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� The over-increasing trends in AOD and 
ADRE were curbed around 2010. 
� Changes in emissions dominated the 

growth of AOD and ADRE after 1980. 
� The expansion of built-up land acceler-

ated the growth of AOD and ADRE. 
� A compact urban form was conductive 

to reducing AOD and ADRE. 
� The temperature rise has led to a growth 

of AOD by 0.00084 per year since 1980.  

A R T I C L E  I N F O   

Keywords: 
Aerosol optical depth 
Aerosol direct radiative effect 
Anthropogenic drivers 
Meteorological drivers 
Yangtze river basin 

A B S T R A C T   

Since the reform and opening up, Yangtze River Basin (YRB) with rapid industrialization and urbanization has 
become the most important source of anthropogenic aerosol emissions. However, the drivers of long-term trends 
in aerosol optical and radiative properties have not yet been adequately clarified. In this study, the multiple 
linear regression (MLR) and geographically weighted regression (GWR) models were employed to quantitatively 
estimate the impact of anthropogenic emissions, land use cover changes, urban forms and meteorological con-
ditions on aerosol optical depth (AOD) and direct radiative effect (ADRE). A trend analysis revealed that over- 
increasing trends in AOD and ADRE were curbed around 2010. In addition, there were remarkable regional 
differences with respect to the effects of anthropogenic and meteorological factors on aerosol trends. Anthro-
pogenic emissions dominated the growth of AOD and ADRE in the middle and lower reaches of the YRB after 
1980, but not in the source of the YRB. Besides, the expansion of built-up land (at a 5.79% rate of increase) 
during 1980–2010 mainly occurred in the YRD, CC, and SB, which thus accelerated the growth of AOD and 
ADRE. Furthermore, AOD-ADRE was positively related to the patch area (CA), patch number (NP), and patch 
edge density (ED), but negatively associated with the largest patch index (LPI). It indicated that a compact urban 
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form could mitigate aerosol loadings by enhancing urban connectivity and reducing vehicle dependence. Finally, 
a rise in temperature was found to be one of the driving factors for AOD growth. However, the theoretical growth 
in AOD (0.00084 yr� 1) in relation to temperature rise was far less than the actual growth (0.0065 yr� 1).   

1. Introduction 

Although aerosols account for only one billionth of the total atmo-
sphere, they play an important role in regional and global climate 
change, atmospheric environment, and human health (Remer and 
Kaufman, 2006; Wei et al., 2019a, b). IPCC (2013) clearly stated that 
aerosols were the most unstable climate change factor in the 
atmosphere-earth interaction. Since the reform and opening up (1980 
onwards), Yangtze River Basin (YRB) has witnessed a rapid urban 
expansion process and thus has become the largest source of anthro-
pogenic aerosol emissions (Xia et al., 2016; He et al., 2018a, 2018b, 
2019a). However, the long-term trends in aerosols and their underlying 
causes have not been well understood. 

In recent years, extensive efforts have been made to estimate 
spatiotemporal trends in aerosol optical depth (AOD) and its direct 
radiative effect (ADRE) in China (Kuang et al., 2015; He et al., 2016; 
Alfaro et al., 2017; Zhang et al., 2017; Che et al., 2019; Wei et al., 
2019c). However, due to the lack of ground-based and remote sensing 
data, the AOD trend before 2000 could not be observed and there was no 
conclusion in long-term AOD and ADRE trends. For example, He et al. 
(2016) found a significant upward (downward) MODIS AOD trend in 
China during 2000–2008 (2009–2016), together with an average rate of 
0.0003 (� 0.0005) per month. But Li and Wang (2014) revealed a 
continuous downward AOD trend in both Xianghe (2002–2015) and 
Beijing (2005–2012) using AERONET datasets. In addition, De Leeuw 
et al. (2017) found a downward trend in MODIS AOD from 2006 to 2009 
in China, but ATSR (Along Track Scanning Radiometers) AOD did not 
show a downward trend in the same period. To provide greater infor-
mation about long-term trends, the aim of the current study was to es-
timate the long-term AOD and ADRE trends (1980 onwards) in the YRB 
using monthly MERRA-2 aerosol datasets. 

In terms of the underlying causes of aerosol trend, most previous 
researches confirmed that anthropogenic emissions were the main 
reason for the continuous increase of aerosols in China (Deng et al., 

2008; Gao et al., 2011; Guo et al., 2016; Liu et al., 2019). For example, 
Deng et al. (2008) showed that AOD in the Pearl River Delta was 
significantly enhanced during biomass burning in Southeast Asia. Gao 
et al. (2011) found that due to the implementation of a series of emission 
control measures, the aerosol concentrations during the Beijing Olympic 
Games decreased by 30%–50% compared with the same period of 2007. 
Furthermore, Guo et al. (2016) also observed that based on the 
WRF-Chem model, the local emission reductions in Beijing during the 
2014 APEC meeting contributed more to Beijing’s air quality improve-
ment than those outside Beijing. However, they neglected the impact of 
land use cover change (LUCC) and urban form change on the long-term 
aerosol trend. In the past 40 years, China has witnessed profound land 
use cover changes (Liu et al., 2005, 2019; Ge et al., 2019). More and 
more scholars advocated that urban expansion characterized by changes 
in land use and urban forms had a significant impact on aerosol trends 
(Clark et al., 2011; McCarty and Kaza, 2015; Fan et al., 2018). She et al. 
(2017) found that MODIS AODs were closely related to LUCC in major 
cities in China. Wang et al. (2016) reported that LUCC and anthropo-
genic emissions were the dominant reasons for the spatiotemporal dis-
tribution of AOD in the Ebinur Lake Basin. Recently, Fan et al. (2018) 
also found that based on MLR and GWR models, a more compact and less 
fragmented urban form could effectively reduce urban air pollution in 
344 prefecture-level cities of China. 

However, previous studies have often focused on the effect of local 
meteorological conditions on aerosol pollution over short time periods, 
such as daily or seasonal changes. But it ignored the effect on long-term 
trends in AOD and ADRE (Westervelt et al., 2016; Wang et al., 2018). For 
instance, Tai et al. (2010) revealed that changes in meteorological 
conditions (including wind speed, temperature, relative humidity, and 
precipitation) could account for up to 50% of PM2.5 daily changes in 
United States. Kuang et al. (2016) also reported that due to the hygro-
scopicity of aerosols, the instantaneous ADRE at the top of atmosphere 
increased by about 60% at high relative humidity over the North China 
Plain in summer. 

Fig. 1. Land use pattern and PM2.5 pollution (red symbols) in the Yangtze River Basin. PM2.5 data were derived from 476 state-controlled air quality monitoring 
stations (http://113.108.142.147:20035/emcpublish/). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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Despite the importance of previous studies, the underlying factors 
behind long-term AOD and ADRE trends have not yet been fully 
explored. Given such limitations of existing research, this study was 
conducted to (1) accurately estimate the long-term trends in AOD and 
ADRE over the YRB during 1980–2016 using MERRA-2 aerosol datasets; 
(2) further explore the quantitative impact of anthropogenic emissions, 
land use cover changes and urban forms on 1980–2016 AOD-ADRE 
trend; and (3) finally determine whether local meteorological condi-
tions (including surface wind speed (WS), temperature, precipitation, 
relative humidity (RH), total cloud cover, and the boundary layer height 
(BLH)) affect the AOD trend. The structure was organized as follows. 
Section 2 introduced study area, data and analytical methods. Section 3 
analyzed the long-term trends of AOD and ADRE and their underlying 
factors. Finally, conclusions and policy implication were provided in 
Section 4. 

