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• Moderate and extreme temperatures
cause substantial stroke subtypes death
burdens.

• Ischemic strokemortality is more attribut-
able to cold than Hemorrhagic stroke.

• The higher the latitude, the less adaptable
to heat based on multicenter findings.

• Greenness alleviate stroke mortality risks
from heat using NDVI, SAVI, EVI as expo-
sures.
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Background: Evidence is scant on the relative and attributable contributions of ambient temperature on stroke subtypes

mortality. Few studies have examined modification effects of multiple greenness indicators on such contributions, es-
pecially in China. We quantified the associations between ambient temperature and overall, ischemic, and hemor-
rhagic stroke mortality; further examined whether the associations were modified by greenness.
Methods:We conducted a multicenter time-series analysis from January 1, 2013 to December 31, 2019. we adopted a
distributed lag non-linear model to evaluate county-specific temperature-stroke mortality associations. We then ap-
plied a random-effects meta-analysis to pool county-specific effects. Attributable mortality was calculated for cold
and heat, defined as temperatures below and above the minimum mortality temperature (MMT). Finally, We con-
ducted a multivariate meta-regression to determine associations between greenness and stroke mortality risks for
; MMT, minimummortality temperature; NDVI, normalized difference vegetation index; SAVI, soil adjusted vegetation index; EVI, en-
, attributable fraction; CI, confidence interval; eCI, empirical confidence interval; DLNM, distributed lag non-linear model; BLUP, best
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cold and heat, using normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and en-
hanced vegetation index (EVI) as quantitative indicators of greenness exposure.
Results: In the study period, 138,749 deaths from total strokewere reported: 86,873 ischemic and 51,876 hemorrhagic
stroke. We observed significant W-shaped relationships between temperature and stroke mortality, with substantial
differences among counties and regions. With MMT as the temperature threshold, 17.16 % (95 % empirical CI,
13.38 %–19.75 %) of overall, 20.05 % (95 % eCI, 16.46 %–22.70 %) of ischemic, and 12.55 % (95 % eCI, 5.59 %–
16.24 %) of hemorrhagic stroke mortality were attributable to non-optimum temperature (combining cold and
heat), more mortality was caused by cold (14.94 %; 95 % eCI, 11.57 %–17.34 %) than by heat (2.22 %; 95 % eCI,
1.54 %–2.72 %). Higher levels of NDVI, SAVI and EVI were related to mitigated effects of non-optimum tempera-
tures—especially heat.
Conclusions: Exposure to non-optimum temperatures aggravated stroke mortality risks; increasing greenness could al-
leviate that risks. This evidence has important implications for local communities in developing adaptive strategies to
minimize the health consequences of adverse temperatures.
1. Introduction

In 2019, strokewas the second—leading cause of deathworldwide after
ischemic heart disease (Roth et al., 2020). Age-standardized mortality and
disability-adjusted life year (DALY) rates due to stroke have decreased;
however, the global burden of stroke has increased substantially from
2013 to 2019. That development is evidenced by a 70 % increase in abso-
lute numbers, a 43 % increase in mortality, and a 36 % increase in
DALYs; the bulk of the burden occurred in low- and lower-middle-income
countries (GBD 2019 Stroke Collaborators, 2021). As the world's largest de-
veloping country, China has a disproportionately higher stroke burden: in
2018, stroke accounted for 22.6 % of the total mortality (Wang et al.,
2020). From 1990 to 2019, stroke-related mortality increased by 59 %,
with a greater increment in ischemic stroke (171.1 %) than hemorrhagic
stroke (37.4 %) (Ma et al., 2021).

To reduce the growing burden of stroke, it is essential to identify mod-
ifiable risk factors. Epidemiological evidence suggests that approximately
90 % of the stroke burden is attributable to lifestyle and environmental ex-
posures (GBD 2019 Risk Factors Collaborators, 2020; Zhou et al., 2019).
Well-known conventional factors, such as high blood pressure, smoking,
and unhealthy dietary habits, can increase the risk of stroke (Aigner et al.,
2017; van Alebeek et al., 2018; Xia et al., 2019). However, the associations
and mechanisms between environmental risk factors and stroke mortality
have not been fully elucidated (Chen et al., 2013a, 2013b; Cheng et al.,
2019; de Bont et al., 2022). World Health Day on April 7, 2022, was an es-
sential reminder that the global crisis is entwined with climate change–
primarily in the form of global warming and ongoing climate, which are in-
creasing various health risks, including the burden of disease (The Lancet
Public Health, 2022). Nevertheless, the association and mechanism of am-
bient temperature with the burden of stroke deaths has not been well un-
derstood.

