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A B S T R A C T   

Planned urban form has become an important strategy to improve air quality in urban agglomerations (UAs), 
especially pollution due to PM2.5, but the influencing mechanisms are not yet clear. This study explores the 
relationship between four metrics of urban form (size, fragmentation, shape, and dispersion) as determined by 
analysis of remotely sensed images at 30-m resolution and PM2.5 concentrations in 19 Chinese UAs. The influence 
of level of urban development and season is examined. Five control variables, including population density, 
temperature, precipitation, wind speed, and the normalized difference vegetation index (NDVI) are selected for 
use in multiple linear regression models. Size, fragmentation, and shape of urban form, but not dispersion, were 
found to have significant effects on PM2.5 concentrations of different urbanization-level UAs. Urban size and 
fragmentation have stronger impacts on PM2.5 concentrations in UAs with lower urbanization levels while urban 
shape has a greater impact in higher-level UAs. In terms of seasonal variation in all UAs, urban form is more 
pronouncedly associated with PM2.5 concentrations during spring and autumn than summer and winter. Urban 
size and fragmentation are positively associated with PM2.5 concentrations whereas urban shape and dispersion 
are on the contrary. The relationships between urban form and PM2.5 uncovered here underscore the importance 
of urban planning as a tool to minimize PM2.5 pollution. Specifically, local government should encourage 
polycentric urban form with lower fragmentation in urban agglomerations. UAs with lower urbanization levels 
should control the disordered expansion of construction land and higher-level UAs should promote the mix of 
green land and construction land. Moreover, measures to control air pollution from anthropogenic activities in 
spring, autumn and winter are likely to be more effective in decreasing PM2.5 concentrations in UAs.   

1. Introduction 

Industrialization and urbanization over the past thirty years have led 
to continuous deterioration of regional air quality in China, especially 
that caused by PM2.5 (Chen et al., 2020; Han et al., 2014; Li et al., 2016). 
This pollutant is characterized by a long residence time in the air and 
significant transmission distances and thus is a major cause of atmo
spheric haze, which reduces visibility, interferes with transportation 
(Pui et al., 2014), and poses a serious threat to the public health (Faridi 
et al., 2018; Liu et al., 2016). Between 2014 and 2016, more than 80% of 

the population in China was exposed to high PM2.5 concentrations, i.e. 
>10 μg/m3 (Song et al., 2017). Moreover, although PM2.5 concentra
tions underwent a generalized downward trend between 2015 and 
2017, average annual PM2.5 concentrations at more than 70% of China’s 
monitoring sites exceeded the Chinese Ambient Air Quality Standards 
(CAAQS) Grade II standard (Shen et al., 2019). PM2.5 pollution in China 
thus continues to be major environmental threat. 

Alleviation of PM2.5 pollution requires a deep understanding of the 
socioeconomic factors that govern its formation, especially those related 
to urbanization, as well as knowledge about the meteorological 
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conditions that influence its dispersion (Fan et al., 2019; Guo et al., 
2019; Liu et al., 2020). Scientific methods of construction land planning 
have received significant attention as tools to maintain air quality dur
ing urbanization (Liang et al., 2020). At a macroscopic scale, urban form 
directly affects the spatial dynamics of source-sink relationships 
involving roads, industrial land, and green space (Lee, 2020; She et al., 
2017). At a microscopic scale, the diffusion and deposition of surface 
PM2.5 in local areas are determined in part by the microclimate created 
by the three-dimensional structure of urban buildings, which conditions 
the urban heat island and the urban street canyon effects (Yang et al., 
2020b). Detailed analysis with a variety of metrics has shown that cities 
with higher fragmentation and shape complexity experience more 
serious air pollution (Liu et al., 2018a) than cities that are compact and 
less complex. Smaller cities with scattered and polycentric urban forms 
have relatively good air quality in China (Li et al., 2021a), but the re
lationships between urban form and PM2.5 concentrations are never
theless variable and remain uncertain. 

