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Abstract
The performance of aerosol optical depth (AOD) products from the visible infrared imaging radiometer suite (VIIRS) instrument 
to estimate ground-level  PM2.5 concentrations has been determined at different locations; however, it is still limited over Europe. 
VIIRS dark target (DT) and deep blue (DB) AOD products at 6-km spatial resolution and independent variables from the MERRA-2 
reanalysis were used for estimating daily  PM2.5 concentrations in southeastern Europe. An estimation model based on the Extreme 
Gradient Boosting (XGBoost) approach was developed and tested for DT and DB AODs. The estimations were compared with daily 
 PM2.5 observations from 122 air quality monitoring stations in five countries, including Bulgaria, Cyprus, Greece, Romania, and 
Turkey. The estimated  PM2.5 concentrations were consistent with ground measurements with the Pearson correlation coefficient (R) 
of 0.82 and 0.78, showing overall low estimation uncertainties with the root mean square error (RMSE) of 7.43 and 8.38 μg/m3 and 
the mean absolute error (MAE) of 4.76 and 5.31 μg/m3 for DT and DB AOD datasets, respectively. Independent model results were 
also discussed based on each country and season. The best estimation accuracy reached the R value of 0.83 with an average RMSE 
of 9.05 μg/m3 and an MAE of 5.84 μg/m3 in Turkey with DB AOD. In contrast, the model with DT AOD was highly accurate with 
the R value of 0.85, showing minor overall uncertainties (i.e., RMSE = 6.08 and 3.31 μg/m3) over Greece. The highest accuracies 
were obtained in autumn and spring, while the lowest ones were available in winter and summer. This study provides a feasible 
machine learning approach to estimate  PM2.5 using VIIRS AOD products in southeastern Europe.

Highlights

• XGBoost-based model was developed for estimating daily PM2.5 concentrations in southeastern Europe
• The model performed better with VIIRS DT AOD in the region
• Highest estimation accuracies with DB and DT AODs were obtained over Turkey and Greece, respectively
• Autumn and spring had the highest accuracies, while the lowest accuracies were available in winter and summer
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Introduction

Atmospheric aerosols with an aerodynamic diameter of 
fewer than 2.5 μm  (PM2.5) are one of the most problem-
atic air pollutants because of their adverse impacts on 
human health. These particles are of particular concern, 
as they can penetrate deeply into the lung, irritate, and 
corrode the alveolar wall and consequently impair lung 
function (Xing et al. 2016). Limited days with activ-
ity, premature mortality (Maji et al. 2018; Maciejewska 
2020), increased number of people with heart or lung 
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causes (Praznikar and Praznikar 2012; Yue et al. 2019), 
emergency room visits (Khan et al. 2019; Chen et al. 
2020), respiratory symptoms with acute and chronic 
bronchitis, and asthma attacks (Xing et al. 2016; Liu 
et al. 2017; Jo et al. 2017) are associated with short-
term exposure to  PM2.5. These aerosol particles are trans-
ported beyond geographic boundaries and contribute to 
the air quality on regional or global scales due to their 
smaller sizes (Kaneyasu et al. 2014; Wang et al. 2015).

Aerosol optical depth (AOD) provided by satel-
lite remote sensing has proven to be a key predictor of 
ground-level particulate matter (PM) levels (Liu et al. 
2007; Xue et al. 2019; Yazdi et al. 2020). The moderate-
resolution imaging spectroradiometer (MODIS) AOD 
products of Terra and Aqua satellites have been exten-
sively used to estimate PM concentrations due to their 
superior quality in the literature (Staggofia et al. 2017; 
Huang et al. 2018; Nabavi et al. 2019; Staggofia et al. 
2019; Wei et al. 2019; Wei et al. 2020; Tuna Tuygun 
et al. 2021). The Terra satellite has been working longer 
than its designed operation time. Visible infrared imag-
ing radiometer (VIIRS) started to operate on Suomi 
National Polar-orbiting Partnership (NPP) satellite as an 
extension of MODIS in 2011.

Different approaches have been widely used to obtain 
 PM2.5 concentrations establishing the VIIRS AOD–PM2.5 
relationship on different spatial scales (Wu et al. 2016; 
Yao et al. 2018, 2019; Gui et al. 2020; Wang et al. 2021; 
Wei et al. 2021). Deep learning techniques allow us to 
create models by leveraging multiple layers of artificial 
neural networks to extract advanced features from the 
input variables. With the flexible combination of remote 
sensing, land use, and meteorological inputs, a power-
ful learning capacity is constructed with a deep neural 
network. Nonlinear interactions among variables can be 
determined with advanced representations compared with 
many traditional models such as multiple linear regres-
sion (Zeydan and Wand 2019), generalized additive 
model, and support vector machines for regression (Liu 
et al. 2009). Recent studies show that several ensemble 
machine learning approaches based on random forest 
(Wei et al. 2019), extremely randomized trees (Wei et al. 
2020; Wei et al. 2021), and eXtreme Gradient Boosting 
(XGBoost) seem to overcome the traditional methods for 
estimating  PM2.5 (Hu et al. 2017; Yan et al. 2020; Wei 
et al. 2021; Zhang et al. 2021).