On the one hand, although previous studies have largely agreed that
both extreme cold and extreme heat affect overall stroke mortality, their
relative importance is still controversial and other details of the association
remain unexplored (Chen et al., 2013a, 2013b; Mazidi and Speakman,
2020; Polcaro-Pichet et al., 2019; Saucy et al., 2021; Yang et al., 2019;
Zafeiratou et al., 2021). For example, previous research has mostly focused
on extreme events, neglecting the contribution of moderately low and high
temperatures. The association has been quantified in terms of risk ratio,
e.g., relative risk (RR) and odds ratio (OR); however, few studies have pro-
vided estimates of the attributable burden, such as attributable fraction
(AF) (Lei et al., 2022; Luan et al., 2017; Ma et al., 2020). Moreover, little re-
search has examined the associations between ambient temperature and
subtypes of stroke (i.e., ischemic and hemorrhagic stroke)with high hetero-
geneity across the results. For example, one study found that both low and
high temperatures increased the mortality risks of stroke subtypes; it did so
based on 272 cities in China: it reported higher AF values for hemorrhagic
stroke (18.10 %, empirical confidence interval [eCI], 15.30 %–20.45 %)
than for ischemic stroke (14.09 %, 95 % eCI: 10.90 %–17.04 %) owing to
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non-optimum temperature (Chen et al., 2018). However, heat was found
to have no effect on ischemic stroke in Hong Kong (Goggins et al., 2012).
A beneficial effect of heat on hemorrhagic stroke mortality was observed
in four cities in South Korea (Lim et al., 2013). One study of 155 cities in
the United States reported that cold and heat were unrelated to stroke sub-
types (Cowperthwaite and Burnett, 2011).

On the other hand, studies have demonstrated that the temperature-
mortality association could be modified by various environmental charac-
teristics, including greenness, which has been shown to alleviate heat stress
in different populations (Dang et al., 2018; De Lombaerde et al., 2022;
Zellweger et al., 2019). Vegetation can absorb solar radiation to achieve a
cooling effect on the surroundings; living areaswith higher greenness levels
could increase opportunities for physical activity, enhance social interac-
tion, relieve stress, and reduce air pollution, which may buffer the adverse
impacts of cold and heat temperatures (Avellaneda-Gómez et al., 2022;
Kondo et al., 2018; Zhang et al., 2020). However, potential modifying ef-
fects of greenness on heat-related RRs were observed in limited studies
using only one greenness indicator, i.e., normalized difference vegetation
index (NDVI). For example, one report in South Korea used NDVI to assess
the modified effect of greenness on the temperature-mortality association;
it found that less vegetation had a stronger effect of heat on mortality
(Son et al., 2016); An investigation in Thailand observed that each 0.1-
unit increase in NDVI was associated with a 0.47 % [−0.47 % (95 % CI:
−0.89 %, 0.02 %)] reduction in cardiovascular mortality burden caused
by non-optimal temperature (Denpetkul and Phosri, 2021). NDVI is the
best indicator of vegetation growth status and vegetation cover; it is the
most used global-based index. That is partly due to the ability of NDVI to
offset some of the influences of radiation variations associated with atmo-
spheric conditions caused by solar angles, satellite observation angle, to-
pography, and clouds or shadow. However, the sensitivity of NDVI to soil
and canopy remains a serious challenge (Rhew et al., 2011; Donovan
et al., 2022). Thus, the soil-adjusted vegetation index (SAVI) and enhanced
vegetation index (EVI) have received attention. SAVI can minimize soil
background influence on the vegetation signal (Zhen et al., 2021). EVI is
considered an improvement to NDVI in that it can simultaneously correct
for atmospheric aerosols or residual aerosols scattering and decouple can-
opy background, thereby improving sensitivity for high biomass regions
and vegetation monitoring capability (Liu and Huete, 1995).

