
1. Introduction
Crop yields are strongly influenced by regional climate and air quality (Wang et al., 2020). Temperature increase 
and resultant enhancement of the crop respiration have caused a global yield loss in recent decades (Lobell 
et al., 2011; Zhao et al., 2017), and such a trend is expected to be amplified over the next century as air temper-
ature exceeds the tipping point in the crop-temperature relationship (Schlenker & Roberts, 2009). Precipitation 
exerts impacts on crop yield by altering soil and air moisture (Kimm et al., 2020) but in a non-monotonic manner 
(H. Li et al., 2019; Y. Li et al., 2019; Rosenzweig et al., 2002). Meanwhile, atmospheric pollutants such as anthro-
pogenic aerosols and near-surface ozone exert detectable impacts on regional crop yields by changing physical, 
biochemical, and physiological processes during plant growth (Ainsworth, 2017; Chameides et al., 1999). Two 
of the pronounced aerosol effects on crop yields are the decrease in total solar radiation reaching the ground for 
plant photosynthesis (Gerstl & Zardecki, 1982) as well as the increase in diffuse radiation and light use efficiency 
(Hemes et al., 2020; Wang et al., 2021). The former is generally more significant, leading to a net negative effect 
(Tie et  al.,  2016). As a strong oxidant, ozone near the surface reduces photosynthesis by entering leaves via 
the stomata, producing damaging radicals, and consequently accelerating plant senescence (Felzer et al., 2007). 
Tropospheric ozone is mainly produced by photochemical reactions between nitrogen oxides (NOx) and volatile 

Abstract Plant growth and crop harvest are impacted by both climate change and air pollution. However, 
their relative importance in crop yields remains elusive, especially in heavily polluted regions. Here we 
develop crop yield prediction models, based on a large volume of historical crop data, as well as climate and 
pollution records in China since 1980. A long-term surface ozone concentration data set is developed from 
a machine-learning model and various observations. An assessment of four climate and pollution factors 
reveals the critical role of particulate and ozone pollution in regulating interannual variations of crop yields 
in China. During 2010–2018, we find that the particulate pollution mitigation outweighs the negative impacts 
of concurrent climate change, resulting in 0.5%–1.9% net yield increases nationwide, despite of the ozone 
increases in the North China Plain. Looking to the future, the impacts of climate change, particularly from 
surface temperature increase, will dominate over pollution factors and profoundly reduce future maize and rice 
yields by 0.6 to 2.8% 10 yr −1 by 2050. Our findings call for attention on the threat to future global food security 
from the absence of pollution mitigation and the persistence of global warming.

Plain Language Summary We capitalize on 39-year historical records of crop yields, climate 
variables, and pollution data to develop a robust crop yield prediction model. Utilizing this model, we show a 
critical role of particulate pollution in determining annual crop yields. Moreover, our analyses reveal that the 
recent abatement of anthropogenic emission in China results in a net crop gain, which masks the crop loss due 
to the increased temperature and precipitation. In the next 30 years, temperature dominant climate effects will 
emerge to steer the future trend of crop yields. The present study demonstrates the co-benefit of the recent 
air pollution control policy from agriculture and food perspectives. However, this benefit will eventually be 
diminished after the air pollution becomes alleviated in the full scale, while persisting or even exacerbated 
global warming will pose larger threat on the future food security.
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organic compounds in the presence of sunlight. Both precursor gases are of significant anthropogenic origin. On 
the global scale, regions with high levels of aerosol and ozone pollution are always collocated with croplands in 
rapidly developing countries. Therefore, effective controls of pollutant emissions in these regions have the great 
potential of alleviating crop yield loss due to air pollution (Burney & Ramanathan, 2014; Chameides et al., 1999). 
Meanwhile, it remains highly uncertain how air pollution and climate change compete or work together over the 
world's pollution centers with characteristic pollution evolutions in the past few decades (Wang et al., 2015).