2. Study area, data, and methodology 

2.1. Study area 

The Yangtze River Basin (YRB) is defined as the catchment area of 
the Yangtze River water system and the area through which it flows 
(90�E� 122�E, 24�N-35�N). The YRB was selected as the region of in-
terest for several reasons. First, as one of the fastest growing regions 
supporting China’s economy, the YRB experienced severe air pollution, 
and approximately 87.10% of the cities in the YRB experienced annual 
mean PM2.5 concentrations exceeding the WHO standard (20 μg/m3) in 
2016 (Fig. 1), particularly over the Yangtze River Delta (YRD), Central 
China (CC), and the Sichuan Basin (SB). Second, there were various 
aerosol sources within the different sub-regions of the YRB. For example, 
fine-mode aerosols were dominant in densely populated sub-regions 

(YRD, CC, and SB), whereas coarse-mode aerosols primarily occurred 
in the source of the Yangtze River Basin (SYR) (Wang et al., 2015; He 
et al., 2017). Finally, the YRB has experienced rapid urbanization over 
the past 40 years, resulting in dramatic changes in land use coverage (Ge 
et al., 2019). In this context, it is critical to analyze the anthropogenic 
and meteorological drivers of aerosol pollution over the YRB. 

2.2. Data and processing methods 

As shown in Fig. 2, the YRB was divided into grid cells measuring 
0.5� � 0.625� (latitude � longitude). First, the annual trends in AOD and 
ADRE within each grid rectangle from 1980 to 2016 were estimated 
using the MK method. The independent variables, namely anthropo-
genic emissions metrics, land use cover change (LUCC) metrics, urban 
form metrics, and meteorological metrics were calculated in ArcGIS 10.1 
and FRAGSTATS 4.2. Finally, based on the bivariate correlation analysis 
(BCA), multiple linear regression (MLR), and geographically weighted 
regression (GWR), the effects of anthropogenic and meteorological 
metrics on AOD and ADRE trends were further explored. 

2.2.1. Estimations of AOD and ADRE trends 
AOD data used in this study was derived from the MERRA-2 aerosol 

reanalysis dataset (MERRA2_100.tavgM_2d_aer_Nx, Table S1). The 
MERRA-2 product was newly released by the NASA Global Modeling 
and Assimilation Office (GMAO) in 2017. Because of assimilating a se-
ries of bias-corrected AOD retrieves from MODIS, MISR, AVHRR and 
AERONET instruments, the MERRA-2 AOD agreed well with ground- 
based observations (Buchard et al., 2017). For example, the correla-
tion coefficients between MERRA-2 AOD and AERONET AOD were 0.88, 
0.84 and 0.90, respectively in Beijing, XiangHe and YRB (Randles et al., 
2017; He et al., 2018b, 2019a). Such high agreements gave us enough 

Fig. 2. Flow chart of study process.  
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confidence in using MERRA-2 AOD reanalysis data for aerosol applica-
tions over the YRB. 

ADRE data was derived from the MERRA-2 radiation reanalysis 
dataset (MERRA2_100.tavgM_2d_rad_Nx, Table S1). In clear sky, ADRE 
was defined as the difference in the net (downward ↓ minus upward ↑ ) 
shortwave radiation flux with and without aerosols at the top of atmo-
sphere (TOA, Equation (1)), at the surface (SFC, Equation (2)) and 
within the atmosphere (ATM, Equation (3)).  

ADRETOA ¼ ðFaero↓ � Faero↑ÞTOA � ðFclr↓ � Fclr↑ÞTOA (1)  

ADRESFC ¼ ðFaero↓ � Faero↑ÞSFC � ðFclr↓ � Fclr↑ÞSFC (2)  

ADREATM¼ADRETOA � ADRESFC (3)  

where ðFaero↓ � Faero ↑Þ and ðFclr↓ � Fclr ↑Þ are the net shortwave radiation 
flux with and without aerosols, respectively (He et al., 2018b). If ADRE 
>0, aerosols exert a warming effect on the TOA, SFC, and ATM; other-
wise there is a cooling effect. 

2.2.2. Pretreatment of anthropogenic emission metrics 
The anthropogenic emissions were generally considered to be the 

dominant factors for the long-term change of aerosol optical-radiation 
characteristics in China (Guo et al., 2016). Therefore, four anthropo-
genic emissions from the MERRA-2 reanalysis dataset (MERRA2_100. 
tavgM_2d_adg_Nx, Table S1) were selected as independent variables, 
including SO2, SO4, black carbon (BC) and organic carbon (OC). Based 
on the bivariate correlation analysis (Equation (4)), the Pearson corre-
lation coefficients (r) between anthropogenic emissions (xi) and 
AOD-ADRE (yi) were calculated in each 0.5� � 0.625� grid. 

r¼
Pn

i¼1ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1ðxi � xÞ2
Pn

i¼1ðyi � yÞ2
q (4)  

2.2.3. Pretreatment of LUCC metrics 
The 1 km � 1 km land use cover data were provided by the Resource 

and Environmental Science Data Center, CAS (Table S1). The dataset 
was generated by artificial visual interpretation from seven Landsat TM/ 
ETM remote sensing images of 1980, 1990, 1995, 2000, 2005, 2010, and 
2015. Land cover types were divided into six primary types and 25 
secondary types, including cropland, woodland, grassland, water body, 
built-up land, and unused land. The specific classification system could 
be found at http://www.resdc.cn/data.aspx?DATAID¼95. 

Since economic reform and the introduction of the Open-Door pol-
icy, China’s rapid urban expansion process has caused profound land use 
changes, which has played an important role in urban air pollution. (Liu 
et al., 2005; Li and Wang, 2014). In this study, the LUCC types between 
1980 and 2015 were further estimated using a LUCC transformation 
matrix in ArcGIS 10.1 (Table 1). As shown in Table 1, lines A1 … An 
represent the types of land cover in T1 year, and columns A1 … An 
represent the types of land cover in T2 year. Furthermore, P11 … Pnn 

represents the percentage area where land cover type, n, remains un-
changed from T1 to T2; Piþ represents the total area percentage of land 
cover type i in T1 year; Pþj represents the total area percentage of land 
cover type j in T2 year; Piþ-Pii represents the percentage area decrease in 
land cover type, i, from T1 to T2; and Pþj-Pii represents the percentage 
area increase in land cover type, j, from T1 to T2. 

2.2.4. Pretreatment of urban form metrics 
Urban form represented the spatial allocation of urban landscape 

(Larkin et al., 2016). Previous studies often used population density (PD) 
as a measure of urban form. However, urban population density alone 
was not enough, and a more comprehensive urban form indicator system 
needed to be constructed (McCarty and Kaza, 2015; Fan et al., 2018). In 
this study, four urban form metrics, namely, the patch area (CA), patch 
number (NP), largest patch index (LPI) and patch edge density (ED), 
were selected to characterize the fragmentation and compactness of a 
city. As shown in Table 2, CA is an important indicator used to measure 
urban expansion, and there is no upper limit to its value. It is generally 
believed CA increases with the expansion of a city (Wang et al., 2017). 
NP indicates the number of built-up land patches and also has no upper 
limit. She et al. (2017) revealed that the increase of NP would lead to the 
increase of urban fragmentation. LPI is a very important parameter used 
to measure urban compactness, and its value ranges from 0 to 100. 
Previous studies found that the increase of LPI would lead to the 
improvement of urban compactness (McCarty and Kaza, 2015; Fan et al., 
2018). Finally, ED measures the total length of all edge segments related 
to a given urban patch. Wang et al. (2017) reported that the larger the 
ED, the stronger the urban heterogeneity. 

