5 could increase
the rate of developing TB and alter TB treatment outcomes [30]. Second, PM2.5 contains
components that can promote the growth and reproduction of M. tuberculosis, such as
transition metals [31,32]. In addition, due to its small diameter, PM2.5 can directly invade
the human lungs, carrying harmful substances from the air into the bronchi and alveoli [6,7].
However, some studies are inconsistent with our findings [33,34]. Such inconsistencies
may relate to confounder adjustment and differences in the methods used for exposure as-
sessments. Therefore, the relationship between PM2.5 pollution and PTB should be further
investigated.

In our analysis, we observed a significant statistical relationship between exposure to
NO2 and the risk of PTB. The delay might be varied in different regions due to different
environmental and social-economic factors. A study in London showed that the median
case finding delays were approximately 3 months [35]. However, a study in China showed
a case finding delay of 29 days (1 to 505d) for the Xicheng District of Beijing, China [36]. An-
other study showed patient delays and diagnosis delay of 15 and 10 days, respectively [37].
Since the Beijing–Tianjin–Hebei urban cluster is a political and cultural center in China
with a high level of medical services, and the people living there are more aware of the
importance of health screening, it might have a relative short case finding delay. Produced
from combustion sources, such as motor vehicle exhaust and electricity generating units,
NO2 is a gaseous pollutant that mainly irritates the lower respiratory tract and alveoli.
Therefore, exposure to NO2 may help M. tuberculosis invade the alveoli and accelerate the
progression of TB [7,33]. However, Liu et al. reported no significant relationship between
NO2 and PTB [38].

We observed a significant negative association between O3 exposure and the risk
of PTB, this agreeing with the findings of previous studies [7,33,39]. The lagged effect
associated with O3 exposure reached 4 months and remained significant in both age groups.
However, in a multi-city modeling study by Yao et al., an inverse correlation was observed
between O3 exposure and PTB [40]. Moreover, most studies have found no evidence of
a significant relationship between O3 exposure and TB outcomes; however, the findings
were based on a limited sample size [40]. Thus, the relationship between O3 exposure
and the risk of PTB remains controversial. In the present study, O3 exhibited a strong
negative correlation with NO2. Individuals exposed to high NO2 concentrations are often
exposed to low O3 concentrations [33,41], which could explain the inverse correlation
between O3 exposure and the risk of PTB. Although O3 exposure may reduce the risk of
PTB, it has other considerable adverse effects on the body. In experimental studies, O3
exposure in human alveolar macrophages was associated with decreased phagocytosis
and impaired antimicrobial host defense [34,42,43]. Additionally, short-term exposure to
high O3 concentrations can cause coughing, throat dryness, chest pain, increased mucosal
secretion, fatigue, and nausea, which can significantly damage lung function, affect the
structure of the respiratory tract, cause inflammation, alter airflow rates, and even lead
to death [44]. The effects of O3 exposure should be interpreted with caution because the
mechanisms of O3 in the human body are unclear and warrant further investigation.

Each air pollutant acts on the human body via different mechanisms and at different
concentrations, and the curves of the lagged effects of exposure to the three pollutants with
respect to the risk of PTB have their own patterns of variation. In this study, the lagged
effects of PM2.5 exposure on the risk of PTB were highest in the third month of lagging,
while the lagged effect of NO2 and O3 decreased gradually with an increase in the lag time.
Exposures to high pollutant concentrations have gradual effects on the respiratory and
immune systems; however, such effects depend on factors such as the fitness of the exposed
individual, duration of exposure, and delay in diagnosis and reporting of PTB.

There were some limitations to our study, which was a population-based ecological
study that did not involve individuals. First, we used data over a relatively long period, but
could only consider a limited number of confounding factors. Second, although exposure
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to ambient air pollutants was correlated with the risk of PTB, we could not prove causality.
Further research is needed to determine whether there is a true causal relationship. Third,
the results of the study might be not generalizable; therefore, it would be prudent to extend
to other areas.

5. Conclusions

The findings of this study showed that exposure to PM2.5 and NO2 was positively
correlated with the risk of PTB, whereas exposure to O3 was associated with a decreased risk
of PTB. No age-dependent effects were observed. Further research is required to explore
the interactions between air pollutants and PTB, as well as the potential mechanisms. More
attention should be given to the risks posed by air pollution. Active steps should be taken
to reduce the concentrations of ambient air pollutants, which could reduce the spread of
PTB and the associated health risks.
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