Yao et al. (2018) indicated that a linear mixed effect 
model based on the VIIRS AOD could explain 76% of the 
 PM2.5 variations in the Beijing-Tianjin-Hebei region and 
provide better results than the model based on MODIS 
AOD (~ 71%). A virtual ground-based  PM2.5 observa-
tion network was constructed by Gui et al. (2020) with 
the XGBoost model across China. The model estimated 

daily  PM2.5 with high accuracy (R2 ~ 0.79) across China. 
Wei et  al. (2021) developed a space–time extremely 
randomized trees (STET) model with VIIRS AOD over 
China. The STET model produced highly consistent 
 PM2.5 estimations with ground-based measurements 
(CV-R2 of 0.88) at the national scale. However, the 
VIIRS AOD products are mainly used in China to esti-
mate  PM2.5 concentrations. There is no reported study for 
 PM2.5 estimation based on VIIRS AOD in the literature 
for the European region.

This study aimed to determine the performance of 
VIIRS AOD products to estimate ground-level  PM2.5 
concentrations over southeastern Europe by the XGBoost 
model and test the model performance at spatial and 
temporal scales. The XGBoost is a decision tree-based 
ensemble machine learning algorithm widely used in data 
mining with high estimation success (Chen and Guestrin 
2016). The primary attempt was to capture the spatiotem-
poral heterogeneity of model predictors. After testing the 
model performance, the spatial predictive capability of 
the model was determined. Then, country-based models 
were also proposed based on the inherent characteris-
tics of ground-level  PM2.5 concentrations. The XGBoost 
model developed in this study is a first step to construct-
ing a high-quality  PM2.5 dataset across southeastern 
European countries that are important for air pollution 
studies.

Datasets

Ground‑based  PM2.5 measurements

Transport, industry, residential heating, production and 
distribution of energy, agriculture, waste landfill, waste 
incineration with heat recovery, and open burning of 
waste are the major sectors contributing to  PM2.5 emis-
sions in Europe (EEA 2018). Natural sources also con-
tribute to background PM concentrations with high PM 
levels due to desert dust transport and wildfires (EEA 
2018).

The air quality monitoring stations were selected 
in the countries of southeastern Europe like Bulgaria, 
Cyprus, Greece, Romania, and Turkey (Fig. 1) and rep-
resent different environmental conditions and  PM2.5 lev-
els. These stations are distributed unevenly, and most are 
clustered in the urban area. The availability of valid daily 
data was a crucial criterion in selecting the stations and 
the study period. As Turkey is the only exception that 
data were only obtained for 2018, the study period was 
selected from January 1 to December 31, 2018. Ground 
daily  PM2.5 observations were collected from the offi-
cial website of the European Environment Agency (EEA) 
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(https:// www. eea. europa. eu/ data- and- maps/ data/ aqere 
porti ng-8). EEA provides European air quality infor-
mation reported by all member countries and the coop-
erating and other reporting countries on this site. The 
tapered element oscillating microbalance method or the 
beta-attenuation method with appropriate calibration pro-
cesses and quality controls are used to measure ground-
level  PM2.5 concentrations in the region.

Based on the data availability, 122  PM2.5 monitor-
ing stations distributed in the study area were selected. 
Figure 1 presents the countries and stations included in 
this study and their location and annual average  PM2.5 
concentrations over the region. The selection did not 
cover all available stations and areas across southeast-
ern Europe. However, the stations showed wide distribu-
tion throughout the countries with different geographical 
and meteorological conditions. A list of the stations and 
a summary of descriptive statistics such as maximum, 
minimum, mean, and standard deviation are given in 
Table S1. According to the EU Directives on Ambient 
Air, the annual mean  PM2.5 concentration should be 
lower than 25 µg/m3. In 2018, the overall country-based 
annual average  PM2.5 concentrations were not higher 

than the annual  PM2.5 limit value (25 µg/m3). However, 
annual mean  PM2.5 concentrations above the limit value 
were observed in 24% (n = 29) of all the stations, mainly 
in Turkey (n = 26). The stricter standard of the World 
Health Organization (WHO) Air Quality Guidelines 
for annual mean  PM2.5 concentration (10 μg/m3) was 
exceeded at 98% (n = 120) of all the stations.

Satellite AOD retrievals

The VIIRS is a new polar-orbiting sensor designed to 
substitute MODIS. Whereas the MODIS instrument pro-
vides high radiometric sensitivity in 36 spectral bands 
ranging in wavelength from 0.4 to 14.4 µm, VIIRS has 
22 bands ranging from 0.412 to 12.01 μm. Furthermore, 
the day/night band is recently added to the VIIRS prod-
ucts to better determine night-time lights globally at a 
high spatial resolution. The VIIRS L2 products, includ-
ing Deep Blue Aerosol L2 6-Min Swath 6 km (AERDB 
DB) and Dark Target Aerosol L2 6- Min Swath 6 km 
(AERDT DT), are available in public (Levy et al. 2015; 
Sayer et al. 2018; Sawyer et al. 2020). All VIIRS aerosol 
products are obtained at 6 × 6 km with the aggregation 