China produces the largest amounts of rice and wheat in the world, and contributes approximately 28% and 17% 
of global production, respectively (Deng et al., 2019; H. Li et al., 2019; Y. Li et al., 2019). China is also the 
second-largest maize producer behind the United States, with more than an 18% share of production in the world 
maize economy (Meng et al., 2016). In the recent four decades, yields for staple crops in China have experienced 
decades of increases, mainly owing to technological innovation. Nevertheless, during the same period, there was 
about a 1°C increase in growing-season temperature over major crop regions globally, reducing relative yields 
by several percent (Zhao et al., 2017). The rapid urbanization, industrialization, and economic growth also led 
to serious regional haze in the majority of the country (Huang et al., 2015; Le et al., 2020). However, the recent 
decade starting from 2010 witnessed an unprecedented reduction in particulate pollution after a series of emis-
sion control policies and environmental protection laws by the Chinese government (Fan et al., 2020; Li, 2020; 
Sogacheva et al., 2018; Zhao et al., 2018). Particularly in 2013, China issued the nation's most stringent policy 
named as “Air Pollution Prevention and Control Action Plan.” Since then, the particulate matter (PM) concentra-
tion has dropped by up to 50% (Zhang et al., 2019). Several studies using ground observations and crop models 
showed that yields significantly suffered from climate warming and increasing aerosols and surface ozone in 
northern and eastern China (Tie et al., 2016; Wang et al., 2007; Yi et al., 2018, 2020; Zhao et al., 2020). However, 
a systematic understanding of the crop yield response to climate and air pollution is limited due to the sparse and 
short records of ground observations.

This paper assesses the individual and joint impacts of climate and air pollution on both historical and future 
crop yields. We focus on three most important staple crops in China, including rice, maize, and wheat. A robust 
statistical model is established that accounts for the spatiotemporal variations of surface air temperature, precip-
itation, aerosol optical depth (AOD), and surface ozone (O3) exposure, aiming to estimate the relative yield 
change (RYC) due to the individual and joint effects of those four factors. Similar yield models have also been 
used to study the response of yield to climate or pollution (Burney & Ramanathan, 2014; Butler et al., 2018; 
Hong et al., 2020; Lobell et al., 2011, 2020; McGrath et al., 2015; Tack et al., 2015). To our best knowledge, 
this study is the first effort to assess the yield benefit due to effective emission controls in China after 2010. 
We use long-term province-level yield annual reports with climate variables and air pollution data from various 
sources from 1980 to 2018. Lack of long-term surface ozone measurements has been an outstanding issue faced 
by large-scale data analysis studies. Here we employ the recently developed surface ozone data set in China, 
which is derived from a machine learning model that takes in ozone surface monitor data since 2013 as well as 
long term climate, emissions, and other auxiliary data set. Future yield changes by 2050 are assessed by feeding 
predicted climate and air pollution variations from the ensemble climate model projections to the established crop 
prediction models.

2. Materials and Methods
2.1. Observational Data

The annual crop production, harvested area, and yield data are from the National Bureau of Statistics of China 
(http://data.stats.gov.cn/). We use historical monthly temperature and total precipitation of 0.25° obtained from 
the fifth generation ECMWF reanalysis for the global climate and weather (ERA5) from 1980 to 2018 (Hersbach 
et al., 2019a, 2019b) The monthly surface maximum daily average 8 hr (MDA8) O3 product of 0.1° 𝐴𝐴 ×  0.1° is 
obtained from the China High Air Pollutants (CHAP) data set, which was predicted from the solar radiation 
intensity and surface temperature, together with other big data including observations, satellites, and models, by 
employing the space-time extremely randomized trees machine learning model (Wei et al., 2022). For surface 
ozone, we adopt a widely used MDA8 index to reflect ozone exposures on crops over the growing season. 
Such an index is highly correlated with the ozone cumulative index AOT40, which is a cumulative indicator 
of hourly ozone concentrations exceeding 0.04 ppm. Based on the ground-based observations, MDA8 ozone 
is highly correlated with AOT40 on the monthly basis, with R 2 of 0.92 (Appendix, Figure S1 in Supporting 
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Information S1). The historical monthly AOD at 550 nm data of 0.625 𝐴𝐴 ×  0.5° is obtained from the Modern-Era 
Retrospective analysis for Research and Applications version 2 (MERRA-2) (Global Modeling and Assimilation 
Office, 2015), as there is no satellite record providing continuing AOD measurements on the monthly basis since 
1980. We validate the MERRA2 AOD by the retrieved AOD from AVHRR (Advanced Very High Resolution 
Radiometer) which is one of the earliest satellite instruments, whenever the product is available (Appendix, 
Figure S2 in Supporting Information S1). AOD measures the extinction of solar radiation by aerosol particles, 
for example, smoke, pollution, and dust. We hypothesize that aerosols exert impacts on crops mainly through 
the interference with atmospheric radiative fluxes, so the column-integrated quantity AOD is appropriate to be 
used in our analysis. The planted distribution of each crop at 10 km is generated by Spatial Production Alloca-
tion Model (SPAM) for 2010 (International Food Policy Research Institute, 2019). The crop distribution is then 
resampled to match the corresponding spatial resolution of temperature, precipitation, AOD, and surface ozone. 
The province-level observations of these four variables are averaged over grids with planted fraction greater than 
2.5% of each crop.