In addition, a large body of research has been done to explore the 
response of annual mean PM2.5 concentrations to urban form based on 
cross-sectional data or long time series panel data (Lee, 2019; Zhou 
et al., 2018), but only a few studies focused on the seasonal discrep
ancies of urban form’s influence on PM2.5 concentrations. Due to the 
variation of weather, human activities, and other factors that are related 
to seasonal differences, PM2.5 concentrations have obvious seasonal 
differences, which cannot be ignored, generally maximized in winter 
and minimized in summer (Li et al., 2019). Moreover, urban form is an 
important modulator of changes of meteorological conditions which has 
palpable seasonal change (e.g. affect temperature with urban heat island 
effect, wind speed with urban canyon effect), although it varies little 
over the short term. Seasonal considerations are consequently crucial in 
the study of relationship between PM2.5 concentrations and urban form 
(Tian et al., 2019), but the role of urban form on seasonal change of 
PM2.5 concentrations is still inconclusive. For example, some studies 
showed that urban form metrics were more significantly related to PM2.5 
concentrations in spring and winter than summer and autumn (Liu et al., 
2022; Shi et al., 2019a); however, another study conducted in 83 Chi
nese cities claimed that PM2.5 concentrations tended to be more sensi
tive to urban form metrics in spring and summer (Liu et al., 2018b). 
Hence, more exploration should be done to clarify the difference in 
urban form-PM2.5 concentration relationship across seasons. 

An urban agglomeration of China is a huge urbanized area composed 
of several cities which includes one or more mega-cities at the core and 
at least three other large cities around the core and planned urban 
agglomeration has been a key pathway for achieving regional economic 
growth in China (Fang, 2015). Agglomeration generates efficiencies by 
consolidating, concentrating, and intensifying human activities (Wang 
et al., 2021), but it also can elevate PM2.5–associated haze pollution 
(Tian et al., 2020; Zhang et al., 2019). Clarifying urban form-PM2.5 
concentrations relationship is not only conductive to reducing the 
damage of haze pollution to human health, but also critical for achieving 
the sustainable development of UAs. The mechanisms by which urban 
form regulates PM2.5 concentrations are nevertheless complex and 
dependent on location as well as the metrics and statistics used for 
analysis of urban size, shape, and distribution. These relationships have 
been examined in a few very high level urban agglomerations (UAs) 
such as Beijing-Tianjin-Hebei and the Yangtze River Delta (Liang et al., 
2020; Xu et al., 2020), but much less is known about the larger number 
of diverse, variously sized UAs where PM2.5 is a growing issue and where 
planning steps could be taken to minimize the problem (Wang et al., 
2021). Here we examine a cohort of 19 such UAs that have been clas
sified into three levels of comprehensive development (Fang, 2015) to 
answer three questions: (i) How is urban form related to PM2.5 con
centrations in UAs of China; (ii) what are the differences in the in
fluences of urban form on PM2.5 concentrations among UAs with distinct 
urbanization levels; and (iii) how does urban form affect PM2.5 con
centrations in different seasons in UAs of China? 

2. Data and methods 

2.1. Definition and location of UAs 

Nineteen UAs representing three levels of comprehensive develop
ment as defined by China’s National New Urbanization Plan 
(2014–2020) were selected for analysis. The levels are hierarchical; 
proceeding from the zonal-level to the regional- and national-levels, 
they reflect increasing strength as measured by progress in planning, 
achieving efficiency of urban functions, and attaining complementarity 
across the entire UA (Fang, 2015). As shown in Fig. 1a, each of the six 
zonal-, eight regional-, and five national-level UAs is relatively large in 
geographical area. In aggregate, they encompass 28.6% of the land area 
of China but represent a disproportionate 74.1% of the total population 
and 84.1% of the national gross domestic product (GDP) as of 2015. 
Differences among the three levels are given in Fig. 1b–d, which show 
population density (POPD), GDP density of secondary industry 
(GDPD-SI), and GDP density of tertiary industry (GDPD-TI). Although 
the average values of the regional-level indicators generally match or 
slightly exceed those for the entire cohort, the values of national-level 
indicators are always highest and those of zonal-level indicators are 
always lowest. Thus it is clear that the levels defined by the National 
New Urbanization Plan reflect quantifiable differences in degree of ur
banization and socioeconomic development. 

2.2. Data sources, metrics, and experimental design 

2.2.1. PM2.5 concentrations 
Monthly PM2.5 concentrations in the 19 UAs were obtained from the 

2015 ChinaHighPM2.5 dataset (https://zenodo.org/). These data have 
high accuracy with R2 values ranging from 0.92 to 0.94, root mean 
square error values ranging from 5.1 to 10.0 μg/m3, and mean absolute 
error values ranging from 3.7 to 6.8 μg/m3 (Wei et al., 2021). A 
space-time extremely randomized trees model was used to estimate 
PM2.5 concentrations at 1-km spatial resolution based on ground mea
surements, Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) aerosol optical depth (AOD) products, land-cover, surface 
conditions, population distributions, and meteorological data (Wei 
et al., 2020). 