Fig. 1  Selected  PM2.5 monitoring stations (colored dots), mean  PM2.5 concentrations in 2018, and topography (background colored shading with 
GTOPO30 DEM) in the study area
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of 8 × 8 pixels of native VIIRS L1 products at ~ 750-m 
spatial resolution. The VIIRS AERDT DT and AERDB 
DB Level 2 AOD products for 2018, covering the entire 
study region, were used in this study. VIIRS DT AOD 
retrievals with a quality flag (QF) filter of QF > 1 for the 
ocean and QF = 3 for land and the high-quality VIIRS DB 
AOD retrievals (QF > 2) were used in this study. Only 
DT and DB AOD retrievals (550 nm) passing the quality 
assurance with the highest quality (i.e., quality assur-
ance = best) were used as the primary independent vari-
ables to estimate  PM2.5 concentrations. In addition, Ver-
sion 3 Level 2.0 AOD measurements from the AErosol 
RObotic NETwork (AERONET) at nine stations (Fig. 1) 
across the study region were obtained for the accuracy 
assessment of the VIIRS DT and DB AOD products in 
2018.

The spatiotemporal approach, which was firstly pro-
posed by Ichoku et al. (2002), was selected in this study 
to collocate data both spatially (averaged satellite retriev-
als in 5 × 5 grid boxes centered sunphotometer measure-
ments of AOD) and temporally (within a time window 
of ± 30 min of satellite overpass time). The uncertain-
ties for the matched data were determined to evaluate 
the VIIRS AOD quality. Figure 2 shows the relationship 
between the satellite-based and ground-based AODs in 
southeastern Europe. The expected error (EE) envelope 
representing approximately one standard deviation of 
the matchups (at least 67% of data points) is defined 
for each satellite algorithm. The EEs of the DT and 
DB algorithms are (± 0.05 ± 0.15 ×  AODAERONET) and 
(± 0.03 ± 0.20 ×  AODAERONET), respectively. The EE 
boundaries illustrated as dotted lines, AOD collocation 
pairs (n), Pearson correlation coefficient (R), root mean 
square error (RMSE), relative mean bias (RMB), and 
1:1 line on a scatterplot are given in Fig. 2. The results 
indicated consistency between the VIIRS AOD retrievals 
and AERONET AODs with a high R of 0.87 and 0.81, 

a low RMSE of 0.07 and 0.06, and reasonable RMB of 
1.14 and 0.89 for DT and DB products, respectively. Both 
DT and DB algorithms indicated a satisfactory perfor-
mance of at least 67% of matchups falling within the EE 
range (68.14 and 76.12%, respectively). However, the 
VIIRS DT retrievals yield lower accuracy with 22.84% 
of collocated data above EE, showing overestimation. In 
summary, the quality of VIIRS AOD can provide a stable 
AOD-PM2.5 relationship in the region.

Meteorological data

The Modern-Era Retrospective analysis for Research and 
Applications, version 2 (MERRA-2), was used to obtain 
surface mass concentrations of  PM2.5 components and 
meteorological data. The MERRA-2 is a global atmos-
pheric reanalysis product produced by the NASA Global 
Modeling and Assimilation Office (GMAO) (Gelaro 
et al. 2017). Regularly gridded data with a homogeneous 
record of the global atmosphere and additional aspects 
of the climate system is provided by MERRA-2 (Gelaro 
et al. 2017; Randles et al. 2017).

Several parameters from the MERRA-2 reanalysis 
were obtained from the hourly averaged assimilated 
fields. Multiple meteorological and surface variables 
representing the relationship between the ground-level 
 PM2.5 and satellite-based AOD were collected in 2018. 
Hourly data of planetary boundary layer height (PBLH) 
(m), pressure (PS) (Pa), total cloud area fraction (CLD-
TOT) (unitless), total precipitation (PRECTOT) (kg/
m2/s), air temperature at 2 m (T2M) (K), relative humid-
ity (RH) at a 1000-hPa surface pressure (1), evapora-
tion (EVAP) (kg/m2s), 10-m horizontal and vertical 
components of wind (U10M and V10M) (m/s), surface 
roughness (Z0M) (m), greenness fraction (GRN), and 
leaf area index (LAI) (1) were used as input variables in 
this study. Hourly surface mass concentrations (kg/m3) of 

Fig. 2  Scatterplots of VIIRS DT 
and VIIRS DB AOD products 
vs. AERONET AOD in south-
eastern Europe
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dust (DUSMASS25), black carbon (BCSMASS), organic 
carbon (OCSMASS), sulfate (SO4SMASS), and sea salt 
(SSSMASS25) were also used from MERRA-2. Daily 
average values were obtained from hourly observations, 
and these data had a spatial resolution of about 50 km. 
The spatial variables of longitude (Lon) and latitude 
(Lat) and the temporal variables of month and day repre-
senting the seasonal variability were also included in the 
model. In summary, the XGBoost model was enhanced 
with spatial and temporal information to determine more 
accurate estimation results in this study.