2.2. Statistical Yield Model

To explore crop responses to various factors, we develop a statistical yield model for each crop using the follow-
ing panel regression approach (Equation 1):

log
(

cropyield�,�
)

= �0 + �temp ⋅ temp�,� + �precip ⋅ precip�,� + �AOD ⋅ AOD�,�

+��3 ⋅ �3�,� + �1(�) + �2(�) + ��,�
 (1)

where 𝐴𝐴 temp , 𝐴𝐴 precip , 𝐴𝐴 AOD and 𝐴𝐴 𝐴𝐴3 are the growing-season averaged 2-m temperature, daily precipitation, AOD, and 
MDA8 O3, respectively, during 1980–2018 (Appendix, Figure S3 in Supporting Information S1). Following the 
crop calendar for China reported by the United States Department of Agriculture, the growing season is defined 
as 3 months before the harvest season, which refers to June—August for single-season rice, July—September 
for maize and January—April for winter wheat. The subscripts 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are indices for province and year. 𝐴𝐴 𝐴𝐴temp , 

𝐴𝐴 𝐴𝐴precip , 𝐴𝐴 𝐴𝐴AOD and 𝐴𝐴 𝐴𝐴𝑂𝑂3
 are slope coefficients for each corresponding variable. 𝐴𝐴 𝐴𝐴0 is the regression intercept. We use 

the growing-season averaged climate and pollution variables instead of monthly averages to avoid the collinearity 
among monthly variables, which will lead to large uncertainty in the model fitting. There are steady increases in 
yearly yields throughout recent decades, which is likely due to the technological innovation in seeding, irrigation, 
and planting skills, as well as policy practices (Appendix, Figure S4 in Supporting Information S1). To account 
for the abovementioned time-varying factors contributing to the increasing yields, we introduce a set of yearly 
variables 𝐴𝐴 𝐴𝐴1(𝑦𝑦). In addition, to account for the spatial heterogeneity of some other impacts (e.g., soil and water 
qualities), provincial variables 𝐴𝐴 𝐴𝐴2(𝑖𝑖) are used. 𝐴𝐴 𝐴𝐴 is the residual term.

We use linearmodels package in Python to fit the yield model, which also reports the significant levels (p-value) 
of regression coefficients and the model performance (R 2) (See details in Appendix, Table S1 in Supporting 
Information S1). The predicted crop yields by the regression models generally agree well with the reported yield 
(Figure 1), with the correlation coefficient square (R 2) being 0.79, 0.81, and 0.89 for rice, maize, and winter 

Figure 1. The correlation between predicted yield versus observed yield for maize (left), single-season rice (middle), and winter wheat (right).
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wheat, respectively. There are no obvious patterns between residuals versus fitted values, which validates the 
good performance of the chosen model (Appendix, Figure S5 in Supporting Information S1). It should be noted 
that our model assumes equal weight to different provinces regardless of their share in the national crop produc-
tion. Therefore, our estimation is interpreted as an overall average impact.

We calculate 90% confidence intervals (CIs) of each coefficient. They are derived from the 5th and 95th percen-
tiles by repeating the model 1,000 times using 75% bootstrap sampling of provinces for each year. We also use 
dominance-analysis package in Python to calculate the fractional contribution of different factors based on the 
residuals of the base model, which only includes yearly and provincial dummies. Dominance analysis calculates 
the dominance of one predictor over another by comparing their additional contributions to model performance 
in terms of R 2 across all subset models (Budescu, 1993).

2.3. Relative Yield Changes Due to Climate and Pollution Factors

We estimate (RYCs, unit: %) in 2006–2010 (or 2014–2018) compared to 1980–1984 (or 2006–2010) due to 
individual factors for the largest 10 production provinces of each crop. We choose 2010 as a breakpoint because 
of the increasing trend of AOD before 2010 and the reversed pattern afterward, which motivates us to quantify 
the different impacts of aerosol pollutants to crop yields before and after 2010. RYC is derived from the modeled 
yield difference between the predictors using the averaged historical level during 2006–2010 (or 2014–2018) 
and the hypothetical scenario with the same level during 1980–1984 (or 2006–2010). The 90% CIs of these RYC 
estimates are the 5th and 95th percentiles determined using the bootstrapping method, with 1,000 crop models 
generated from 75% observations each year.