2.2.2. Urban form metrics 
Accurate selection of indicators is a necessary prerequisite for eval

uation of the impact of urban form on PM2.5 concentrations (Lu et al., 
2018a; Tu et al., 2019). Most existing studies have employed traditional 
landscape pattern indices, but a detailed rationale for index selection is 
usually absent, leading to possible redundancy and omission of impor
tant indices (Cushman et al., 2008). To depict urban form reasonably 
and comprehensively, we selected a set of commonly accepted metrics 
based on four dimensions of urban form characteristics. These include 
urban size (total class area, percent of landscape), urban fragmenta
tion/continuity (number of patches, patch density, largest patch index), 
urban shape (landscape shape index, mean perimeter area ratio, 
area-weighted mean fractal dimension index, area-weighted mean shape 
index), and urban compactness/dispersion (mean Euclidean nearest 
neighbor distance, clumpiness, proportion of like adjacencies, patch 
cohesion index, landscape division index, splitting index, aggregation 
index). These indicators were assigned to four urban form metrics based 
on (i) their high frequency use in previous studies (Liang and Gong, 
2020; Łowicki, 2019; She et al., 2017; Shi et al., 2019b; Wang et al., 
2019), (ii) Pearson correlation analysis of their relationship to PM2.5 
concentrations, (iii) rankings according to their correlation coefficients, 
and (iv) application of the VIF (Variance Inflation Factor) test with PM2.5 
concentrations and the control variables described in Section 2.2.3. 
Metrics that failed to pass the VIF test were replaced with metrics of the 
same type and the process repeated until collinearity was eliminated. 

The four quantifiable metrics of urban form are described in Table 1. 
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Class area (CA) is defined as the total urban patch area; high values of 
this metric correspond to large urban size. Number of patches (NP) 
evaluates the degree of urban fragmentation and continuity; lower 
values indicate greater urban continuity. The mean perimeter area ratio 
(PARA_MN) reflects the complexity of urban shape; smaller values 
correspond to higher regularity of shape. The mean Euclidean nearest 
neighbor distance (ENN-MN), which is the average distance between 
any two nearest neighboring patches measures dispersion and 
compactness of urban patches; the higher the value, the greater the 
dispersion. The urban form metrics were generated by Fragstats4.2 
using construction land use data from 2015. These data have a 30-m 
spatial resolution and were generated by the Institute of Remote 
Sensing and Digital Earth, Chinese Academy of Sciences through visual 

interpretation of Landsat TM or ETM images (http://www.aircas.cas.cn/ 
). There are two levels of land cover types in this dataset, with classifi
cation accuracy above 94.3% for the first-level land category (Liu et al., 
2017). In aggregate, the above operations allowed us to address complex 
issues such as the emergence of satellite urban areas, which is usually 
accompanied by increased urban fragmentation, while infill develop
ment or edge expansion often changes the roundness and aggregation of 
urban patches (Gong et al., 2018). They also addressed development of 
multi-center urban areas, which is accompanied by an increase in the 
distances among urban patches and a decrease in scattered urban 
patches (Han et al., 2020). 

Fig. 1. Location and categorization of UAs. (a) Map of China showing the locations of the UAs. The five national-level UAs include the Yangtze River Delta (YRD), the 
Pearl River Delta (PRD), Beijing-Tianjin-Hebei (BTH), the Middle Yangtze (MY), and Chengdu-Chongqing (CC); the eight regional-level UAs include the West Taiwan 
Strait (WTS), Central and Southern Liaoning (CSL), the Shandong Peninsula (SP), the Central Plain (CP), Guanzhong (GZ), Southern Guangxi (SG), Harbin-Changchun 
(HC), and the Northern Tianshan Mountains (NTM); the six zonal-level UAs include Hohhot-Baotou-Erdos-Yulin (HBEY), Ningxia-Yellow River (NYR), Lanzhou- 
Xining-Baiyin (LXB), Central Shanxi (CS), Central Guizhou (CG), and Central Yunnan (CY). Differences in POPD, GDPD-SI, and GDPD-TI are shown in (b), (c), 
and (d), respectively. The abbreviations All-UAs, N–UAs, R–UAs, and Z-UAs respectively refer to all 19 UAs, and the national-, regional-, and zonal-level UAs. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2.2.3. Control variables 
Besides urban form, socioeconomic and natural factors are known to 

directly or indirectly affect PM2.5 concentrations (Bai et al., 2019; Duan 

et al., 2021; Zhang et al., 2020), and thus appropriate metrics among 
these factors must be controlled to improve the assessment accuracy of 
models adopted to explore the relationship between PM2.5 and urban 
form (Bereitschaft and Debbage, 2013). On the basis of previous studies 
and analysis for collinearity, we finally chose five metrics as control 
variables, including population density (POPD), precipitation, wind 
speed, temperature, and the normalized difference vegetation index 
(NDVI). Specifically, POPD was selected to represent the intensity of 
human activities which could directly influence the discharge of air 
pollutants (Yan et al., 2020). Annual POPD data with 1-km spatial res
olution were from the Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). Mete
orological factors, including precipitation, wind speed, and tempera
ture, were evaluated because of their recognized effects on the dilution 
and emission of fine particulate matter by affecting atmospheric envi
ronment and human behaviors (Hajiloo et al., 2019). Monthly data were 
produced at 1-km spatial resolution by the National Earth System Sci
ence Data Center, National Science & Technology Infrastructure of 
China (http://www.geodata.cn/). The normalized difference vegetation 
index (NDVI) was chosen to reflect the influence of vegetation, a known 