In this study, by using built-up land data from the 7 Landsat TM 
remote sensing images (1980, 1990, 1995, 2000, 2005, 2010 and 2015), 
the four urban form metrics in 121 cities of the YRB were calculated in 
Fragstats4.2 software based on Equation (5)- (8). The calculation results 
were shown in Fig. S2. In addition, MLR (Equation (9)) and GWR 
(Equations (10) and (11)) models were selected to estimate the quan-
tified effect of urban form metrics on aerosol optical and radiative 
properties. 

y¼ β0 þ
Xp

i¼1
βixi þ εi (9)  

where the dependent variable, y, represents the annual mean AOD and 
ADRE in each city; independent variables  xi, represent the four urban 
form metrics; β0  is a constant term, and εi is an interaction term. The 
slope coefficient, βi, can be interpreted as the sensitivity of AOD to 
changes in one urban form metric, which assumes that the other urban 

Table 1 
LUCC transformation matrix used in this study.   

T2 Piþ Percentage Reduction 
(%) 

A1 A2 … An 

T1 A1 P11 P12 … P1n P1þ P1þ-P11  

A2 P21 P22 … P2n P2þ P2þ-P22  

┇ ┇ ┇ ┇ ┇ ┇ ┇  
An Pn1 Pn2 … Pnn Pnþ Pnþ-Pnn 

Pþj  Pþ1 Pþ2 … Pþn 1  
Percentage 

increase 
(%) 

Pþ1- 
P11 

Pþ2- 
P22 

… Pþn- 
Pnn    

Table 2 
Calculation of urban form metrics in Fragstats4.2 software.  

Index Equation Description 

Patch Number 
(NP)  NP¼Ni (5)     

i refers to built-up land type 
N ¼ number of built-up land patches 
NP > 0 Unit:/. 

Patch Area 
(CA)  

CA¼
XNi

j¼1
aij (6)     

aij ¼ area (ha) of each built-up land 
patch, j. 
CA > 0 Unit: ha.  

Largest Patch 
Index (LPI)  

LPI¼
maxaij

AREA
� 100 (7)     

AREA ¼ total landscape area (ha) 
0 < LPI � 100 Unit: %. 

Edge Density 
(ED)  

ED¼
1

AREA

XNi

j¼1
Pij (8)     

Pij ¼ Boundary length between patches 
of type i landscape (namely built-up 
land) and its adjacent patches of type j 
landscape. 
Unit: m/ha.   
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form metrics held fixed, and it can be determined via a least-square 
adjustment. Furthermore, per capita GDP (PGDP), PD, precipitation 
(Prec), and temperature (T) were selected as the control variables. MLR 
model calculations were conducted using SPSS19.0 software. 

Compared with MLR model, the GWR model could detect local 
spatial variations among variables by setting weight matrix (Fan et al., 
2018). The GWR equations were as follows. 

yj¼ β0
�
uj; vj

�
þ
Xp

i¼1
βi
�
uj; vj

�
xij þ εj (10)  

where yj represents the annual mean AOD and ADRE values, uj and vj are 
the longitude and latitude coordinates of prefecture-level city j, 
respectively, β0ðuj; vjÞ is the intercept, xij is the UF of independent var-
iables, βiðuj; vjÞ is the regression coefficient, and εj is the error term. The 
weight matrix used in the GWR model could be expressed by Equation 
(11): 

βf
�
uj; vj

�
¼
�
XT W

�
uj; vj

�
X
�� 1XT W

�
uj; vj

�
y (11) 

All calculations of GWR models could be completed in ArcGIS 10.1 
software. Noncollinearity and AIC minimization were selected as 

Fig. 3. Spatial distribution (left) and spatial trend analysis (right) of AOD and ADRE in the YRB from 1980 to 2016.  
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criteria. The significance of the model was tested by variance analysis (F 
test) and the significance of local parameters was evaluated by the t-test 
(Fan et al., 2018). 

2.2.5. Pretreatment of meteorological metrics 
Local meteorological conditions had profound effect on seasonal and 

daily variations of AOD and ADRE (Wang et al., 2018; Zhou et al., 2017, 
2018). In this study, six meteorological factors were selected as inde-
pendent variables, including surface wind speed (m s� 1), total cloud 
amount (%), surface temperature (K), relative humidity (%), precipita-
tion (mm day� 1), and boundary layer height (m) (Table S1). The mul-
tiple linear regression (MLR) model was used to quantify the 
relationship between meteorological conditions and aerosol pollution. 

3. Results and discussion 

3.1. Long-term trends in AOD and ADRE 

Fig. 3 showed the annual mean values (left) of AOD and ADRE over 
the YRB during 1980–2016. Obviously, AOD had significant spatial 
heterogeneity, which high values (AOD > 0.5) occurred in YRD, CC and 
SB. In these regions, frequent urbanization and industrialization activ-
ities took place, resulting in considerable anthropogenic aerosol emis-
sions. Since ADRETOA and ADRESFC were all negative, the aerosols 
exerted cooling effects at the top of atmosphere and the surface. How-
ever, there was a warming effect of aerosol within the atmosphere. The 
spatial distributions of ADRE were consistent with those of AOD. 

Fig. 3 also showed the annual mean trends (right) of AOD and ADRE 
over the YRB during 1980–2016. Black dots indicated trends of AOD and 
ADRE above the 95% significance level (P < 0.05), which were detected 

by the MK method. Furthermore, AOD, |ADRETOA|, |ADRESFC|, and 
ADREATM all had a significant upward trend, particularly in the YRD, 
CC, and SB. 

Fig. 4 illustrated the staged trends in regionally averaged AOD and 
ADRE since 1980. Prior to 2000, trends in AOD, |ADRETOA|, |ADRESFC|, 
and ADREATM depicted slight increases, with annual mean increased 
trends of 0.003 year� 1, 0.02 Wm-2 year� 1, 0.15 Wm-2 year� 1, and 0.14 
Wm-2 year� 1, respectively. Notably, both AOD and ADRE suffered from 
an abnormal growth in 1982 and 1991, probably due to the eruptions of 
El Chichon in Mexico and the Pinatubo in the Philippines, respectively 
(Dutton and Christy, 1992). During 2000–2009, there were significant 
growth trends for AOD, |ADRETOA|, |ADRESFC|, and ADREATM, with 
annual mean growth trends of 0.02 year� 1, 0.36 Wm-2 year� 1, 0.54 
Wm-2 year� 1, and 0.18 Wm-2 year� 1, respectively. However, these 
over-increased trends of AOD and ADRE were curbed around 2010. 
During 2010–2016, AOD, |ADRETOA|, |ADRESFC| and ADREATM under-
went annual mean downward trends of � 0.02 year� 1, -0.33 Wm-2 

year� 1, -0.65 Wm-2 year� 1, and -0.36 Wm-2 year� 1, respectively. 
Recently, studies using multi-source remote sensing and ground-based 
datasets have also observed a downward trend in AOD in China after 
2008. For example, He et al. (2016) observed a downward trend in AOD 
(� 0.005 month� 1) after 2008 using the MODIS 3 km product. Zhang 
et al. (2017) found a significant decreasing trend in AOD in southeast 
and northeast coastal areas of China during 2009–2015, together with 
annual average decline rates of 8% and 7%, respectively. The decrease in 
AOD after 2010 could be related to the staging of the 2008 Olympics in 
Beijing and the 2008 global economic crisis, which resulted in the 
implementation of a series of energy saving and emission reduction 
measures in China (He et al., 2016). 