In the context of a global climate change thatmay lead to amore burden
of stroke deaths, investigating an effective adaptation and mitigation strat-
egy would have significant public health implications. From the above evi-
dence, it is reasonable to assume that higher greenness levels are associated
with lower RRs of mortality for cold- and heat-related stroke. To the best of
our knowledge, however, no studies have combinedNDVI, SAVI, and EVI to
estimate the effect modifications of greenness on temperature-stroke mor-
tality in China and enhanced the robustness of the results.

Thus, to quantify the corresponding attributable burdens caused by cold
and heat based on multicenter, we examined the associations between am-
bient temperature and stroke mortality at county, regional and provincial
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levels in China.Moreover, we investigatedwhether greenness (NDVI, SAVI,
and EVI) could have potential effect modifications on those associations.

2. Material and methods

2.1. Study sites

Located on the eastern coast of China, Shandong Province has a total
land area of 158,000 km2 and population of approximately 101.53 million
in 17 cities. The province has a complex landscape: the east is mainly the
hilly area of Shandong Peninsula; the center is mountainous; and the north-
west and southwest are both plains. Shandong has a warm temperate mon-
soon climate with a short spring and autumn as well as a long winter and
summer; however, this has regional variations owing to geographic and en-
vironmental factors, such as differences in landform and sea-land distribu-
tion. Specifically, the average temperature increases gradually from the
east coast to the southwest; regional differences in average temperature
are greater between the east and west than between the north and south.
Accordingly, we selected 19 counties from Shandong Province by stratified
random sampling according to the above characteristics. We divided the 19
countries into four regions: central (Feicheng, Huaiyin, Laiwu, Yiyuan,
Zhangdian), Shandong Peninsula (Fushan, Gaomi Penglai, Shouguang,
Wenden); southwest (Chengwu, Junan, Mudan, Xuecheng, Zoucheng)
and northwest (Bincheng, Gaotang, Leling, Wucheng) (Zhu et al., 2016).
The locations of the study areas are appeared in Fig. 1.

2.2. Data collection

We obtained daily stroke death records (January 1, 2013 to December
31, 2019) of the 19 counties from the Death Register system of Shandong
Provincial Center for Disease Prevention and Control (CDC). In China,
Fig. 1. The geographical location of the 19 c
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death certificates are first completed by hospital doctors at the time of
death; they are then reported to the CDC via the Internet, which better en-
sures accuracy of the data. The death information mainly includes age, sex,
date of death, and primary cause of death coded according to the Interna-
tional Classification of Diseases, 10th Revision (ICD–10). As in a previous
study (Zhou et al., 2017), we categorized the stroke mortality data into
three cause-specific counts following ICD-10: overall stroke deaths (codes
I60–I67); ischemic stroke deaths (codes I63–I67); and hemorrhagic stroke
deaths (codes I60–I62).

Based on the daily source data of total 131 meteorological monitoring
stations in Shandong Province and its neighboring provinces (i.e., Anhui,
Beijing, Hebei, Henan, Jiangsu, Shanxi, Shanghai, and Tianjin) from the
China Meteorological Data Sharing Service System (http://data.cma.cn/),
we applied a thin-plat smooth spline function to interpolate daily average
temperature and relative humidity grid at 0.01° * 0.01° resolution for all
Shandong Province for 2013—2019, with longitude and latitude as inde-
pendent spline variables, and elevation as a covariate considered in the
function (Hutchinson and Xu, 2013). To verify the prediction accuracy,
we further applied the 10-fold cross-validation method to calculate correla-
tion coefficients (R2) and root mean square error(RMSE) for temperature
(R2 = 0.99, RMSE = 0.86 °C) and relative humidity (R2 = 0.86, RMSE
= 5.88 %) (Hu et al., 2021; Lv et al., 2020). Finally, we extracted the
daily mean temperature and relative humidity corresponding to the study
areas by averaging the grid values covered at each location.