The country-averaged yield predictions are estimated by the statistical yield model holding at the current tech-
nology stage, which is denoted as A0. To evaluate the contribution of a certain factor, we simulate the yield by 
fixing this factor at the same level as in 2015–2020, represented by A1. Then, we can isolate the corresponding 
contribution using the difference A1–A0. The uncertainty of future projections is obtained by resampling 1,000 
times the yield model with bootstrapping from historical observations.

2.4. Possible Interaction Terms and Non-Linear Fitting in the Statistical Model

Previous literature have demonstrated that there may exist interactive relationships among the variables in our 
model (Burney & Ramanathan, 2014; Hong et al., 2020). For example, the change of temperature may positively 
affect the level of O3, while AOD could decrease when precipitation increases due to the wash-out effect. There-
fore, we add interaction terms in our base model (Equation 2), and the results are shown in Appendix, Table S2 
in Supporting Information S1. There is no significant increase in R 2 after adding interaction terms across all three 
crops in Equation 2, implying the predictability cannot be enhanced by considering the two interactive relation-
ships mentioned above.

log
(

cropyield�,�
)

= �0 + �temp ⋅ temp�,� + �precip ⋅ precip�,� + �AOD ⋅ AOD�,� + ��3 ⋅ �3�,�

+�inter1 ⋅
(

AOD�,� × precip�,�
)

+ �inter2 ⋅
(

�3�,� × temp�,�
)

+ �1(�) + �2(�) + ��,�
 (2)

The second alternative model we choose is to add nonlinear trend variables into the regression (Equation 3). 
Instead of using yearly dummy variables, we test the model performance of representing the technological inno-
vation and other time-varying effect as a combination of first and second order of polynomials regarding to 𝐴𝐴 year . 
The rationale is that these time-varying impacts may not be linear across years. When new technology is adopted 
to crop planting, its positive impact on RYC usually increases at first couple of years and then saturates. The 
corresponding results are presented in Appendix, Table S3 in Supporting Information S1. We find that the first 
order polynomial year variable is positive, indicating that the yield is increasing along the time. The quadratic 
year variable is negative for all crops, which implies that the increasing rate of the yield is becoming level off.

log
(

cropyield�,�
)

= �0 + �temp ⋅ temp�,� + �precip ⋅ precip�,� + �AOD ⋅ AOD�,�

+��3 ⋅ �3�,� + �year ⋅ � + �year2 ⋅ �2 + � (�) + ��,�
 (3)
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We find that these two alternative models do not make a significant difference in the model's predicting capa-
bility, lending support to the robustness of the modeled crop responses. To reduce the arbitrariness of the fitting 
form and to better interpret the result, we keep one variable in one term of the regression model.

3. Results
3.1. Historical Yield Response to Climate and Pollution Factors

Annual production and yields (production per area) of the three most important staple crops are analyzed in 
the 31 provinces of China from 1980 to 2018. There are two rice cropping systems in China, single-season, 
and double-season. The single-rice system (referred to as rice hereafter), which accounts for more than 65% of 
total rice production in China, is the main focus of our study. Figure 2a shows that a high planted fraction of 
rice is concentrated in southeastern China, particularly in the Yangtze River Basin. During 1980–2018, there is 
a quasi-linear increase in the rice production in China, which is believed to be mainly driven by the technolog-
ical advancement (Peng et al., 2009). Maize is mainly planted in the North China Plain and Northeast of China 
(Figure 2a). The time evolution of total maize production exhibits two stages, and it experienced a faster increase 
in maize production after 2005 than before. Both spring wheat and winter wheat are planted in China, and 
winter wheat production accounts for around 90% of total China wheat production (Sun et al., 2018). The North 