3.2. Effect of anthropogenic emissions on AOD and ADRE trends 

Fig. 5 showed 1980–2016 trends in black carbon (BC), organic car-
bon (OC), SO2 and SO4 anthropogenic emissions over the YRB. Obvi-
ously, the over-increasing trends of four anthropogenic emissions were 
curbed around 2008–2010, which were consistent with those of AOD 
and ADRE. To clarify the relationship between aerosol pollution and 
anthropogenic emissions, Pearson correlation coefficients (r) between 
BC, OC, SO2, SO4 emissions and AOD were calculated for each 0.5� �
0.625� grid (Fig. 6). The black dots represent r values passing the 95% 
significant level detected by the t-test method (P < 0.05). As shown in 
Fig. 6, the r values showed significant spatial differentiation. High cor-
relations between BC, OC, SO2, SO4 emissions and AOD (r > 0.6) 
occurred in the middle and lower reaches of the YRB, together with 
regional averaged r values of 0.78、0.70、0.73 and 0.75, respectively. 
On the contrary, low correlations (r < 0.4) appeared in the SYR, together 
with regional averaged r values of 0.31、0.26、0.33 and 0.25. 
Furthermore, Fig. S1 – S3 showed correlations of |ADRETOA|, |ADRESFC|, 

Fig. 4. Staged trend analysis of AOD and ADRE over the YRB from 1980 
to 2016. 

Fig. 5. Anthropogenic emission trends over YRB from 1980 to 2016.  
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ADREATM and anthropogenic emissions. Their spatial distributions were 
similar to AOD. This indicated that anthropogenic emissions could be 
the dominant factors for the changes in AOD and ADRE over the middle 
and lower reaches of the YRB, but not over the SYR. Due to the low 
population density and the infrequent industrialization and urbaniza-
tion, natural aerosols dominated in the SYR, weakening the effect of 
anthropogenic emissions on aerosol loadings. 

3.3. Effect of LUCC on AOD and ADRE trends 

Fig. 7 showed annual mean AOD and ADRE values of six primary 
land use cover types in 1980, 2000, 2010 and 2015. It was not difficult to 
see that the annual mean AOD and ADRE values for all land use types 

increased during 1980–2010, but decreased during 2010–2015. 
Specially, the AOD, |ADRETOA|, |ADRESFC| and ADREATM values in built- 
up land were highest, with a multi-year average of 0.48 � 0.15, 10.21 �
2.53 Wm-2, 22.71 � 5.31 Wm-2 and 12.43 � 2.85 Wm-2, respectively 
(Table 3). On the contrary, the AOD and ADRE values in unused land 
and grass land were relatively low. The reason might be that the unused 
land and grass land were mostly located in the SYR (Fig. 1). The region 
had a sparse population, slow urbanization and industrialization, 
resulting in low aerosol loadings. Notably, compared with the grass 
land, the AOD and ADRE values of the woodland were relatively high. 
This might be due to the fact that the Dark Target (DT) method used in 
MERRA-2 reanalysis easily overestimated AOD values in areas with low 
surface reflectance, such as woodlands (Randles et al., 2017; Buchard 
et al., 2017, He et al., 2018b). The AOD, |ADRETOA|, |ADRESFC| and 
ADREATM values in permanent ice and snow land were lowest, with a 
multi-year average of 0.07 � 0.01, 1.42 � 0.19 Wm-2, 3.80 � 0.63 Wm-2 

and 2.43 � 0.47 Wm-2, respectively (Table 3). However, the AOD and 
ADRE values of the other water body were relatively high, probably 
associated with the hygroscopicity growth of aerosols (Wang et al., 
2015; Xia et al., 2016). 

More and more researchers confirmed that land use cover changes 
had a profound effect on the global and regional air pollution (Clark 
et al., 2011; McCarty and Kaza, 2015). Therefore, this study attempted 
to portray the six primary land use cover changes over the YRB from 
1980 to 2016 using the land use transformation matrix (Fig. S4). Note 
that 1 to 6 denoted the Cropland, Woodland, Grassland, Water body, 
Built-up land and Unused land, respectively. The land use trajectories 
with the same category in different time periods, such as 11, 22, 111, 
222, 333, etc., represented patches without land use conversion. Other 
land use trajectories, such as 12, 23, 112, etc., represented patches with 
land use conversion (Liu et al., 2005). For example, 12 in Fig. S4 (top) 
referred to the land use conversion from cropland in 1980 to Woodland 
in 2010. 115 in Fig. S4 (bottom) referred to the land use conversion from 
cropland in 1980 to built-up land in 2015, but remained as cropland in 
2010. 

Fig. 6. Correlation coefficients between AOD and anthropogenic emissions (a) BC, (b) OC (c) SO2 and (d) SO4 determined using bivariate correlation method.  

Fig. 7. Annual mean AOD and ADRE values for six primary land use 
cover types. 
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To better assess LUCCs in the YRB from 1980 to 2015, we further 
reclassified the major land use trajectories based on Fig. S4. The 
reclassification results were shown in Fig. 8. As observed, YRB had two 
main land use changes between 1980 and 2015, namely, the expansions 
of built-up land and grassland. The expansion of built-up land mainly 
occurred in the YRD, CC and SB, where the aerosol loadings also 
increased significantly. It could be inferred that the growth of AOD and 
ADRE in these regions from 1980 to 2015 were closely related to the 
expansion of built-up land. In addition, the expansion of grassland 
mainly appeared at the SYR, where there were no significant changes of 
AOD and ADRE. 

As analyzed in section 3.1, there was a turn point around 2010, when 
the over-increasing trends of AOD and ADRE was curbed. Therefore, 
land use cover changes of the YRB were also analyzed during 1980–2010 
(Table 4) and 2010–2015 (Table 5). The major land use change was the 
expansion of built-up land, with the change rates of 5.79% (1980–2010) 
and 1.96% (2010–2015), respectively. The expansion of built-up land 
mainly came from the conversion of cropland, theoretically leading to a 
growth of aerosol loading during the two periods. Notably, far less land 
conversion from cropland to built-up land (1.17%) occurred during 
2010–2015 compared to the previous period (5.12%). The reason was 
associated with China’s strict implementation of basic farmland pro-
tection policies in recent years (He et al., 2019b). In this context, the 
over-increasing trends in AOD and ADRE during 2010–2015 were 
effectively curbed. However, as analyzed in section 3.2, changes in 
anthropogenic emissions were the dominant factor for the downward 
trends of AOD and ADRE during 2010–2015. 

3.4. Effect of urban form on AOD and ADRE trends 

Table 6 showed the multiple linear regression (MLR) coefficients 
between AOD-ADRE and urban form metrics in 121 cities of the YRB 
from 1980 to 2015. In the MLR model, several socioeconomic and 
meteorological factors including per capita GDP (PGDP), population 
density (PD), precipitation (Prec) and temperature (T) were selected as 
control variables. All the adjusted determination coefficients (R2) were 

as high as 0.7, suggesting that the MLR models had good performance. 
Regression coefficients revealed that AOD-ADRE were significantly 