Methodology

Data processing and feature selection

Locations of  PM2.5 monitoring stations were used to 
match the AOD pixels for data integration. Spatiotem-
poral collocation was carried out for all variables to be 
matched in time and space by accounting for differences 
in the resolution and frequency of the variables. The 
MERRA-2 aerosol fields and meteorological data were 
matched to each VIIRS grid. Outputs from the 0.625° 
by 0.5° grid cell containing each  PM2.5 monitoring sta-
tion were extracted. Within a spherical distance of 30 km 
(6 km × 5 grids) from each  PM2.5 monitoring site, valid 
AOD retrievals were extracted from the VIIRS swaths (in 
a 6-km resolution). A mean AOD value for each station 

and date was calculated if more than five valid AOD 
measurements were available within a search radius 
of 30 km. Briefly, all data from MERRA-2 and VIIRS 
AOD falling in one spatial grid located in the monitoring 
sites were used to match the datasets. The spatiotem-
poral regression matrix was prepared by integrating the 
geographical covariates, including AOD, meteorology, 
aerosol fields, and additional temporal and spatial covari-
ates for the area in  PM2.5 estimation. Only the points 
including all the independent variables and daily  PM2.5 
were evaluated in the sample selection process. Finally, 
11,216 and 6401 matched data points with DT and DB 
AOD products were selected for modeling.

Since different methods are used to evaluate the 
importance of the explanatory variables in the predic-
tion studies (Biecek and Burzykowski 2021; Luo et al. 
2021), a variable importance analysis was performed to 
evaluate the contribution of each predictor in this study. 
This method is based on the F Score (feature score) 
measure, which simply summarizes the number of times 
each feature is used in the decision trees (Chen and Lin 
2006; Zhang et al. 2020; Dai et al. 2022). First, all ini-
tial features were applied to the XGBoost model build-
ing; then, the importance provided an F score determin-
ing whether the feature was retained. Finally, the most 
significant twelve variables (AOD, PS, Z0M, BC, Day, 
Month, PBLH, GRN, LAI, T2M, LAT, LON) having the 
F-score over the threshold value were selected as the 
input parameters for the estimation model (Fig. 3).

Fig. 3  Feature importance on  PM2.5 estimation of the XGBoost model
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PM2.5, as a dependent variable in the estimation 
model, is affected by various meteorological conditions 
(Czernecki et al. 2017; Jedruszkiewicz et al. 2017), topo-
graphical and land use variables (Choubin et al. 2020) 
commonly used in air quality studies. Although almost 
all variables widely used in the literature to estimate 
 PM2.5 were tried, as shown in Fig. 3, the F scores of 
eleven features (EVAP, RH, CLDTOT, U10M, V10M, 
DUSMASS25, SO4MASS, SSSMASS25, TQV, OCS-
MASS, and PRECTOT) indicated insignificant roles with 
weaker correlations than others. RH was expected to sig-
nificantly affect AOD, which can mislead PM estimation 
but turns out to be relatively unimportant in the XGBoost 
model, as reported in Ghahremanloo et al. (2021). PREC-
TOT and RH cannot truly represent all atmospheric con-
ditions since aerosol products are retrieved only at cloud-
free pixels. This result is consistent with the study that 
estimated  PM2.5 in China (Wei et al. 2020). Moreover, the 
importance score in the XGBoost model only represents 
the importance of variables during the construction of 
the model and does not represent the physical contribu-
tions of the variables (Wei et al. 2020). Therefore, these 
variables were dropped from the modeling study.

The parameters of the spatial information had the highest 
score among all variables since the dataset includes  PM2.5 
concentrations from 5 different countries. The F score of 
the AOD variable (318) was 35% higher than the closest 
follower variable (PBLH). AOD is the column integral of 
the atmospheric extinction coefficient and is the primary 
source for estimating surface PM concentrations. Zhang 
et al. (2018) also showed that AOD is the most significant 
factor in estimating  PM2.5 concentrations. As is well known 
from the literature, the ground-level  PM2.5 concentrations 
could not be estimated using AODs only. PBLH and PS are 
the other most crucial variables. The relationship between 

 PM2.5 concentrations and PBLH is driven by the vertical 
diffusion of pollutants. Higher pressure is usually associ-
ated with a low PBLH leading to high  PM2.5 concentrations 
(Li et al. 2018; Ghahremanloo et al. 2021). Temperature 
is also critical, and the formation of secondary aerosols 
could be promoted by low-temperature and high-humidity 
conditions. Previous studies have shown that the formation 
of secondary aerosols is the main reason for the growth of 
particulate matter (Chen et al. 2019). Meanwhile, tempera-
ture also affects the amount of coal burned in winter, which 
affects the anthropogenic emissions of  PM2.5.

Surface roughness, leaf area index, and greenness 
can affect spatial and temporal variability of air pol-
lution. Barnes et al. (2014) showed that spatially and 
temporally varying surface roughness can significantly 
affect the ground-level air quality. Vegetation patterns 
influence the emission, diffusion, and absorption of PM 
(Feng et al. 2020). Land parameters such as topography, 
the normalized difference vegetation index (NDVI), and 
fractions of natural, agricultural, urban, or industrial 
areas are also significant factors (Stafoggia et al. 2019; 
Ghahremanloo et al. 2021). Due to their temporal limita-
tions, surface roughness, leaf area index, and greenness 
were used as land variables instead of NDVI and land-
use variables. Among the surface concentrations of OC, 
BC, DUST, and SS, only BC was the most significant 
component for  PM2.5 estimation, presumably indicating 
harmful particulate substances from combustion sources.