Figure 2. Geospatial maps and interannual trends of different crop types and corresponding pollution levels for peak growing seasons in China. (a) Planted fraction 
(unit: %) of each 10 × 10 km cell for rice (left), maize (middle) and wheat (right). (b) The climatology of MERRA2 aerosol optical depth (AOD) at 550 nm for 
peak growing seasons during 2006–2010. (c) The climatology of the surface ozone MDA8 for peak growing seasons during 2006–2010. The peak growing season 
is defined as June-August for rice, July-September for maize and January-April for winter wheat. The inserts show the times series of the total crop production 
(unit: 𝐴𝐴 × 10 Megatonnes) (a), AOD (b), and near surface ozone (c) for individual crop type during the peak growing season from 1980 to 2018. The time series of 
peak growing-season temperature, precipitation and annual total harvested area and country-averaged yields for three crops can be found in Appendix, Figure S7 in 
Supporting Information S1.
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China Plain is the major wheat planted area (Figure 2a), which produces more than 60% of total national wheat 
production (Lu & Fan, 2013). Even though the winter wheat total production also increased along with time, the 
earlier time period in the 1980 s had an even larger increase rate than in recent years. There was even a decline of 
production in the early 2000 s, due to the reduction in harvest area for winter wheat after 2000 (Appendix, Figure 
S4 in Supporting Information S1).

We further analyze spatial maps and temporal evolutions of the AOD and surface O3 during the growing season 
of each crop type during 1980–2018. As shown in Figure 2b, the areas of high crop fractions are always accom-
panied by high AOD, such as the Yangtze River Basin for rice, North China Plain and Northeast China for maize, 
and central East China for wheat. The mean AOD during the growing season is 0.34, 0.35, and 0.42 for rice, 
maize, and wheat, respectively. Similarly, surface O3 and crop fraction covary spatially, implying the potential 
influence of pollution on crop production. The mean MDA8 ozone during the growing season is 47.1, 49.7, and 
37.8 ppbv for rice, maize, and wheat, respectively. The historical changes of AOD over different crop-dominant 
regions share the same key feature: a general increasing trend during 1980–2010, followed by a reduction in the 
recent decade. Such an AOD evolution characteristic reflects the implementations of emission control policies 
at different time periods in China. The trends of surface ozone are complicated (Figure 2c). Generally, there are 
small increasing trends before 2013, followed by an abrupt and steep increase since 2014. The most recent abrupt 
increases have been well observed (Lobell & Burney, 2021), but the main cause remains elusive, owing to the 
fact that O3 production involving non-linear atmospheric chemistry can be at different regimes in urban and rural 
areas, and O3 formation has a complex relationship with aerosols (Wu et al., 2020).

The crop yield models (Equation 1) derived from historical data show significant impacts from both air pollution 
and climate change (Figure 3). The crop yield is reduced by 1.7%–5.9% per 0.1 increase in AOD (Figure 3a), 
corroborating the hypothesis that particulate pollution reduces the solar radiation reaching the surface and lowers 
plant photosynthesis (Lobell & Burney, 2021; Tie et al., 2016). The winter wheat exhibits the largest sensitivity 
to particulate pollution, likely because northern China is more polluted in the wintertime when AOD variation is 

Figure 3. (a) Crop yield responses to air pollution and climate variations. The average yield response to unit change, that is, 0.1 increase of aerosol optical depth 
(AOD), 5 ppbv increase of surface zone, 1°C warming, and 1 mm increase of daily precipitation over the peak growing season from 1980 to 2018. The bar chart is 
plotted with diamond symbols (median estimates) and error bars (90% confidence intervals, CIs) by bootstrap resampling the model 1,000 times. (b) The percentage 
contribution of AOD, surface ozone, temperature, and precipitation to the spatial variations of yields for each crop using a dominance analysis. Blue, orange, and green 
color corresponds to maize, winter wheat, and rice, respectively.
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larger. Both maize and rice show significant yield reduction by ozone, and the reduction rate per 5 ppbv MDA8 
ozone increase is larger for maize. The response of wheat to ozone bears a large uncertainty bar, likely due to the 
fact that the NCP, where wheat is mainly planted, experienced dramatic ozone change in recent years. A warmer 
near-surface air temperature results in yield loss for all crop types, with the largest response for winter wheat and 
the smallest and least significant sensitivity for rice. Our predicted magnitude of crop yield responses to temperature 
increase are consistent with previous assessments based on field warming experiments in China (Zhao et al., 2016) 
as well as a chemistry-crop-climate coupled model (Zhang et al., 2021). The crop responses to precipitation are 
complicated. Our result shows that every 1 mm precipitation per day can result in about 5.4% winter wheat yield 
loss during the growing season. Further analyses reveal that there are diverse responses of winter wheat to precip-
itation in the top six provinces in term of total yield. Our reduced regression models ran on individual provinces 
with time-fixed effects removed (Appendix, Table S4 in Supporting Information S1) show that, in the relatively 
wet provinces such as Anhui and Jiangsu in southern China, the precipitation has significantly negative impact on 
winter wheat yield (Li et al., 2010; Song et al., 2019). Precipitation provides moisture in the air and soil needed by 
plants, but is also accompanied with enhanced cloud cover and reduced radiation reaching the surface. Excessive 
precipitation can further cause devastating fungal pathogens for winter wheat near the end of the growing season 
(Wiik & Ewaldz, 2009). Such effects can be profound in Eastern China, since the end of the winter wheat growing 
season overlaps with the onset of the East Asian Summer Monsoon (Li et al., 2016). In contrast, maize and rice are 
less sensitive to precipitation changes, showing a small enhancement in yields.