correlated with the patch area (CA). A 1% increase in CA would lead to a 
growth in AOD, |ADRETOA|, |ADRESFC| and ADREATM by 2.019E-7%、 
2.882E-6%、4.340E-6% and 1.462E-6%, respectively. Similarly, there 
was also a significantly positive relationship between AOD-ADRE and 
patch number (NP). A 1% increase in NP would result in an increase in 
AOD, |ADRETOA|, |ADRESFC| and ADREATM by 6.778E-5%、0.001%、 
0.002% and 0.002%, respectively. The reason was likely that the high 
NP values would increase the fragmentation of a given city. As a result, 
there would be more vehicle kilometers of travel, which would further 
increase transportation-related nitrate aerosol emissions (Fan et al., 
2018). On the contrary, the largest patch index (LPI) was negatively 
related to AOD and ADRE. A 1% increase in LPI would reduce AOD, | 
ADRETOA|, |ADRESFC| and ADREATM by � 0.09%、-0.125%、-0.385% 
and � 0.26%, respectively. LPI represented the compactness of a given 
city. It was found that a compact urban form would help to alleviate 
local aerosol pollution by enhancing urban connectivity, reducing 
vehicle dependence and facilitating the use of bicycle and walk 
(McCarty and Kaza, 2015; Rodríguez et al., 2016; Fan et al., 2018). 
Recently, McCarty and Kaza (2015) reported that in the United States, 
compact cities usually had better air quality. Rodríguez et al. (2016) also 
found that PM2.5 and NO2 were positively related to the fragmentation 
of 249 large cities in Europe. However, the patch edge density (ED) was 
positively related to AOD and ADRE (p < 0.05). A 1% growth of ED 
would increase AOD, |ADRETOA|, |ADRESFC| and ADREATM by 0.23%、 
0.363%、0.99% and 0.627%, respectively. A higher ED would increase 
irregularity of a city shape, thereby weakening urban connectivity, 
stimulating demand for vehicles and energy, and further increasing 
anthropogenic aerosol emissions. Wang et al. (2017) revealed that the 
continuous increase of carbon emissions in Beijing, Tianjin, Shanghai 
and Guangzhou cities was closely associated with the irregular pattern 
of urban land. 

In order to address the spatial differentiation effect, a geographically 
weighted regression (GWR) model was further selected. Fig. 9 illustrated 
the adjusted determination coefficients (R2) between AOD and urban 

Table 3 
Multi-year mean AOD and ADRE values for 25 secondary land use cover types from 1980 to 2015.  

Land use cover type AOD (/) |ADRETOA| (W m� 2) |ADRESFC| (W m� 2) |ADREATM| (W m� 2) 

AVE STD AVE STD AVE STD AVE STD 

Cropland Paddy land 0.47 0.14 10.16 2.37 22.16 4.68 11.98 2.39 
Dry land 0.46 0.12 9.61 2.14 21.53 4.36 11.88 2.31 

Built-up land Rural settlements 0.48 0.15 10.18 2.48 22.86 5.37 12.70 2.88 
Urban built-up 0.48 0.15 10.32 2.53 22.97 5.28 12.47 2.90 
others 0.47 0.15 10.14 2.58 22.31 5.30 12.12 2.79 

Water body Reservoir and ponds 0.49 0.15 10.46 2.60 23.31 5.50 12.79 2.97 
Stream and rivers 0.48 0.14 10.17 2.46 22.39 5.13 12.16 2.73 
Lakes 0.45 0.14 9.74 2.46 21.44 5.21 11.64 2.80 
Beach and shore 0.44 0.14 10.10 2.50 21.45 5.29 11.47 2.80 
Bottomland 0.29 0.09 6.15 1.49 13.94 3.18 7.75 1.72 
Permanent ice and snow 0.07 0.01 1.42 0.19 3.80 0.63 2.43 0.47 

Woodland Forest 0.41 0.12 8.91 2.08 18.99 4.06 10.09 2.05 
Shrub 0.37 0.11 8.28 1.95 17.40 3.79 9.16 1.89 
Woods 0.32 0.09 7.13 1.58 15.40 3.11 8.32 1.59 
Others 0.42 0.13 9.15 2.27 19.50 4.36 10.34 2.17 

Grassland Dense grass 0.24 0.06 5.43 1.10 11.74 2.25 6.36 1.18 
Moderate grass 0.19 0.04 4.28 0.80 9.51 1.69 5.26 0.93 
Sparse grass 0.08 0.01 1.67 0.24 4.33 0.67 2.68 0.44 

Unused land Swampland 0.19 0.05 3.99 0.77 9.31 1.76 5.30 1.00 
Bare soil 0.14 0.05 3.17 0.93 7.30 2.00 4.13 1.08 
Salina 0.08 0.01 1.46 0.15 4.17 0.65 2.67 0.44 
Bare rock 0.08 0.01 1.66 0.22 4.15 0.56 2.53 0.44 
Sandy land 0.08 0.01 1.35 0.14 3.84 0.48 2.49 0.37 
Gobi 0.08 0.01 1.37 0.16 3.87 0.54 2.49 0.41 
Others 0.08 0.01 1.45 0.19 3.86 0.56 2.41 0.38 

AVE and STD refer to the averaged values of AOD-ADRE and their standard deviation values, respectively. 
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Fig. 8. Six primary land use shift trajectories in the YRB from 1980 to 2015.  

Table 4 
LUCCs of the YRB from 1980 to 2010 (%).   

Cropland Woodland Grassland Water body Built-up land Unused land 

Cropland 93.147 0.519 0.237 0.957 5.119 0.021 
Woodland 0.249 99.088 0.449 0.057 0.140 0.017 
Grassland 0.280 0.803 98.731 0.079 0.045 0.061 
Water Body 1.903 0.384 3.978 89.882 0.444 3.408 
Built-up land 0.012 0.012 0.024 0.146 99.793 0.012 
Unused land 0.172 0.058 0.368 1.245 0.038 98.119 
Change rate (%) 2.616 1.776 5.056 2.484 5.786 3.519  

Table 5 
LUCC of the YRB from 2010 to 2015 (%).   

Cropland Woodland Grassland Water body Built-up land Unused land 

Cropland 98.566 0.088 0.033 0.137 1.170 0.007 
Woodland 0.038 99.622 0.081 0.028 0.229 0.002 
Grassland 0.026 0.058 99.766 0.045 0.101 0.004 
Water Body 0.346 0.067 0.158 98.908 0.453 0.067 
Built-up land 0.595 0.190 0.042 0.131 99.034 0.008 
Unused land 0.002 0.002 0.002 0.236 0.005 99.752 
Change rate (%) 1.007 0.405 0.316 0.577 1.958 0.088  
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form metrics based on GWR model. Obviously, the high determination 
coefficients (R2 > 0.5) were concentrated in the SYR, indicating that the 
changes of urban from metrics could explain more than 50% of the AOD 
changes in this region. However, the low R2 (<0.1) mainly appeared in 
the middle and lower reaches of the YRB. It suggested that the fitting 
degree of GWR model was poor in this area, and changes in urban from 
metrics could only explain less than 10% of AOD changes. The reason 
might be that there were various aerosol sources in the middle and lower 
reaches of the YRB, which weakened the impact of urban form on the 
aerosols. 

Fig. 10 showed the regression coefficients of AOD and urban form 
metrics in 121 cities of the YRB from 1980 to 2015 by using the GWR 
model. In most areas of the YRB, AOD was positively correlated with CA, 
NP and ED, but negatively related to LPI. The results were consistent 
with the correlations estimated by the MLR model. However, there was a 
spatial differentiation of the correlations between AOD and urban forms. 
For example, some negative correlations between AOD and CA occurred 
in the SYR. The increase of CA in the SYR was mainly due to the 
development of tourism rather than the expansion in industrial and 
mineral land (Wei et al., 2015). As a result, a large number of aerosol 
emissions did not occur. In addition, the positive correlation between 
AOD and NP weakened gradually from east to west. Conversely, the 
positive correlation between AOD and ED showed a trend of increasing 
from east to west. The negative correlation between AOD and LPI 
increased gradually from west to east. Fig. S5 further showed the 
regression coefficients between ADRE and urban form metrics using the 
GWR model. As observed, the correlations between ADRE and urban 
forms were spatially consistent with those of AOD and urban forms. 