We obtained daily air pollution data during the study period from the
ChinaHighAirPollutants (CHAP) dataset (https://wei-jing-rs.github.io/
product.html). Specifically, daily SO2, NO2, CO and O3 were estimated by
Wei et al. over a 10 km× 10 km using an extended ensemble learning of
the space-time extremely randomized trees model together with ground-
based observations, remote sensing products, atmospheric reanalysis, and
an emission inventory (Wei et al., 2022a, 2022b). The results showed
ounties of Shandong Province in China.

http://data.cma.cn/
https://wei-jing-rs.github.io/product.html
https://wei-jing-rs.github.io/product.html
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high predictive ability; 10-fold cross-validation R2 (RMSE) values for the
daily predictions of SO2, NO2, CO and O3 were 0.84 (10.07 μg/m3), 0.84
(7.99 μg/m3), 0.80 (0.29 mg/m3) and 0.87 (17.1 μg/m3), respectively.
Meanwhile, We acquired high-resolution (1 km) daily fine particulate mat-
ter (PM2.5) in Eastern China also from the CHAP dataset (R2= 0.92, RMSE
=10.76 μg/m3) (Wei et al., 2020; Wei et al., 2021). Ultimately, We did not
regard O3 as a confounder because of its strong covariance with average
temperature in the main models (Spearman correlation coefficient, rs ≥
0.70).

We quantitatively assessed greenness using NDVI (Tucker, 1979), SAVI
(Huete, 1988) and EVI (Jarchow et al., 2018): we derived the data from
Landsat 8 Operational Land Imager (OLI) satellite images at a resolution
of 30 m × 30 with <10 % cloud cover (http://earthexplorer.usgs.gov).
With those data, we estimated NDVI and SAVI based on the land surface re-
flectance of visible red (RED) and near-infrared (NIR) parts of the light
spectra; they were calculated respectively according to the following equa-
tions:

NDVI ¼ NIR � REDð Þ= NIRþ REDð Þ

and

SAVI ¼ 1þ Lð Þ � NIR � REDð Þ= NIRþ REDþ Lð Þ

where L is correction factor to reduce the impact of soil background.We cal-
culated EVI by adding blue light bands (BLUE) to compensate for the influ-
ence of atmospheric correction being incomplete and soil brightness when
vegetation density was sparse with the following equation:

EVI ¼ 2:5� NIR � REDð Þ= NIRþ 6RED � 7:5BLUEþ 1ð Þ

That had a higher response to canopy structure. The above three in-
dexes ranged from −1 to 1; higher values represented densely vegetated
areas. We computed the county-specific NDVI, SAVI and EVI for summer
(June–August) and winter (December–February) by taking the cumulative
average of summer and winter over 7 years in each village during the
study periods.

Other environmental and regional characteristics could confound the
modification effects of greenness on the RRs of stroke mortality from cold
and heat. Thus, we obtained data for population density and GDP per capita
for 2013–2019 from statistical yearbooks at the county level (He et al.,
2020). We calculated the road density of each county using road vector
data up-dated in real-time by Open Street Map. Further, we considered
the averages of mean temperature, relative humidity, and PM2.5 as poten-
tial confounders.

2.3. Statistical analysis

We adopted a two-stage statistical analysis to investigate the effects of
cold and heat on mortality risks of overall, ischemic and hemorrhagic
stroke at the county, regional and provincial levels.

2.3.1. First-stage analysis
To determine the delayed and non-linear effects of temperature on over-

all, ischemic, and hemorrhagic strokemortality at the county-specific level,
we applied a distributed lag non-linear model (DLNM) combined with
quasi-Poisson regression (Gasparrini et al., 2010). By means of a “cross-
basis” function, the DLNM can simultaneously evaluate the non-linear
exposure-response relationship and the additional lag-response association.
In accordance with previous studies (Luo et al., 2018; Zhang et al., 2014),
we applied a natural cubic splinewith 4 degrees of freedom (df) for the tem-
perature dimension and natural cubic splines with 3 df for the lag dimen-
sion; we did so to fit the model by minimizing the quasi-Akaike
4