Considering the spatiotemporal heterogeneity is cru-
cial to estimate accurate  PM2.5 estimations. Therefore, 
temporal features such as month and day of month were 
added to the final model. The final model was con-
structed with the top twelve input features, including 
AOD, PS, Z0M, BC, Day, Month, PBLH, GRN, LAI, 
T2M, LAT, and LON, expressed as follows:

(1)PM2.5 = f (AOD,PS, Z0M,BC,Day,Month,PBLH,GRN, LAI, T2M, LAT , LON)

Since the spatial predictive power of the model was 
required, the training dataset was built by a randomly 
selected region, and the rest of the region was used as the 
test dataset. Finally, controlling the correlation between 
the observed and estimated  PM2.5 concentrations in held-
out regions was done. Model evaluation was done with 
the testing data only. This method can provide different 
spatial points to create the training and testing samples 
from locations where the atmospheric and surface con-
ditions can be noticeably different. The country-based 
model was also constructed to address the regional vari-
ation of the  PM2.5-AOD relationship and spatial hetero-
geneity of the model performance.

Application of XGBoost‑based machine learning 
model for  PM2.5 estimation

An estimation model was developed using AOD data in 
two separate data sets (DT and DB) and auxiliary input 
variables determined by the F score to estimate daily 
mean full-coverage  PM2.5 concentrations in the PM 
monitoring sites. The model has consisted of matched 
mean daily values of all variables. The flow chart of 
the methodology used in this study is schematized in 
Fig. S1. In this methodology, AOD data with the other 
variables were taken as inputs, and  PM2.5 concentration 
was estimated as output. As mentioned in Sect. 3.1, the 
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first stage is that the F score selected the significant 
independent variables. After that, these selected inde-
pendent variables were used as the inputs of the machine 
learning model. Then, the Extreme Gradient Boosting 
(XGBoost) regression model was constructed to forecast 
 PM2.5 concentrations.

As its base learner, the XGBoost selects a decision 
tree. Adding new base learners decreases the estimation 
error, and the final estimated values are obtained by the 
mean of all base learners (Zheng and Wu 2019).

Assume that a dataset is DS = {(xj,yj)} (j = 1,2,.….,n), 
and the model with k trees is learned (Song and Liu 2020). 
The result (pj) of the model is as follows:

In Eq. (2), f is a regression tree, and F is the function 
of all decision trees.

where q(x) is the tree’s leaf node of xth sample and s is the 
leaf score. When the tth step learning happens, the estimated 
result of xj:

In the process of regression, the objective function is:

where L means loss function and Ω expresses the complexity 
of the model.

The details of θ(ft) can be seen in Eq. (6):

where T and w indicate the number of a decision tree’s leaf 
node and the score, respectively. Both γ and λ express the 
penalty factor. Finally, the objective function is:

XGBoost applies the greedy algorithm to build the 
decision tree based on the objective function. A complete 
XGBoost model is established by building decision trees 
constantly (Zheng and Wu 2019).

The procedure for working with the machine learning 
model includes three stages: (a) training, (b) testing of 
the model, and (c) validation of the estimations. In this 
study, the datasets were randomly divided into training 
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and testing sets during the training process and randomly 
chosen 80% of the data for training and the remaining 
20% for model testing. Splitting the dataset into other 
ratios such as 75–25%, 70–30%, 65–35%, and 60–40% 
was also tried in the study, and very close results were 
obtained in these trials. Therefore, the ratio of 80–20% 
was preferred in this study since it gave slightly better 
results than the other ratios and has been frequently used 
in similar PM prediction studies (Park et al. 2019; Zhao 
et al. 2019; Lv et al. 2021; Tuna Tuygun et al. 2021; Car-
reño et al. 2022). Phyton 3.7 and R 3.5.2 were used for 
all calculations and plot generations. The performance of 
the XGBoost model in estimating  PM2.5 levels was deter-
mined by several statistical indicators such as R, RMSE, 
and MAE, as expressed in Tuna Tuygun et al. (2021).