Table 1 
Description of urban form metrics.  

Urban 
Form 
Metric 

Urban Form 
characteristics 

Formula Description 

CA Large size/Small 
size 

CA =
∑n

j=1aj(1 /10000)
aj represents the area 
(m2) of patch j 

NP Fragmentation/ 
Continuity 

NP = n n represents the 
number of patches 

PARA_MN Irregularity/ 
Regularity PARA MN =

∑n
j=1(lj/aj)

n 

lj represents the 
perimeter (m) of patch 
j; aj represents the area 
(m2) of patch j 

ENN_MN Dispersion/ 
Compactness ENN MN =

∑mi
i=1

∑nj
j=1dij

N 

dij represents the 
minimum adjacency 
distance between patch 
i and j  

Fig. 2. Flowchart for data processing and modeling.  
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ameliorator of air quality (Wu et al., 2021). Monthly NDVI data pro
vided by the Geospatial Data Cloud were obtained from the synthetic 
calculation of MYDLT1D product at 500-m spatial resolution (htt 
p://www.gscloud.cn/). Annual and seasonal meteorological and NDVI 
data were generated by calculating the arithmetic means of monthly 
measurements. Four seasons were defined as spring (March through 
May), summer (June through August), autumn (September through 
November), and winter (December through February). 

2.2.4. Data processing and modeling 
The flowchart for data processing and modeling is given in Fig. 2. 

Gridded data products, including monthly remote sensing data of PM2.5 
concentrations, meteorological factors, NDVI, and POPD at 1-km reso
lution, were combined with high-precision land use data and aggregated 
to construct a spatial dataset of the entire study area. We quantified each 
metric with grid-based 20◊20 km cell size for higher accuracy of PM2.5 
data in each statistical cell as there is PM2.5 data incompleteness in some 
areas due to the disturbance of snow and cloud on data inversion. Then 
we selected four urban form metrics in four dimensions, and analyzed 
the characteristics of PM2.5 concentrations and urban form. Multiple 
linear regressions were used to explore the relationship between annual 
PM2.5 concentrations and urban form at the national-, regional- and 
zonal-levels of agglomeration. Anticipated seasonal effects were exam
ined by linear correlation between PM2.5 concentrations and urban form 
during all four seasons. 

2.3. Multiple linear regression 

Multiple linear regression modeling has been widely used to explore 
the linear statistical relationships between dependent variables and 
multiple independent variables (Lee, 2019; She et al., 2017; Yuan et al., 
2018b) We exploited traditional multiple linear regression (MLR) 
models with ordinary least squares (OLS) estimation to establish the 
relationship between urban form and PM2.5 concentrations in the UAs. 
Four linear regression models correspond to the zonal-, regional-, na
tional-, and the average-level of urban development; four models 
incorporate the spring, summer, autumn, and winter seasons. Nine in
dependent variables comprised of four urban form metrics (main vari
ables), a socioeconomic factor, and four natural factors (control 
variables) were included in all models, which were conducted in SPSS 
software (version 26.0). 

The MLR equation is as follows: 

Y= β0 +
∑n

i=1
βiXi + ε (1)  

Where, Y represents the dependent variable; β0 represents the intercept; 
βi represents the partial regression coefficients of the independent var
iable Xi; n represents the number of independent variables; ε represents 
the error term. 

We also tested the collinearity among independent variables based 
on VIF values calculated by the following formula: 

VIF=
1

1 − R2 (2)  

R2 =
SST − SSE

SSE
(3)  

where, SST represents the total sum of squares; SSE represents the 
minimum sum of squared residuals of linear model. 

The VIF values of all variables ranged from 1.067 to 9.014, con
firming that there was no collinearity among variables according to the 
commonly recognized standard, i.e., when the VIF of the selected vari
ables is less than 10, the model is stable and acceptable (Lin and Billa, 
2021). Moreover, the validity and accuracy of the models were evalu
ated based on the coefficient of determination (R2) and the significance 

of the F statistic (Nazif et al., 2018). Better fit of the models is indicated 
by the closeness of R2 values to 1 and lower P-values of the F-statistic 
(Yang et al., 2020b). 