Information Criteria (Q-AIC). We adopted the maximum lagged period
over 14 days (Li et al., 2021). The final model was as follows:

Log E Ytð Þ½ � ¼ αþ cb Tmeant,l
� �þ ns Time, 7∗7ð Þ þ ns Humidity, 3ð Þ

þ ns PM2:5, 3ð Þ þ ns SO2, 3ð Þ þ ns NO2, 3ð Þ þ ns CO, 3ð Þ
þ β1Dowt þ β2Holidayt

where, Yt is daily number of stroke mortality at day; α signifies the inter-
cept; β1 and β2 are the regression coefficient; cb (Tmeant,l) denotes the
cross-basis matrix of daily average temperature, l is the number of lag
days; ns (.) signifies a natural cubic spline function. We use 7 df per year
for the time variable to adjust for the long-term trend and seasonality and
3 df to adjust for confounders (relative humidity, PM2.5, SO2, NO2 and
CO) in line with previous research (Guo et al., 2017; Royé et al., 2019).
Both Dowt and Holidayt are categorical variables to control for weekdays
and public holidays, respectively (Sun et al., 2021).

2.3.2. Second-stage analysis
We conducted a multivariate random-effect meta-analysis to obtain

pooled estimates and derive the best linear unbiased prediction (BLUP) of
the county-specific cumulative exposure-response associations at the re-
gional and provincial levels (Gasparrini et al., 2012). The BLUP represents
a trade-off between the city-specific association and second-stage pooled es-
timations; it can thus provide more accurate estimates, especially in cities
with low numbers of deaths (Gasparrini et al., 2015). In accordance with
a previous study (Sera et al., 2019), we first defined theminimummortality
temperature (MMT) as the reference temperature; and if that could not be
identified, we used the median temperature as the temperature threshold
instead. We further calculated the RRs of stroke mortality under extreme
cold (1st percentile of temperature), moderate cold (10th percentile), mod-
erate heat (90th percentile) and extreme heat (99th percentile) (Ban et al.,
2017). Finally, we applied the Cochran Q-test and I2 statistics to test resid-
ual heterogeneity.

Then, we used the cumulative BLUP estimates corresponding to each
day's temperature in each county to calculate the mortality fractions of
stroke-specific (i.e., overall, ischemic, and hemorrhagic stroke) caused by
non-optimal temperatures using a previously introduced method
(Gasparrini and Leone, 2014). The total attributable number of stroke-
specific deaths due to non-optimum temperature was given by summing
the contributions from all the days of the study period; the total AF was ob-
tained by the ratio of attributable deaths and the total mortality of corre-
sponding cause. We further calculated the AFs of stroke mortality caused
by cold and heat by summing the subsets corresponding to the days with
temperatures lower or higher MMT, respectively. We calculated the empir-
ical CIs (eCIs) through Monte Carlo simulations, assuming a multivariate
normal distribution of the BLUP estimates of the reduced coefficients. The
algebraic equations we applied and other details were reported elsewhere
(Gasparrini and Leone, 2014; Greenland, 2004).

2.3.3. Assessment of greenness effects
Using greenness indicators (NDVI, SAVI, and EVI) and county-specific

characteristics as meta-predictors, we developed a multivariate meta-
regression model to examine the associations between greenness and
BLUP RRs of stroke mortality from cold and heat. Considering the different
levels of vegetation in different seasons, we applied the cumulative aver-
ages of NDVI, SAVI, and EVI during summer to examine the associations be-
tween greenness and the BLUP relative risks from moderate and extreme
heat; the cumulative averages of NDVI, SAVI, and EVI during winter to as-
sess the relationship between greenness and BLUP estimates frommoderate
and extreme cold.

2.3.4. Sensitivity analysis
To check the robustness of the results, we performed sensitivity analyses

for the main model by changing the df for the lag variable (4–6), time-long
trends(8–10 per year), humidity and air pollution(4–6), and changing the
maximum lag days (14, 21 and 28 days). In particular, we controlled the

http://earthexplorer.usgs.gov
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model residual autocorrelation at lag 1 day to observe the stability of the es-
timates(Bhaskaran et al., 2013).