Results and discussions

Descriptive statistics

This section presents the descriptive statistics of the param-
eters used in this study to estimate daily ground-level  PM2.5 
concentrations. As an overview of the variables used in this 
study, the histograms of all variables, including  PM2.5, are 
illustrated in Fig. S2 and S3 for the DT and DB datasets. 
Figures show that  PM2.5 concentrations ranged from 0.03 to 
19.2 μg/m3 and 0.49 to 20.4 μg/m3, respectively. The annual 
mean  PM2.5 concentrations were 19.2 and 20.4 μg/m3 for 
the datasets including DT AOD and DB AOD, respectively. 
The mean, median, and standard deviation of  PM2.5 con-
centrations for DT and DB datasets were similar (Fig. S2 
and S3). The annual mean  PM2.5 concentrations over the 
region were much lower than that of other regions, such as 
China, with an annual mean of 51 μg/m3 (Wei et al. 2019). 
The number of data with low  PM2.5 concentrations was sig-
nificantly higher than those with high  PM2.5 concentrations. 
The annual mean measured  PM2.5 concentrations over the 
region differed for individual countries and seasons due to 
the combination of the different  PM2.5 emission sources 
(traffic, combustion, industry, traffic, mineral dust, sea salt, 
etc.) and the other factors such as meteorology, geography, 
or economy (Houthuijs et al. 2001; Diapouli et al. 2017; 
Nastase et al. 2018; Almeida et al. 2020). Although the mean 
observed  PM2.5 concentrations for the entire study period is 
approximately 20 μg/m3, it differs for individual countries 
and seasons. Ground-level  PM2.5 concentrations showed a 
decreasing trend from winter to summer. The annual means 
of observed  PM2.5 concentrations in Turkey were higher than 
those in other countries, while lower annual mean  PM2.5 
concentrations were observed in Cyprus (Fig. S4).
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The frequency distributions of  PM2.5 and AOD were 
similar, indicating that the two parameters are related. The 
VIIRS-derived AOD data had a mean value of 0.156 and 
0.197 and a standard deviation (SD) of 0.116 and 0.145 for 
DB and DT, respectively. Generally, AOD values between 
0.01 and 0.4 are defined as extremely clean and hazy atmos-
pheric conditions (NOAA 2020). Results indicated that the 
mean AOD values for the study period over the region are 
not significantly low or high and represent the relatively 
clean conditions. Moreover, AOD ranges from 0 to 1.954 
and 0.013 to 1.664 for DT and DB datasets, respectively. The 
DT product obtained higher AOD values over the region. 
AOD also showed significant seasonal and country-level 
variability. VIIRS AOD values showed an increasing trend 
from winter to summer. Higher mean AOD values were 
observed in Cyprus, while low values were observed in 
Bulgaria (Fig. S4). Precipitation lowered AOD in winter in 
the region (Ozdemir et al. 2020). However, the largest mean 
 PM2.5 concentrations were observed in winter, and the low-
est was in summer. Adverse meteorological conditions like 
lack of precipitation, low boundary layer height, and high 
aerosol emission explained the peak  PM2.5 concentration 

observed in winter (Barmpadimos et al. 2012; Adaes and 
Pires 2019; Tuna Tuygun and Elbir 2020). Both autumn and 
spring had similar  PM2.5 concentrations. The partial con-
tribution of intense Saharan dust advection and deposition 
episodes that affected this area in spring is one of the reasons 
for higher  PM2.5 and AOD levels (Kaskaoutis et al. 2019; 
Achilleos et al. 2020; Ozdemir et al. 2020).

Model performance over southeastern Europe

Figure 4 shows the scatterplots depicting the relationship 
between measured and estimated  PM2.5 concentrations 
based on VIIRS DT and DB AOD products for training 
and test datasets. The estimated  PM2.5 concentrations are 
consistent with ground measurements with R of 0.82 and 
0.78, showing overall low estimation uncertainties with 
the RMSE of 7.43 and 8.38 μg/m3 and the MAE of 4.76 
and 5.31 μg/m3 for DT and DB, respectively. Similarly, the 
regression lines also have moderate slopes of 0.67–0.62 and 
small y-intercepts of 6.4 and 7.8 μg/m3. Furthermore, the 
test results decreased smaller in most evaluation indexes 
with DB AOD, further demonstrating the robustness of 

Fig. 4  XGBoost model results 
for train and test datasets 
with VIIRS DT and DB AOD 
products

2192 Air Quality, Atmosphere & Health (2022) 15:2185–2198



1 3

the model. It is possibly due to different  PM2.5 and AOD 
loadings and the amount of data in the datasets. An R-value 
higher than 0.70 is considered significant in the literature 
(Ahmad et al. 2019) and represents a strong positive linear 
relationship between the observed and estimated values. 
Therefore, the XGBoost model can handle random varia-
tions in  PM2.5 concentrations and is considered acceptable 
in southeastern Europe. As shown in Fig. 4, the differences 
in R/RMSE/MAE between the train and test datasets indi-
cate a slight over-fitting in the model. Compared to the 
previous related works in Europe, the estimation accuracy 
of the method developed in this study is satisfactory (Sta-
foggia et al. 2019; Zeydan and Wang 2019). Considering 
calibration of the  PM2.5-AOD relationship, the developed 
model in this study surpassed the previously published 
study (Zeydan and Wang 2019) to estimate the  PM2.5 con-
centrations in Turkey. Country-based validation results 
showed that model prediction ability over Turkey could 
achieve higher values (R > 0.80) with VIIRS DB AOD. 
Unlike this study, the most recent research used the AOD 
from the MAIAC algorithm, which showed much more 
accurate validation results than the DT and DB algorithms, 
notably more minor estimation uncertainties, mainly over 
complex urban areas (Wei et al. 2019). MAIAC AOD also 
has a higher spatial resolution (1 km) than commonly used 
MODIS DT (3–10 km) and DB (10 km) products. Stafog-
gia et al. (2019) explained the  PM2.5 variability over Italy, 
with mean CV- R2 0.86 for  PM2.5 with gap-filled MAIAC 
data. Another study developed an ensemble model over 
Italy found R2 as 0.81 for  PM2.5 with MAIAC AOD. Belo-
coni et al. (2018) compared geostatistical, geographically 
weighted, and land-use regression formulations over 46 
European countries with MAIAC AOD. The geostatistical 

regression model was found as the most effective model 
over the region, with an R2 of 0.78.