To further reveal the relative importance of each factor with respect to the interannual variation of each crop, 
we conduct a dominance analysis and calculate the percentage contributions of different factors of interest to 
the residual of the base model. Among four targeted factors, precipitation is the most important one for maize 
and rice, accounting for about 50% of interannual variability in the detrended yield data (Figure 3b). The large 
fluctuation of precipitation over the agricultural regions in China are closely linked with the characteristics of 
East Asia Summer Monsoon, whose intensity is subject to many climate variabilities, such as El Niño–Southern 
Oscillation. Aerosol is the predominant factor for the winter wheat yield by explaining 63.4% of the interannual 
variability in the detrended data. Temperature and ozone pollution are relatively less important factors. Together, 
they can explain the rest 20%–25% variability. The results reinforce the notion that air pollution, particularly 
through anthropogenic aerosols, is crucial for crop production.

3.2. Agricultural Benefits From Pollution Mitigation After 2010

The year 2010 apparently represents a tipping point of particulate pollution in China because of the increasing/
decreasing trend of AOD before/after that year. We focus on this recent pollution transition period and estimate 
RYC by different factors for the whole nation as well as the largest 10 production provinces of each crop. We 
group the responses to surface temperature and precipitation into the climate effect and the responses to AOD and 
ozone concentration into the pollution effect. RYC is calculated by the predicted yields under different hypothet-
ical climate and pollution scenarios in our panel regression models. For example, to assess the influence of the 
recent pollution mitigation, we contrast the predicted crop yields using different AOD and ozone concentrations 
between two time periods, 2014–2018 and 2006–2010 and hold all other variables unchanged at the 2006–2010 
levels. As shown in Figure 4, from 1980 to 2010, both climate and pollution factors resulted in the reduction 
of the yields, but the impact of pollution is more pronounced than that of climate variations. Three crop types 
generally share the same responses. Nationwide, pollution caused by the RYC is −4.8%, −8.5%, and −17.1% for 
rice, maize, and winter wheat, respectively, while climate induced RYC is only −1.4%, −1.8%, and −1.6% for 
three crops accordingly. The top 10 productive provinces for each crop also agree with each other on the signs of 
the effects but differ slightly in magnitude. In contrast, the effects of both pollution and climate were drastically 
changed in the second decade of the 21st century.

Owing to the effective emission control in China, the particulate pollution level significantly dropped in the 
growing seasons of three crops, resulting in increases in the national crop yield when comparing 2014–2018 
to 2006–2010. However, due to the deteriorated ozone pollution after 2013 in the North China Plain, the crop 
yield gain by the PM mitigation was largely offset. Nationwide, the RYC induced by pollution mitigation is still 
positive, about 1.1%, 1.3%, and 2.4% for rice, maize, and wheat, respectively. For those provinces located in the 
North China Plain, such as Henan, Shandong, and Shanxi, a net reduction of maize yield by pollution factors is 
found after 2010, as the ozone pollution impacts outweigh that of the PM reduction. Climate-induced changes 
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in crop yield during the same periods are insignificant for rice and winter wheat regions, leaving the pollution 
mitigation effects to dominate the crop yield variations. Most wheat-prevalent provinces experienced a moder-
ate reduction in yield under climate change during 2006–2018, but the corresponding RYC is generally smaller 
than 2%. Overall, the reduction in aerosols in recent years stands out as a key driver of the crop variations on the 
interannual time scale.