All statistical analysis depended on R software (version 4.0.4), with the
“dlnm” and “mvmeta” packages. Two-sided P values <0.05 were consid-
ered as statistically significant.

3. Results

Table 1 describes the summary statistics for stroke deaths, meteorolog-
ical characteristics, air pollution and greenness coverages for 19 counties
from 2013 to 2019. A total of 138,749 stroke deaths were recorded, with
86,873 (62.6 %) from ischemic stroke and 51,876 (37.4 %) from hemor-
rhagic stroke. The daily average temperature (range) and relative humidity
were 14.28 °C (−14.44 to 33.45 °C) and 64.12 % (13.00–100 %), respec-
tively. Therewas regional variation during the study period, where the low-
est values of PM2.5, O3 and other air pollutants were evident in the
Shandong Peninsula region (Fig. S1). The average NDVI, SAVI, and EVI, re-
spectively, were as follows: 0.46 (0.34–0.60), 0.32 (0.22–0.43) and 0.54
(0.38–0.74) during summer; 0.20 (0.12–0.30), 0.13 (0.07–0.15) and 0.37
(0.13–0.37) during winter; the highest values mainly in the southwest re-
gion and the lowest values in the central region (Fig. S1). Further details
about average temperature, relative humidity, PM2.5, and greenness varia-
tion in 19 counties are shown in Tables S2–S3.

Fig. 2 presents the county-specific RRs associated with extreme temper-
atures at different lag periods, and the RRs for moderate temperatures are
supplemented in Fig. S2. Generally, comparedwith temperature thresholds
(i.e., minimum mortality temperature or median temperature), the RRs of
overall (I2 =32.9.%, p < 0.01), ischemic (I2 =26.8 %, p < 0.05) and hem-
orrhagic strokemortality (I2=24.2%, p< 0.05) were observed to vary sig-
nificantly among the counties over lag 0–14 days. The effects of extreme
temperatures were higher than those of moderate temperatures; significant
RRs associated with extreme heat were evident in some counties for overall
and ischemic stroke deaths and also in a few counties for hemorrhagic
stroke death. The county-specific and BLUP RRs for different temperature
cut-offs and different lag periods are shown in Tables S4–S9. Moreover,
the associations between ambient temperature and overall, ischemic or
hemorrhagic stroke mortality varied across regions (Figs. S4–S6). Specifi-
cally, for overall and ischemic strokes mortality, the central was more sus-
ceptible to non-optimum temperatures–especially heat, it was followed by
Table 1
Descriptive statistics of stroke death counts and environmental variables during
2013–2019 in Shandong, China.

Variables Min P25 P50 P75 Max Mean SD

Death counts
Stroke 0 1 2 4 33 2.86 2.35
IS 0 1 1 3 16 1.79 1.69
HS 0 0 1 2 24 1.07 1.24

Ambient environment
Average
temperature (°C)

−14.44 4.76 15.58 23.53 33.45 14.28 10.35

Relative humidity
(%)

13.00 52.00 65.08 77.00 100.00 64.12 16.40

PM2.5 (μg/m3) 3.31 39.87 59.33 87.31 508.38 70.31 45.14
NO2 (μg/m3) 5.92 26.85 36.39 49.20 271.25 39.48 17.11
SO2 (μg/m3) 1.81 16.05 24.77 46.91 600.86 36.34 29.93
CO (mg/m3) 0.15 0.82 1.11 1.45 47.00 1.23 0.62
O3 (μg/m3) 5.45 65.14 100.66 138.75 323.56 104.98 48.02

greenness
Summer NDVI 0.34 0.42 0.45 0.50 0.60 0.46 0.07

SAVI 0.22 0.28 0.31 0.36 0.43 0.32 0.06
EVI 0.38 0.48 0.53 0.60 0.74 0.54 0.09

Winter NDVI 0.12 0.16 0.21 0.23 0.30 0.20 0.05
SAVI 0.07 0.10 0.12 0.15 0.20 0.13 0.03
EVI 0.13 0.16 0.21 0.25 0.37 0.22 0.07

Notes: IS and HS refer Ischemic stroke and Hemorrhagic stroke, respectively; Min
and Max are minimum and maximum value, respectively; P25, P50, P75 define
25th, 50th, and 75th percentiles, respectively; SD is standard deviation.
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the northwest; for hemorrhagic stroke mortality, the southwest seemed to
be more susceptible to cold than the other three regions.