3. Results 

3.1. Relationships between PM2.5 concentrations and levels of urban 
agglomeration 

Annual mean PM2.5 concentrations increased sharply but then 
plateau with increasing levels of urbanization (Fig. 3a). Thus the mean 
concentration for zonal-level UAs (35.6 μg/m3) is only three-quarters of 
that for regional-level UAs (47.1 μg/m3), but that of national-level UAs 
(48.2 μg/m3) is virtually identical to that of lesser developed, regional- 
level agglomerations. Seasonal differences in PM2.5 concentrations are 
pronounced, with maxima (64.5 μg/m3) invariably appearing in winter 
and minima (27.1 μg/m3) in summer (Fig. 3b). 

3.2. Relationships between urban form and levels of urban agglomeration 

Four indices were used for detailed characterization the urban form 
at three levels of agglomeration. The values of CA and NP increased with 
increasing levels of urbanization, but those of ENN_MN declined (Fig. 4), 
providing evidence that expansion of urban footprints was accompanied 
by growth in the number of urban patches but not by dispersion of the 
patches. The magnitude of these differences, which was substantial be
tween zonal- and regional-level UAs, levelled off between regional- and 
national-level UAs. PARA_MN decreased slightly between zonal- and 
regional-level UAs but then increased between regional- and national- 
level UAs, indicating the differentiated change of irregularity with 
increasing levels of urbanization. 

3.3. Relationships between PM2.5 concentrations, urban form, and 
metrics of socioeconomic and natural conditions 

The statistical relationships between PM2.5 concentrations and met
rics of urban form, socioeconomic, and natural conditions are given in 
Table 2, which confirms that all of the regression models satisfy the F 
test, with R2 coefficients ranging from 0.571 to 0.672. This provides 
strong evidence for good fitness of the models and statistical accuracy in 
defining linear relationships between the metrics and concentrations. 
Concentrations of the pollutant were always positively correlated with 
NP, but the corresponding correlation with CA was negative at the zonal- 
level and positive at higher levels (Table 2). The coefficients of CA and 
NP were uniformly stronger at the two lower levels and weaker at the 
national-level. 

The opposite pattern of correlations was apparent with PARA_MN, 
where the relationship was positive at the zonal-level but negative at 
higher levels of agglomeration. Coefficients involving PARA_MN were 
generally weak, and correlations with ENN_MN at all three levels of 
agglomeration were nonsignificant. These relationships confirm that 
patch area, total patch number, and to a lesser extent regularity are the 
most important metrics of form associated with PM2.5 pollution. Nega
tive relationships between PM2.5 concentrations and precipitation and 
wind speed are generally evident, and the coefficients are strong, but 
there were no clearcut patterns between PM2.5 concentrations and other 
socioeconomic and natural metrics. 

3.4. Seasonal influences on PM2.5 concentrations 

As shown in Table 3, all of the regression models involving season
ality satisfy the F test, with R2 coefficients ranging from 0.340 to 0.541. 
Patterns in the seasonal relationships between urban form and PM2.5 
concentrations are obvious. Relationships with CA and NP are uniformly 
positive with relatively high coefficients, but those with PARA_MN and 
ENN_MN are uniformly negative with relatively low coefficients, except 
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in winter, when they become weakly positive and nonsignificant, 
respectively. Patch number and size are thus more important factors 
than regularity and dispersion in influencing PM2.5 concentrations, 
which have little or no relationship to population density (Table 3). 
Whereas temperature is always positively related to concentrations of 

the pollutant, the relationships to wind speed, precipitation, and NDVI 
are uniformly negative across all seasons. 

4. Discussion 

4.1. The influencing paths of urban form on PM2.5 concentrations 

The known direct and indirect paths by which the four dimensions of 

Fig. 3. PM2.5 concentrations in 2015; (a) in different levels of urban agglomeration; (b) in different seasons.  

Fig. 4. Urban form metrics for different urbanization-level urban agglomerations in 2015.  

Table 2 
Statistical relationships between PM2.5 concentrations and metrics of urban 
form, socioeconomic conditions, and natural conditions of urban agglomera
tions. Statistical significance is at the 1% level. NS = nonsignificant, and all p- 
values are less than 0.001. Summary statistics are given in italics.   