3.3. Predicted Yield Changes by 2050

Capitalizing on the crop prediction models, we assess the impacts of future climate and pollution variations on the 
crop yields by 2050. Global climate simulations with various emission scenarios have been widely used to assess 
the societal and economic impacts by climate change (Shindell et al., 2021). Here the ensemble means of different 
models of Coupled Model Intercomparison Project (Phase 6, CMIP6) with the emission scenario SSP5-8.5 are 
used to reflect the future climate and pollution scenarios (Appendix, Figure S6–S8 and Table S5 in Support-
ing Information S1). The SSP5-8.5 represents the scenario with rapid and unconstrained growth with a fossil 
fuel-based economy, and will lead to ∼2°C increase in global temperature in the 2050s compared to 1995–2014 
(Li et  al.,  2018). The future projections aim to isolate the effects of temperature, precipitation, aerosol, and 
surface ozone levels on future yields under the assumption that the technology is held as equivalent to the current 
years (2015–2020). Note that hourly surface O3 concentrations are not available from the CMIP6 models to calcu-
late MDA8. According to the ground-based observations, O3 MDA8 is linearly correlated with the O3 monthly 

Figure 4. Relative yield change (RYC) attributed to climate and pollution changes for (a) rice (b) maize and (c) winter wheat. The climate change is the net effect of 
temperature and precipitation variations, and the pollution change concerns aerosol optical depth (AOD) and surface ozone together. For left panels, RYC is calculated 
as (Model2006–2010 avg − Baseline2006–2010 avg)/Baseline2006–2010 avg. Model2006–2010 avg is the estimated crop yield from the panel regression model using the historical 
2006–2010 averaged climate and pollution records, and Baseline2006–2010 avg is estimated from the actual pollution (climate) levels but held with the same climate 
(pollution) scenario in 1980–1984. Nationwide changes are calculated as the sums of province values weighted by harvested areas. RYC is plotted as black diamonds 
(median estimates), with dark 5%–95% percentile error bars calculated by bootstrapping the model 1,000 times.
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mean (MM) with R 2 at about 0.92 (Appendix, Figure S9 in Supporting Information S1), so we convert the O3 MM 
in the CMIP6 model outputs to MDA8 following the empirical relationship: MDA8 = MM × 1.3 + 6.2.

Anthropogenic aerosols are projected to be continuously reduced in China by 2050. Thus, three crops all show 
a significant increasing trend in response to the aerosol variations (Figure 5a). Surface ozone level is projected 
to increase in the near future (Figure 5b), likely due to the reduction in the ozone precursor NOx and consequent 
ozone enhancement via the non-linear ozone chemistry (Le et  al., 2020) as well as the effect of temperature 
increase. For rice by 2050, the ozone-induced yield loss (−1.1%) is close to the aerosol-induced yield gain 
(+1.9%). Future temperature increase is found to be the most critical factor for all three crop types (Figure 5c). It 
can cause trends of −0.8%, −2.5%, and −0.6% per decade for rice, maize, and wheat, respectively. Future precip-
itation changes will not impose a noticeable influence on the crops (Figure 5d). Taking four factors together, for 
rice and maize, the temporal evolutions and trends under the total effects largely resemble those of the temper-
ature changes during 2020–2050 (Figure 5e). Therefore, the regime shifts after 2020 in the way that the climate 
variability, particularly the global warming, dominates over the pollution factors and profoundly determines the 
future rice and maize yields. For winter wheat, as it exhibits large sensitivity to aerosols (Figure 3b), its net yield 
trend during 2020–2050 is positive, mainly determined by the future aerosol reduction.

Figure 5. The projected future changes in country-level yield of rice, maize and winter wheat in response to (a) aerosol, (b) surface ozone (c) temperature (d) 
precipitation changes as well as (e) their total effects under RCP8.5. The future change in yield is estimated from the difference between projected growing-season 
climate or pollution scenarios in 2021–2050 and the averaged scenarios in 2015–2020. The yield change is plotted as points (median estimates), with dark and light 
shaded areas (25%–75% and 5%–95% percentile estimates) calculated by bootstrapping the model 1,000 times.
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4. Conclusion and Discussion
In the present study, we develop robust statistical models to predict three predominant crops in China, that is, 
rice, maize, and winter wheat. Four key factors are taken into account when predicting crop yields, including the 
temperature, precipitation, AOD, and surface ozone over the growing seasons. Time-varying factors contributing 
to the crop increases over the recent decades are also accounted for in the models, such as technological inno-
vations and policy practices. To overcome the sparsity of the ground-level ozone observations over the 40-year 
time period, we employ a machine learning model and multiple sources of ozone, meteorological factors, as well 
as emissions since 1980. The ozone prediction from the machine-learning model is reliable according to the 
cross-evaluation by the reserved ozone measurements. The statistical models exhibit high fidelity in reproducing 
the yields of three prevalent crops in China. With moderate uncertainty, the models help us quantify the crop yield 
responses to different climate and pollution factors during different time periods in the past and future. We find 
the critical role of particulate pollution in regulating interannual variations of crop yields in China. Moreover, 
the recent abatement of anthropogenic emission results in a net crop gain, which masks the crop loss due to the 
increased temperature and precipitation.