Figure 5 shows (a) time-series graphs of the observed 
and estimated  PM2.5 concentrations, and (b) the AOD-
based  PM2.5 estimations bias by five quantile classes. 
Quantile class calculated in this study represents the 0.25, 
0.50, 0.75,0.95, and 0.98, respectively. However, the quan-
tiles may be more appropriate to represent uncertainty in 
this study, as Yan et al. (2021) preferred. Low-level  PM2.5 
values mainly tended to overestimate with the XGBoost 
model. Di et al. (2016) also showed the negative impacts of 
low  PM2.5 concentrations on the model performance. How-
ever, it is obvious in Fig. 5 that  PM2.5 concentrations were 
both underestimated and overestimated by the XGBoost 
model. Positive and negative errors in the  PM2.5 estimations 
indicate that the XGBoost neither highly overestimated nor 
underestimated the  PM2.5 concentrations. High underesti-
mations were observed for high  PM2.5 concentrations.

High bias and low model performance were found for 
upper percentiles (95th and 98th) of  PM2.5 (represent-
ing here as Quantile 4, Q4 and Quantile 5, Q5). Zhao 
et al. (2020) also found that the 95th and 98th percentiles 
of the  PM2.5 data yielded similar results. Many mod-
els currently show poor capabilities in estimating high 
values. These results indicate that  PM2.5 estimations 
still have significant uncertainty for areas and times of 
heavy pollution. Since clouds restrict the surface and 
make detecting aerosols on the ground impossible, satel-
lites do not provide AOD information under cloudy con-
ditions. However, the ground-level PM concentrations 
are measured continuously regardless of sky conditions 
(Park et al. 2020). Therefore, satellite-estimated daily 
PM concentrations with data gaps tend to underestimate 

Fig. 5  Variation of the observed and predicted daily  PM2.5 concentrations by the DT and DB AODs (a) and  PM2.5 bias for quantile class (b)
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Table 1  The spatial predictive 
power of the XGBoost model 
on each country

Country DB DT

N R RMSE MAE N R RMSE MAE

Bulgaria Train 5696 0.48 11.68 7.16 10,111 0.45 10.81 6.81
Test 705 1105
All 6401 11,216

Cyprus Train 6038 0.27 6.58 5.10 10,600 0.44 5.51 4.21
Test 363 616
All 6401 11,216

Greece Train 5912 0.39 10.52 6.73 9986 0.37 9.10 5.67
Test 489 1230
All 6401 11,216

Turkey Train 3400 0.38 16.01 10.32 5502 0.45 14.09 8.94
Test 3001 5654
All 6401 11,156

Romania Train 4558 0.43 9.14 6.46 8605 0.43 8.70 6.09
Test 1843 2611
All 6401 11,216

Fig. 6  Country-based model performances with the XGBoost model based on DT AOD (a–e) and DB AOD (f–j)

the concentrations compared with ground-level measure-
ments (Xiao et al. 2017; Stafoggia et al. 2019; Wei et al. 
2019). A few studies have tried to solve this challenge by 
combining satellite-derived and model-simulated AOD 
to fill gaps (Xiao et al. 2017; Stafoggia et al. 2019; Jiang 
et al. 2021; Tuna Tuygun et al. 2021). Xiao et al. (2017) 
combined MAIAC with chemical transport model (CTM) 
simulations in Yangtze River Delta, China, and Stafoggia 
et al. (2019) filled missing MAIAC AOD with Coperni-
cus Atmosphere Monitoring Service (CAMS) in Italy.

All geographical regions were respectively excluded 
and used as test data to determine the spatial predictive 
power of the model. Table 1 shows which regions were 
used for training and estimated during each model run. 
The spatial predictive power of the XGBoost model has 
poor accuracies (R ⁓0.27–0.48) since AOD and  PM2.5 

concentrations are not noticeably spatially changed over 
the different countries. The daily  PM2.5 estimates were 
not highly consistent with ground measurements, with 
high uncertainties and low R in all countries. By contrast, 
Cyprus showed poor overall accuracy based on DB AOD 
with low R values due to the sparse site distributions and 
low  PM2.5-polluted conditions. The XGBoost model gen-
erally showed a stable performance with AOD products 
in Bulgaria, Greece, and Romania. However, all regions 
obtained lower RMSE values with DT AOD.