3.5. Effect of meteorological conditions on AOD and ADRE trends 

Fig. 11 showed the determination coefficients between AOD and 
meteorological metrics obtained using the MLR model. As observed, 

high R2 (>0.5) values were observed over the SYR in spring and sum-
mer, suggesting that changes in meteorological conditions could explain 
up to 50% of AOD changes in the SYR. Several reasons could account for 
this phenomenon. One was probably due to the unique plateau climate 
in the SYR. Another was due to the low population density and infre-
quent industrial activities in the SYR. As a result, the impact of 
anthropogenic factors on aerosols was relatively low, which in turn 
strengthened the impact of local meteorological conditions on aerosols. 

Fig. 12 showed the regression coefficients between AOD and six 
meteorological factors. Red (green) grids were positive (negative) cor-
relations. As observed in Fig. 12 (β1), over most areas of the YRB, AOD 
was negatively related to surface wind speed. High wind speed facili-
tated circulation and dilution of aerosols (Tai et al., 2010). However, 
there was a positive correlation between AOD and surface wind speed 
over the SYR. To clarify the reasons, we further calculated the 72-h 
backward trajectory of 500m, 1000m and 3000m altitudes using the 
NOAA HYSPLIT model (Fig. 13). The end point was at 20:00 (GMT) on 
April 25, 2014 and from the source of YRB (33.02�N, 94.87�E). As 
observed, dust aerosols from Taklimakan Desert were transmitted into 
the SYR at all three altitudes of 500m, 1000m and 3000m under the 
action of wind. As a result, a positive AOD-wind correlation occurred in 
the SYR. Similarly, Munir et al. (2017) also found that fine-mode aero-
sols were positively related to wind speed in Arid Saudi Arabia. Fig. 12 
(β2) showed a positive correlation between AOD and surface tempera-
ture in the whole YRB. The reason probably was that the oxidation of 
aerosol precursors (such as sulfur dioxide) could be enhanced at high 
temperature (Westervelt et al., 2016). Fig. 12 (β3) found that AOD was 
negatively related to precipitation except for the SYR, mainly due to the 
scouring effect of precipitation. In Fig. 12 (β4) - (β5), the relationship of 
relative humidity (RH) and total cloud cover with PM2.5 showed a 
regional dependency, with the positive correlation in the SYR. The 
reason was associated with the hygroscopic growth of aerosols (Yang 
et al., 2017). However, in the southern part of the YRB, AOD had a weak 
negative correlation with RH. Yang et al. (2017) analyzed that if RH >
80%, rainfall events would occur frequently, thereby scouring aerosols 
in the atmosphere. As shown in Fig. S6, the relative humidity was as high 
as 85% in summer over the southern part of the YRB, thereby scouring 
aerosols with frequent occurrence of rainfall events. Fig. 12 (β6) showed 
a significant negative correlation between AOD and Boundary Layer 
Height (BLH). This was because a well-developed boundary layer was 
conducive to aerosol diffusion (Wang et al., 2018). 

Fig. 14 showed the annual mean trends of six meteorological factors 
from 1980 to 2016. Black dots represented those trends above 95% 
significance level (p < 0.05). Obviously, in most areas of the YRB, there 
were no significant trends in surface wind speed, precipitation, RH, total 
cloud cover and BLH. It suggested that although the local meteorological 
conditions were associated with seasonal variations of AOD, changes in 
these meteorological metrics were unlikely to be the main factor for the 

Table 6 
Regression coefficients of AOD, ADRE and urban form metrics using MLR model.   

AOD |ADRETOA| |ADRESFC| ADREATM 

CA 2.019E-7** 2.882E-6** 4.340E-6*** 1.462E-6** 
NP 6.778E-5*** 0.001*** 0.002** 0.002*** 
LPI � 0.09** � 0.125** � 0.385** � 0.26** 
ED 0.23** 0.363** 0.99** 0.627** 
PGDP � 1.522E-7* � 2.636E-6 � 4.495E-6* � 1.858E-6* 
PD 6.295E-5*** 0.001*** 0.003** 0.002* 
Prec � 0.08** � 0.054 � 0.558* � 0.612 
T 0.35*** 0.583* 1.245*** 0.662** 
Constant � 9.584 � 158.646*** � 336.699*** � 178.048*** 
Adjusted-R2 0.726 0.692 0.688 0.682 
Observations 121 121 121 121 

*P < 0.1, **P < 0.05, ***P < 0.01. 

Fig. 9. Local coefficients of determination (R2) of AOD and urban form metrics based on GWR model.  
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growth of AOD in the YRB from 1980 to 2016. However, there was a 
significant upward trend in temperature, with an average annual growth 
rate of 0.003 K yr� 1. Furthermore, as observed in Fig. 12, temperature 
was positively related to AOD and its regional average regression coef-
ficient (β2) was about 0.28 K-1. Therefore, a growth of 0.003 K yr� 1 in 
temperature would theoretically increase AOD by 0.00084 yr� 1. But in 
fact, the average annual growth of AOD in the YRB from 1980 to 2016 
was about 0.0065 yr� 1, which was much larger than the theoretical 
value (0.00084 yr� 1). It suggested that the effect of the temperature rise 
on AOD trend was lower than the impact of anthropogenic emissions on 
AOD trend (Westervelt et al., 2016). 

4. Conclusions and policy implications 

Since the reform and opening up, the Yangtze River Basin (YRB) 

underwent rapid urbanization and industrialization, and it has now 
become the most important source of anthropogenic aerosol emissions 
in the word. This study was conducted to analyze the quantitative 
impact of anthropogenic and meteorological factors on AOD and ADRE 
trends since 1980, with respect to anthropogenic emissions, land use 
cover changes, urban forms and meteorological conditions. The main 
conclusions are presented in the following: 

Results revealed that over the entire YRB, aerosols had a cooling 
effect at the top of atmosphere and at the surface but a warming effect 
within the atmosphere. Furthermore, there were significant upwards 
trends in AOD, |ADRETOA|, |ADRESFC|, and ADREATM over the YRD, CC, 
and SB during 1980–2016, but not over the SYR. Notably, these over- 
increasing AOD and ADRE trends were curbed around 2010. During 
2010–2016, the annual mean downward trends of AOD, |ADRETOA|, | 
ADRESFC|, and ADREATM were � 0.02 year� 1, -0.33 Wm-2 year� 1, -0.65 

Fig. 10. Regression coefficients of AOD and urban form metrics based on GWR model.  
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Wm-2 year� 1, and -0.36 Wm-2 year� 1, respectively. However, it is not yet 
known whether this downward trend is temporary or sustained and 
therefore requires long-term future observations of terrestrial and sat-
ellite data. 

With respect to anthropogenic emissions (BC, OC, SO2, and SO4), 
AOD and ADRE were significantly positively related to these anthro-
pogenic emissions in the middle and lower reaches of the YRB. However, 
there was no significant correlation in the SYR. From the perspective of 
LUCC, AOD and ADRE were closely related to land use types. Specif-
ically, the AOD and ADRE values were largest for built-up land and 
cropland, followed by water bodies and woodland, but values were the 

lowest for grassland and unused land. In addition, LUCC had a signifi-
cant impact on the changes of AOD and ADRE. During 1980–2010, the 
YRD, CC and SB experienced a rapid expansion of built-up land, with an 
increasing rate of 5.79%. As a result, it led to a significant growth of AOD 
and ADRE in this region. However, during 2010–2015, the conversion 
from cropland to built-up land was much less (1.17%), thus effectively 
preventing the excessive growth of AOD and ADRE during this period. 
From the perspective of urban forms, AOD and ADRE were found to be 
positively correlated with patch area (CA), patch number (NP), and 
patch edge density (ED), but negatively related to the largest patch index 
(LPI). It suggested that a compact urban form could alleviate aerosol 

Fig. 11. Determination coefficients (R2) of AOD and six meteorological metrics.  