The findings of alternative models with different mathematical formats are consistent with our main conclusions 
derived from previous model. Moreover, we assessed the collinearity of all variables in Appendix, Table S6 in 
Supporting Information S1. These correlations are not strong to undermine our conclusions. Overall, our findings 
in this alternative model are consistent with previous models, AOD and O3 negatively affect RYC for all three 
crops.

Some other factors related to crop yield deserve further investigations, such as CO2 fertilization effect and nitrogen 
deposition. With the elevated atmospheric CO2 concentrations, plant photosynthesis and crop yield is expected 
to increase (Ainsworth & Long, 2004). Meanwhile, C3 crops (i.e., rice and wheat) typically show larger increase 
in water use efficiency than C4 crops (i.e., maize) with higher surrounding CO2 concentrations. Meanwhile, 
nitrogen deposition is also likely to increase crop yields to a lesser extent (Lombardozzi et al., 2018). Additional 
reactive nitrogen has been produced due to human activities and contributed to the increase of terrestrial carbon 
sink (Wang et al., 2017). Since CO2 concentrations and regional nitrogen availability has increased with time in 
the recent four decades, the yield benefit due to CO2 fertilization and nitrogen deposition can then be captured by 

𝐴𝐴 𝐴𝐴1(𝑦𝑦) in our statistical model. However, it remains unclear how the rate of CO2 fertilization and nitrogen depo-
sition will change in different regions in the future. Therefore, a better understanding of both effects in different 
cropping systems under various environmental conditions are needed to constrain our future predictions.

Our future predictions are based on historical response of crop yield to pollution and climate changes. Note that 
when the air becomes clean and background aerosol concentration becomes low, additional removal of aerosols 
may result in a negative effect on crop yield due to the absence of diffuse light fertilization. Such an effect may 
not be embedded in the historical data over certain regions. Also, some papers reported that the sensitivity of 
yield to drought is becoming larger accompanied with higher planting density under global warming (Lobell 
& Burke, 2008; Lobell et al., 2020). Meanwhile, the uncertainty in the future yield response to the warming 
is expected to be larger than precipitation due to the greater magnitude of temperature change relative to the 
year-to-year variations in precipitation (Lobell & Burke, 2008). Future studies are needed to combine yield and 
temperature data of different scales, that is, site and region, to explore explicitly the relationships between warm-
ing and yield to close the yield gap in the changing climate.

In summary, our finding demonstrates the co-benefit of the recent air pollution control policy from agriculture 
and food perspectives. However, such a benefit will be significantly offset or even outweighed by the exacerbated 
global warming. Hence, it will pose a great threat to global food security in the future, along with the growth of 
the world population. Our study calls for full consideration of air pollution impacts on the agriculture and crop 
yield on both interannual and decadal time scales when projecting future food production. Additionally, accurate 
long-term projections of particulate and ozone pollution are also in a pressing need to assess the future crop yield 
and to develop adaptation strategies.
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Data Availability Statement
The monthly temperature and precipitation products used in this study are publicly available at Copernicus 
Climate Change Service (https://cds.climate.copernicus.eu/cdsapp%23%21/dataset/reanalysis%2Dera5%2Dsin-
gle%2Dlevels%2Dmonthly%2Dmeans%3Ftab%3Dform). The monthly aerosol optical depth (AOD) reanalysis 
product is available at Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.
gov/datasets/M2TMNXAER_5.12.4/summary). The monthly surface ozone data set is from the ChinaHighAir-
Pollutants (CHAP) data set (https://zenodo.org/record/5765588#.Yo60MJPMK3I). The Spatial Production 
Allocation Model crop spatial distribution is available at https://s3.amazonaws.com/mapspam/2010/v2.0/geotiff/
spam2010v2r0_global_phys_area.geotiff.zip. The annual province-level crop statistics are from National Bureau 
of Statistics of China (NBSC) (https://data.stats.gov.cn/english/adv.htm?cn=C01). NBCS requires registration to 
obtain a free account, then annual statistics report can be found in the search bar and downloaded as CSV files. 
The processed data used in this study and the code of our statistical models can be downloaded from https://doi.
org/10.5281/zenodo.7232790.
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