Metric 
Statistical relationship (R2 coefficient) 

Zonal-level 
UAs 

Regional-level 
UAs 

National-level 
UAs 

All UAs 

CA - (0.242) + (0.220) + (0.099) + (0.203) 
NP + (0.243) + (0.327) + (0.105) + (0.268) 
PARA_MN + (0.121) - (0.080) - (0.137) - (0.052) 
ENN_MN NS NS NS - (0.028) 
Population 

density 
+ (0.275) NS - (0.077) NS 

Temperature - (0.146) NS + (0.407) NS 
Precipitation NS - (0.409) - (0.512) - (0.314) 
Wind speed - (0.502) - (0.311) - (0.410) - (0.476) 
NDVI - (0.303) + (0.179) - (0.118) + (0.152) 
R2 0.672 0.628 0.578 0.571 
F 340.843 575.619 399.255 1065.111 
Number of 

samples 
1509 3073 2633 7215  

Table 3 
Statistical relationships between PM2.5 concentrations and metrics of urban 
form, socioeconomic conditions, and natural conditions of urban agglomera
tions. Statistical significance is at the 1% level. NS = nonsignificant, and all p- 
values are less than 0.001. Summary statistics are given in italics.   

Metric 
Statistical relationship (R2 coefficient) 

Spring Summer Autumn Winter 

CA + (0.249) + (0.128) + (0.123) + (0.117) 
NP + (0.273) + (0.175) + (0.428) + (0.292) 
PARA_MN - (0.072) - (0.063) - (0.080) + (0.045) 
ENN_MN - (0.042) - (0.027) - (0.069) NS 
Population density - (0.042) NS NS NS 
Temperature + (0.279) + (0.466) + (0.355) - (0.100) 
Precipitation - (0.318) - (0.672) - (0.221) - (0.126) 
Wind speed - (0.186) - (0.291) - (0.172) - (0.424) 
NDVI - (0.046) - (0.049) - (0.196) NS 
R2 0.340 0.541 0.481 0.460 
F 413.254 942.273 740.923 681.782 
Number of samples 7215 7215 7215 7215  

G. Gao et al.                                                                                                                                                                                                                                     



Journal of Environmental Management 327 (2023) 116953

7

urban form examined here can influence PM2.5 concentrations are 
diagrammed in Fig. 5. Higher emissions due to industry, transportation, 
and residential activities are associated with an increase of urban size 
and can directly aggravate PM2.5 pollution and also generate ground 
dust (Shi et al., 2019b; Wang et al., 2022). Moreover, larger urban size 
can exacerbate the urban heat island effect, increasing urban tempera
tures and leading to more energy consumption; associated patterns of 
urban-rural wind circulation can also cause air pollutants to gather over 
the city, increasing PM2.5 pollution (Liang and Keener, 2015; Ngarambe 
et al., 2021). Fragmentation and dispersion can affect PM2.5 concen
trations via impacts on energy consumption due to traffic and energy 
efficiency of industrial production. Specifically, fragmented urban 
structure can lead to long travel distances and reduced accessibility to 
public transportation but more utilization of private cars, which directly 
increase the energy consumption due to traffic (Fan et al., 2018; Muñiz 
and Sánchez, 2018). These issues are of less importance when urban 
form is compact, but dense buildings may cause the urban canyon effect, 
which leads to the retention and accumulation of air pollutants (Liang 
et al., 2020). 

Polycentric urban form can effectively separate human activities in 
space. It accelerates the deposition and diffusion of air pollutants and is 
conducive to the improvement of public infrastructure, which can boost 
the use of public transportation and lessen traffic emissions (Cárdenas 
Rodríguez et al., 2016; He et al., 2022; Tao et al., 2020). Centralized 
urban form can also give full play to the advantages of economic 
agglomeration, which lead to lower transportation costs and enhanced 

use of technology. This improves production efficiency and reduces in
dustrial emissions (Cao et al., 2016; Wang et al., 2020; Xu et al., 2022). 
In addition, irregular urban form can directly worsen PM2.5 pollution, 
because it generates a complex pattern of highways and smaller roads, 
and this results in more traffic congestion and energy consumption 
(Zhou et al., 2018). Irregular shape can nevertheless indirectly alleviate 
PM2.5 pollution by improving the flow of air pollutants between con
struction land and other land types, especially forest land (Lu et al., 
2017). This is conducive to strengthening the purification effect of 
vegetation on air pollutants and optimizing the urban microclimate, so 
as to promote the rapid removal of fine particles from the air and thus 
mitigate PM2 5 pollution (Cai et al., 2020; Łowicki, 2019). 