Fig. 12. Regression coefficients for AOD and meteorological conditions determined using MLR model.  
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Fig. 14. Annual mean trends in six meteorological factors from 1980 to 2016.  

Fig. 13. A 72-h backward trajectory of 500m (red), 1000m (blue) and 3000m (green) altitudes at 20:00 (GMT) on April 25, 2014. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 
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pollution by enhancing urban connectivity and reducing vehicle 
dependence. 

Seasonal variations in AOD were seen to be closely associated with 
local meteorological conditions. However, these meteorological metrics 
had no significant trends, except temperature. It indicated that meteo-
rological changes were unlikely to be the main reason for 1980–2016 
trend of AOD. Notably, there was a significantly increasing trend in 
temperature, with an annual growth rate of 0.003 K year� 1. It indicated 
that the temperature rise was one of the driving factors for the signifi-
cant growth of AOD, but its impact was far less than the impact of 
anthropogenic emissions. 

This study could help decision makers alleviate aerosol pollution 
from the perspectives of reducing anthropogenic emissions, developing 
compact urban forms and controlling temperature rise. Furthermore, 
remarkable regional differences were observed with respect to the ef-
fects of anthropogenic and meteorological factors on aerosol trends. For 
example, anthropogenic emissions were found to be closely related to 
AOD-ADRE in the middle and lower reaches of the YRB, but failed in the 
SYR. Conversely, six meteorological metrics could explain up to 50% of 
AOD changes in the SYR. In this regard, decision makers need to 
adequately consider regional differences in anthropogenic and meteo-
rological conditions to ensure mitigation of aerosol loading and avoid a 
“one size fits all” approach. 

CRediT author statement 

Lijie He: Data curation, Writing- Original draft preparation, revision. 
Lunche Wang: Conceptualization, Methodology, Software , 

Reviewing and Editing, Supervision, Project administration, Funding 
acquisition. 

Bo Huang: Methodology, Supervision, Project administration. 
Wei Jing: Visualization, Investigation. 
Zhigao Zhou: Software, Validation. 
Yang Zhong: Editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was financially supported the National Key Research and 
Development Program of China (No. 2018YFC1503504), National Nat-
ural Science Foundation of China (No.41601044, No.41571400, No. 
41704012), the Special Fund for Basic Scientific Research of Central 
Colleges, China University of Geosciences, Wuhan (No. CUG150631, 
CUGL170401, CUGCJ1704). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.atmosenv.2019.117188. 

References 

Alfaro–Contreras, R., Zhang, J., Reid, J.S., Sundar, C., 2017. A study of 15–year aerosol 
optical thickness and direct shortwave aerosol radiative effect trends using MODIS, 
MISR, CALIOP and CERES. Atmos. Chem. Phys. 17, 13849. https://doi.org/10.5194/ 
acp-17-13849-2017. 

Buchard, V., Randles, C.A., da Silva, A.M., Darmenov, A., Colarco, P.R., Govindaraju, R., 
Ferrare, R., Hair, J., Beyersdorf, A.J., Ziemba, L.D., Yu, H., 2017. The MERRA–2 
aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. J. Clim. 30, 
6851–6872. 

Clark, L.P., Millet, D.B., Marshall, J.D., 2011. Air quality and urban form in US urban 
areas: evidence from regulatory monitors. Environ. Sci. Technol. 45, 7028–7035. 

Che, H., Xia, X., Zhao, H., Dubovik, O., Holben, B.N., Goloub, P., Qi, B., 2019. Spatial 
distribution of aerosol microphysical and optical properties and direct radiative 
effect from the China Aerosol Remote Sensing Network. Atmos. Chem. Phys. 19, 
11843–11864. 

De Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A.K., 
Alexandri, G., Amiridis, V., Proestakis, E., Marinou, E., Xue, Y., 2017. Two decades 
of satellite observations of AOD over mainland China. Atmos. Chem. Phys. Discuss. 
2017, 1–33. 

Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., Deng, T., 2008. Effects of 
Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl 
River Delta (PRD) region. Atmos. Environ. 42 (36), 8493–8501. 

Dutton, E.G., Christy, J.R., 1992. Solar radiative forcing at selected locations and 
evidence for global lower tropospheric cooling following the eruptions of El Chich�on 
and Pinatubo. Geophys. Res. Lett. 19, 2313–2316. 

Fan, C., Tian, L., Zhou, L., Hou, D., Song, Y., Qiao, X., Li, J., 2018. Examining the impacts 
of urban form on air pollutant emissions: evidence from China. J. Environ. Manag. 
212, 405–414. 

Gao, Y., Liu, X., Zhao, C., Zhang, M., 2011. Emission controls versus meteorological 
conditions in determining aerosol concentrations in Beijing during the 2008 Olympic 
Games. Atmos. Chem. Phys. 11 (23), 12437–12451. 

Ge, Y., Zhang, K., Yang, X., 2019. A 110-year pollen record of land use and land cover 
changes in an anthropogenic watershed landscape, eastern China: understanding 
past human-environment interactions. Sci. Total Environ. 650, 2906–2918. 

Guo, J., He, J., Liu, H., Miao, Y., Liu, H., Zhai, P., 2016. Impact of various emission 
control schemes on air quality using WRF-Chem during APEC China 2014. Atmos. 
Environ. 140, 311–319. 

He, L., Lin, A., Chen, X., Zhou, H., Zhou, Z., He, P., 2019a. Assessment of MERRA-2 
surface PM2. 5 over the Yangtze River basin: ground-based verification, 
spatiotemporal distribution and meteorological dependence. Remote Sens. 11 (4), 
460. https://doi.org/10.3390/rs11040460. 

He, L., Liu, Y., He, P., Zhou, H., 2019b. Relationship between air pollution and urban 
forms: evidence from prefecture-level cities of the Yangtze River basin. Int. J. 
Environ. Res. Public Health 16 (18), 3459. https://doi.org/10.3390/ 
ijerph16183459. 

He, L., Wang, L., Lin, A., Zhang, M., Bilal, M., Tao, M., 2017. Aerosol optical properties 
and associated direct radiative forcing over the Yangtze River basin during 
2001–2015. Remote Sens. 9, 746. https://doi.org/10.3390/rs9070746. 

He, L., Wang, L., Lin, A., Zhang, M., Bilal, M., Wei, J., 2018a. Performance of the 
NPP–VIIRS and aqua–MODIS aerosol optical depth products over the Yangtze River 
basin. Remote Sens. 10, 117. https://doi.org/10.3390/rs10010117. 

He, L., Wang, L., Lin, A., Zhang, M., Xia, X., Tao, M., Zhou, H., 2018b. What drives 
changes in aerosol properties over the Yangtze River Basin in past four decades? 
Atmos. Environ. 190, 269–283. 

He, Q., Zhang, M., Huang, B., 2016. Spatio–temporal variation and impact factors 
analysis of satellite–based aerosol optical depth over China from 2002 to 2015. 
Atmos. Environ. 129, 79–90. 

IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T.F., Qin, D., 
Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., 
Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535. 