Test results of daily estimated  PM2.5 concentrations 
against the ground measurements in each country are shown 
in Fig. 6. The results indicated that the  PM2.5 estimates were 
moderately correlated with the ground-level concentrations, 
ranging R values from 0.58 to 0.85 across the study region. 
The best estimation accuracy of the XGBoost model with 
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Table 2  Seasonal results of the 
XGBoost model

Product Season R RMSE MAE

Train Test Train Test Train Test

DT AOD Spring 0.99 0.81 1.59 6.61 1.14 4.57
Summer 0.97 0.77 1.56 3.92 1.15 2.81
Autumn 0.99 0.81 2.39 7.83 1.72 5.17
Winter 0.99 0.69 3.20 15.54 2.32 10.69

DB AOD Spring 0.98 0.75 2.64 7.65 1.94 5.06
Summer 0.96 0.69 1.80 4.90 1.35 3.23
Autumn 0.99 0.79 2.24 8.41 1.55 5.87
Winter 1.00 0.66 0.67 16.95 0.46 12.99

DB product reached 0.83 with an average RMSE of 9.05 μg/
m3 and an MAE of 5.84 μg/m3 in Turkey. However, the 
XGBoost model with DT AOD was highly accurate with 
R values of 0.85, showing minor overall uncertainties (i.e., 
RMSE = 6.08 and 3.31 μg/m3) over Greece. These results 
highlighted the accuracy differences in various countries 
in the region. Differences and difficulties in model perfor-
mances over the region are considered to be originated from 
the climate conditions (e.g., precipitation and high humidity) 
and the variances in a number of the data samples.

The training and estimation performance (test) results 
in each season are presented in Table 2. In terms of test 
results, autumn and spring had the highest accuracies. While 
the performance of the model slightly varied by season, the 
XGBoost model sufficiently estimated  PM2.5 concentrations 
at the seasonal scale. Conversely, winter showed the low-
est accuracies (R = 0.69/0.66, RMSE = 15.54/16.95 µg/m3, 
MAE = 11.64/12.99 µg/m3) with DT/DB AODs. High cloud 
fraction conditions can cause negative impacts on the per-
formance of the model in winter (Guo et al. 2017). Winter 
demonstrated similar performance with both products due 
to the higher concentrations in winter. The developed model 
in this study also underestimated the higher concentrations 
over the region (Fig. 5).

Conclusion

The first attempt in the literature was to develop the 
XGBoost model to estimate the spatial and temporal varia-
tions of  PM2.5 levels in five southeastern European countries 
by incorporating VIIRS AOD instead of commonly used 
MODIS AOD products. The XGBoost model performance 
was satisfactory, providing daily air quality assessment on 
a regional scale. The model was tested with ground-based 
measurements and comprehensively evaluated the DT and 
DB AOD-based  PM2.5 concentrations. Both DT and DB 
retrievals showed similar accuracy, suggesting that the 

XGBoost model performed stably. However, DT AOD rep-
resented the region better.

Satellites are a reliable data source for many research 
areas because of their high spatial coverage and long-term 
data products. However, missing AOD values restrict their 
usage in PM estimation. The accurate estimation of  PM2.5 
distributions is difficult since many factors affect the ground-
level  PM2.5 concentrations due to the temporal and spatial 
variability of pollution sources and atmospheric condi-
tions. In this study, the most influential factors affecting 
 PM2.5 were considered. F score of AOD obtained by feature 
importance indicates that AOD was an essential variable for 
estimating ground  PM2.5 concentrations over the region after 
the two spatial variables. Moreover, a comparison between 
the model results with the DT and DB AOD datasets showed 
that the estimation accuracy did not vary significantly for 
different AOD datasets.

The XGBoost models incorporating satellite-derived 
data to estimate  PM2.5 concentrations have been devel-
oped in China in recent years (Meng et al. 2016; Zhang 
et al. 2018; Chen et al. 2019; Wei et al. 2019, 2020; Wei 
et al. 2021) while the application of AOD in estimating 
ground-level PM concentrations is limited over Europe. 
Only a few studies estimating the  PM2.5 concentrations by 
different machine learning and linear mixed effect models 
in Italy are available (Stafoggia et al. 2017, 2019; Shtein 
et al. 2019). They filled the missing AOD data with CAMS 
AOD data. The AOD data were not filled in this study, and 
it should be noted that these missing AOD data can still 
affect the estimation performance. Therefore, more accu-
rate determination approaches need to be investigated to 
improve the spatio-temporal accuracy of  PM2.5 estimates. 
On the other hand, other studies estimated PM in Europe 
without using satellite-based AOD data (Czernecki et al. 
2021). Czernecki et al. (2021) tested different ML mod-
els (AIC-based stepwise regression, two tree-based algo-
rithms, and neural networks) for forecasting  PM10 and 
 PM2.5 concentrations in 11 stations in Poland. They found 
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that all methods obtained high accuracies, but the XGBoost 
performed the best, followed by random forests and neural 
networks, and stepwise regression performed the worst.

Previous studies employing statistical models were 
conducted at the national and regional scales, and a few 
compared the variability of  PM2.5 estimation in multiple 
countries.  PM2.5 concentrations showed spatial and tem-
poral variations across the European sites in this study. 
Application of the statistical model with AOD in south-
eastern Europe indicated that this developed method could 
estimate  PM2.5 concentrations with reasonable accuracy at 
different spatial and temporal scales and provides a new 
approach for AOD-derived  PM2.5 estimation in the region. 
Finally, it should be noted that the model developed in this 
study reproduces the mean historical  PM2.5 concentrations, 
but since AOD is not an instantaneous online data set, the 
model cannot be used to predict future concentrations.
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