4.2. The influencing characteristics of urban form and levels of urban 
development on PM2.5 concentrations 

The total size of the urbanized footprint (CA), the extent to which it is 
fragmented into patches (NP), and the regularity of patch shape (PAR
A_MN) are strongly related to PM2.5 concentrations in Chinese UAs at all 
three levels of development, but statistical relationship to a fourth 
metric of urban form, compactness (ENN_MN), is only significant in all 
UAs. Specifically, the urban size (CA) has stronger impact on PM2.5 
concentrations in zonal-level UAs and surprisingly shows negative cor
relation contrary to that of more developed UAs. A similar result was 
obtained by Liang and Gong (2020), demonstrating that area metrics 
had stronger effect on the change of PM2.5 concentrations at the early 

Fig. 5. Known influencing paths of urban form on PM2.5 concentrations and their relationships to urban form.  
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urbanization stage and lower PM2.5 concentrations appeared in larger 
built-up area. This can partly be explained by the phenomenon of ghost 
cities, which mainly appears in undeveloped regions of China as a result 
of the overdevelopment of real estate since the late 1970s (Jiang et al., 
2017; Lu et al., 2018b; Williams et al., 2019). Due to fewer population 
and human activities, the areas with a relatively high proportion of 
built-up land, especially rural and suburban areas, have lower PM2.5 
concentrations (Xia et al., 2022), but this doesn’t imply minor PM2.5 
pollution in the cores of cities (Liang and Gong, 2020). Therefore, con
trolling the rational and orderly expansion of cities is still of great 
importance in zonal-level UAs, in view of the salient effect of urban size 
on PM2.5 concentrations. 

The coefficient positively associated with fragmentation (NP) at the 
regional-level is relatively large compared to the corresponding coeffi
cient at the more developed national-level. This is in line with the results 
of several existing studies. For example, Tao et al. (2020) found that 
PM2.5 concentrations in small and medium-sized cities had stronger 
response to urban fragmentation than that of large cities in the Yangtze 
River Delta region. A greater positive correlation between PM2.5 con
centrations and urban fragmentation in medium cities was also observed 
in a case study of 250 Chinese cities (Shi et al., 2019b). Owing to the 
high level of fragmentation in regional-level UAs (Fig. 4), energy con
sumption would rise with increasing travel distance and the imperfect 
public infrastructure (Lee, 2020; Lu and Liu, 2016). Besides, the level of 
management, urban planning and production technology in 
regional-level UAs which are conducive to less air pollution is relatively 
lower than those in national-level UAs (Wang et al., 2020; Yang et al., 
2020a). All of these can accelerate the deterioration of air quality, and 
thus urban expansion with many scattered patches should be replaced 
by relatively continuous ones in regional-level UAs of China. 

In national-level UAs, urban shape described by PARA_MN has a 
greater influence on the decline of PM2.5 concentrations. This suggests 
that higher irregularity of built-up land is beneficial to the improvement 
of air quality. Similarly, Yuan et al. (2018a) pointed out that large cities 
in China should develop a multi-center urban form with high landscape 
diversity and a spatially balanced pattern of green land. Taking cities in 
the Yangtze River Delta as examples, Lu et al. (2018)also claimed that 
irregular shape of landscape patch was instrumental in alleviating PM2.5 
pollution. Duan et al. (2021) further explored the influencing factors of 
PM2.5 in high-density cities and found that land use mix was conductive 
to decreasing PM2.5 concentrations and should be underlined in the 
construction of developed cities, especially the urban areas. The main 
reason is that the enhancement of urban irregularity can commendably 
increase the areas of construction land contacted with other lands and 
promote the deposition of air pollutants much more effectively (Łow
icki, 2019; Lu et al., 2017). Hence, local planners should show more 
solicitude for the urban shape in national-level UAs and take measures 
able to boost urban irregularity. 

4.3. The seasonal influence of urban form on PM2.5 concentrations 

Although the size and fragmentation of the urban area are both 
positively related to PM2.5 levels in all four seasons, the strength of the 
relationship, as determined by the coefficient, varied considerably. The 
relationship between PM2.5 levels and CA was strongest in spring, but 
that between levels of the pollutant and NP was strongest in the autumn. 
In contrast, the coefficients associated with PARA_MN and ENN_MN 
were generally weak and in one case nonsignificant. Moreover, PAR
A_MN was positively related to PM2.5 levels in the winter but the rela
tionship was negative in the other three seasons. The positive 
association between PM2.5 and urban irregularity in winter is likely due 
to low vegetation coverage. Due to the attenuation of capacity of 
vegetation to eliminate pollutants, a positive effect on PM2.5 concen
trations caused by complex urban shape tends to be more apparent. For 
example, the complex road traffic systems are accompanied by more 
pollution emissions than simple transport systems, as it could bring 

about long commuting distances and high probability of traffic jams 
signifying more energy consumption (Shi et al., 2019a). Thus, it is 
crucial to plant more evergreen trees to enhance the ability of vegetation 
to diminish air pollutants during winter (He et al., 2020; Xu et al., 2020). 
For the negative effect of temperature in winter, the possible reason 
might be that under a generally lower temperature level than other 
seasons, the increase of temperature in winter could promote the 
diffusion of air pollutants and also reduce the use of heating equipment, 
thereby declining PM2.5 concentrations in the air (Fan et al., 2018). 