Kuang, Y., Zhao, C.S., Tao, J.C., Ma, N., 2015. Diurnal variations of aerosol optical 
properties in the North China Plain and their influences on the estimates of direct 
aerosol radiative effect. Atmos. Chem. Phys. 15, 5761–5772. 

Kuang, Y., Zhao, C.S., Tao, J.C., Bian, Y.X., Ma, N.J.A.E., 2016. Impact of aerosol 
hygroscopic growth on the direct aerosol radiative effect in summer on North China 
Plain. Atmos. Environ. 147, 224–233. 

Larkin, A., van Donkelaar, A., Geddes, J.A., Martin, R.V., Hystad, P., 2016. Relationships 
between changes in urban characteristics and air quality in East Asia from 2000 to 
2010. Environ. Sci. Technol. 50, 9142–9149. 

Li, L., Wang, Y., 2014. What drives the aerosol distribution in Guangdong–the most 
developed province in Southern China? Sci. Rep. 4, 5972. https://doi.org/10.1038/ 
srep05972. 

Liu, J., Liu, M., Tian, H., Zhuang, D., Zhang, Z., Zhang, W., Deng, X., 2005. Spatial and 
temporal patterns of China’s cropland during 1990–2000: an analysis based on 
Landsat TM data. Remote Sens. Environ. 98 (4), 442–456. 

Liu, Q., Wang, S., Zhang, W., Li, J., Dong, G., 2019. The effect of natural and 
anthropogenic factors on PM2. 5: empirical evidence from Chinese cities with 
different income levels. Sci. Total Environ. 653, 157–167. 

McCarty, J., Kaza, N., 2015. Urban form and air quality in the United States. Landsc. 
Urban Plan. 139, 168–179. 

Munir, S., Habeebullah, T.M., Mohammed, A.M., Morsy, E.A., Rehan, M., Ali, K., 2017. 
Analyzing PM2.5 and its association with PM10 and meteorology in the arid climate 
of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 17, 453–464. 

Randles, C.A., da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., 
Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., 2017. The MERRA–2 
aerosol reanalysis, 1980 onward. Part I: system description and data assimilation 
evaluation. J. Clim. 30, 6823–6850. 

Remer, L.A., Kaufman, Y.J., 2006. Aerosol direct radiative effect at the top of the 
atmosphere over cloud free ocean derived from four years of MODIS data. Atmos. 
Chem. Phys. 6 (1), 237–253. 

Rodríguez, M.C., Dupont-Courtade, L., Oueslati, W., 2016. Air pollution and urban 
structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 
1–9. 

L. He et al.                                                                                                                                                                                                                                       



Atmospheric Environment 223 (2020) 117188

15

She, Q., Peng, X., Xu, Q., Long, L., Wei, N., Liu, M., Xiang, W., 2017. Air quality and its 
response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. 
Indicat. 75, 297–306. 

Tai, A.P., Mickley, L.J., Jacob, D.J., 2010. Correlations between fine particulate matter 
(PM2.5) and meteorological variables in the United States: implications for the 
sensitivity of PM2. 5 to climate change. Atmos. Environ. 44 (32), 3976–3984. 

Wang, L., Gong, W., Xia, X., Zhu, J., Li, J., Zhu, Z., 2015. Long–term observations of 
aerosol optical properties at Wuhan, an urban site in Central China. Atmos. Environ. 
101, 94–102. 

Wang, S., Liu, X., Zhou, C., Hu, J., Ou, J., 2017. Examining the impacts of socioeconomic 
factors, urban form, and transportation networks on CO2 emissions in China’s 
megacities. Appl. Energy 185, 189–200. 

Wang, X., Dickinson, R.E., Su, L., Zhou, C., Wang, K., 2018. PM2. 5 pollution in China 
and how it has been exacerbated by terrain and meteorological conditions. Bull. Am. 
Meteorol. Soc. 99, 105–119. 

Wang, X., Zhang, F., Jing, Y., Zhang, H., Li, Z., 2016. Relationship between land cover- 
landscape spatial characteristics and aerosol optical depth in Ebinur Lake Watershed. 
Trans. Chin. Soc. Agric. Eng. 32 (22), 273–283. https://doi.org/10.11975/j. 
issn.1002-6819.2016.22.038 (in Chinese).  

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., Cribb, M., 2019a. Estimating 1-km- 
resolution PM2.5 concentrations across China using the space-time random forest 
approach. Remote Sens. Environ. 231, 111221. https://doi.org/10.1016/j. 
rse.2019.111221. 

Wei, J., Li, Z., Guo, J., Sun, L., Huang, W., Xue, W., Fan, T., Cribb, M., 2019b. Satellite- 
derived 1-km-resolution PM1 concentrations from 2014 to 2018 across China. 
Environ. Sci. Technol. 53, 13265–13274. 

Wei, J., Peng, Y., Mahmood, R., Sun, L., Guo, J., 2019c. Intercomparison in spatial 
distributions and temporal trends derived from multi-source satellite aerosol 
products. Atmos. Chem. Phys. 19, 7183–7207. https://doi.org/10.5194/acp-19- 
7183-2019. 

Westervelt, D.M., Horowitz, L.W., Naik, V., Tai, A.P.K., Fiore, A.M., Mauzerall, D.L., 
2016. Quantifying PM2.5-meteorology sensitivities in a global climate model. Atmos. 
Environ. 142, 43–56. 

Xia, X., Che, H., Zhu, J., Chen, H., Cong, Z., Deng, X., Fan, X., Fu, Y., Goloub, P., 
Jiang, H., Liu, Q., 2016. Ground–based remote sensing of aerosol climatology in 
China: aerosol optical properties, direct radiative effect and its parameterization. 
Atmos. Environ. 124, 243–251. 

Yang, Y., Russell, L.M., Lou, S., Liao, H., Guo, J., Liu, Y., Ghan, S.J., 2017. Dust-wind 
interactions can intensify aerosol pollution over eastern China. Nat. Commun. 8, 
15333. https://doi.org/10.1038/ncomms15333. 

Zhang, J., Reid, J.S., Alfaro-Contreras, R., Xian, P., 2017. Has China been exporting less 
particulate air pollution over the past decade? Geophys. Res. Lett. 44 (6), 
2941–2948. 

Zhou, H., Luo, Z., Tangdamrongsub, N., Wang, L., He, L., Xu, C., Li, Q., 2017. 
Characterizing drought and flood events over the Yangtze River basin using the 
HUST–grace2016 solution and ancillary data. Remote Sens. 9, 1100. https://doi.org/ 
10.3390/rs9121200. 

Zhou, H., Luo, Z., Zhou, Z., Li, Q., Zhong, B., Lu, B., Hsu, H., 2018. Impact of different 
kinematic empirical parameters processing strategies on temporal gravity field 
model determination. J. Geophys. Res. Sol. Ea. 123 (11), 10–252. 

L. He et al.                                                                                                                                                                                                                                       


	Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze Ri ...
	1 Introduction
	2 Study area, data, and methodology
	2.1 Study area
	2.2 Data and processing methods
	2.2.1 Estimations of AOD and ADRE trends
	2.2.2 Pretreatment of anthropogenic emission metrics
	2.2.3 Pretreatment of LUCC metrics
	2.2.4 Pretreatment of urban form metrics
	2.2.5 Pretreatment of meteorological metrics


	3 Results and discussion
	3.1 Long-term trends in AOD and ADRE
	3.2 Effect of anthropogenic emissions on AOD and ADRE trends
	3.3 Effect of LUCC on AOD and ADRE trends
	3.4 Effect of urban form on AOD and ADRE trends
	3.5 Effect of meteorological conditions on AOD and ADRE trends

	4 Conclusions and policy implications
	CRediT author statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