The seasonal regression models show that more attention should be 
paid to the relationship between urban form and PM2.5 concentrations in 
spring and autumn rather than summer and winter, consistent with the 
findings in previous studies. For example, a study in 279 Chinese cities 
revealed that more urban form metrics had greater influence on PM2.5 
concentrations in spring (Shi et al., 2019a). Taking 83 Chinese cities as 
example, Liu et al. (2018b) concluded that the relationship between air 
pollution and urban form was more significant in spring. Since China has 
one of the most developed monsoon climates in the world, with moist 
sea breezes dominating in summer and dry land breezes dominating in 
winter (Li et al., 2021b; Zhang et al., 2010). These breezes improve at
mospheric fluidity and thus promote the diffusion of air pollutants in 
summer and winter, but they also heighten water vapor supply and 
convergence level, which increase rainfall in summer and consequently 
favor of the settlement of air pollutants (Liu et al., 2018b; Sun et al., 
2017). This is consistent with our observation that precipitation plays a 
more important role in alleviating PM2.5 pollution than other variables 
during summer, but wind speed has a stronger effect in winter (Table 3), 
similar to the findings of Wang et al., 2021. Therefore, optimizing urban 
form of Chinese UAs would have better effect on the improvement of 
urban air quality in spring and autumn and polycentric urban form with 
lower fragmentation is more appropriate for local governments to adopt 
in urban planning. 

4.4. Limitations and future directions 

Although the current study provides significant insights into how 
urban form influences PM2.5 concentrations, the collinearity problem 
reduced the number of socio-economic metrics to just one, population 
density. It thus would be useful to identify additional socio-economic 
factors of probable significance to haze pollution and incorporate 
them into future studies. Candidates include metrics related to industrial 
structure, foreign direct investment, and vehicle ownership (He et al., 
2019; Yan et al., 2020). Panel data over several years and spatial 
regression models could also be employed to achieve higher reliability 
and accuracy of results (Li and Zhou, 2019). The construction land 
category is clearly significant in terms of PM2.5 levels, and urban plan
ning usually proceeds at the level of function (Yuan et al., 2019). 
Important insights could consequently be obtained by subdividing the 
construction land category according to function, i.e., residential, in
dustrial, transportation, and other functions, prior to regression anal
ysis. In the future, it will also be important to explore the response 
feature of PM2.5 concentrations to urban form on various spatial scales 
(e.g. urban scale, provincial scale, UA scale and national scale) and the 
spatial spillover effect of urban form on PM2.5 concentrations, clarifying 
whether certain urban form metrics should be regulated within UAs or 
coordinated by several UAs (Du et al., 2019; Li et al., 2021a; Yang et al., 
2020c) In addition, we only compartmentalized different study areas 
based on the urbanization level of urban agglomerations urbanization to 
explore the effect of urbanization level on the relationship of PM2.5 and 
urban form. Further research could divide study areas into several 
groups based on the urbanization level of each study unit. The spatial 
scale of research unit (20 km) used in our study was selected in view of 
the conditions of the study area and the availability of data but may not 
be appropriate for all kinds of study areas. Thus the effect of spatial scale 
on the relationship between PM2.5 and urban form needs further 
exploration and each research should adopt proper spatial scales 
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according to the specific condition (Li et al., 2021a). 

5. Conclusions 

This study explored the relationships between PM2.5 concentrations 
and urban form with different urbanization levels and seasons in 19 
Chinese UAs. There are several main findings: (1) except for dispersion 
with significant effect in all UAs, the influence strength of urban form on 
PM2.5 concentrations varies with urbanization level, with stronger 
impact of urban size within lower-level UAs, fragmentation within 
regional-level UAs, and urban shape within national-level UAs; (2) 
urban form has more intense effects on PM2.5 concentrations during 
spring and autumn rather than summer and winter; (3) generally, urban 
size and fragmentation tends to increase PM2.5 concentrations while 
urban shape and dispersion have the opposite impact. Overall, urban 
planners should pay more attention to urban form metrics with stronger 
effects on air pollution in various urbanization-level UAs. Prevention 
and control of air pollutants in spring, autumn and winter can effectively 
ameliorate PM2.5 pollution. 
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