Fig. 3 demonstrates the pooled cumulative temperature-stroke mortal-
ity associations with the approximately W-shaped curves on the relation-
ships between temperature and mortality risk of overall, ischemic and
hemorrhagic stroke. The pooledRRs of strokemortality atmoderate and ex-
treme temperature levels with different lag periods are reported in Table 2.
Specifically, the effects of heat on stroke mortality were the strongest at cu-
mulative lag 0–7 days and attenuated along the lag period, while effects of
cold persisted over lag 0–14 days (Fig. S3). The cumulative RRs of overall
stroke mortality from extreme cold at lag 0–14 days and extreme heat at
lag 0–7 days relative to MMT were 1.49 (95 % CI, 1.24–1.78) and 1.48
(95 % CI, 1.28–1.72), respectively. The RRs of ischemic stroke mortality
were corresponding 1.56 (95%CI, 1.26–1.92) and 1.71 (95%CI,
1.41–2.04); and the mortality RRs of hemorrhagic stroke were 1.37 (95%
CI, 1.03–1.81) and 1.18 (95%CI, 1.02–1.37), respectively. Moreover, the
cumulative effects of extreme temperatures(1st and 99th percentiles)
were higher than of moderate temperatures(10th and 90th percentiles);
the RRs of ischemic strokemortality associatedwithmoderate and extreme
temperatures were stronger than of hemorrhagic stroke mortality at lag
0–14 days.

Table 3 presents the AFs for stroke mortality associated with non-
optimum temperatures at the pooled level. The total AF for the effect of
the non-optimum temperature on overall stroke mortality was 17.16 %
(95 % eCI, 13.38 %–19.75 %) at lag 0–14 days. However, the total AF of is-
chemic stroke mortality caused by non-optimum temperature was higher
than that of hemorrhagic stroke mortality, with the value of 20.05 % (95
%eCI, 16.46%–22.70%) and 12.55% (95%eCI, 6.59%–16.24%), respec-
tively. In addition, cold was responsible for the most of the AF compared
with heat, with 14.94 % (95 % eCI, 11.57 %–17.34 %) and 2.22 % (95 %
eCI, 1.54–2.72 %) of overall stroke mortality caused by cold and heat, re-
spectively; the AFs of ischemic stroke mortality caused by cold and heat
was 17.09 % (95 % eCI, 13.47 %–19.45 %) and 2.96 % (95 % eCI, 2.07
%–3.64 %), respectively; 11.21 % (95 % eCI, 5.57–14.56 %) and 1.34 %
(95 % eCI, −1.35 % to 2.98 %) of hemorrhagic stroke mortality AFs, re-
spectively, was due to cold and heat. The stroke mortality burdens attribut-
able to heat were the highest in a week, while that due to cold lasted over
lag 0–14 days. Moreover, the AFs for overall and ischemic stroke attribut-
able to heat were higher in the central and northwest regions, whereas a
higher mortality fraction for hemorrhagic stroke due to cold was evident
in the southwest (Fig. S7). The numerical values for county-specific mortal-
ity fraction attributable to non-optimum temperatures over different lag
days are supplemented in Tables S10–S12.

Fig. 4 shows the associations between greenness and BLUPRRs for over-
all and ischemic stroke mortality from extreme heat before and after
adjusting for potential confounders at lag 0–14 days. The non-significant
negative associations between greenness and RRs of overall and ischemic
stroke mortality from cold are supplemented in Table S13. The results are
expressed as changes in RR for each 0.1–unit increase in NDVI, SAVI, and
EVI. Generally, NDVI, SAVI, and EVI were significantly and negatively asso-
ciated with RRs for overall and ischemic stroke mortality from heat; an ex-
ception was hemorrhagic stroke mortality (Table S14); the modifying
effects of NDVI, SAVI, and EVI on extreme-heat-related risks were stronger
than on moderate-heat-related risks (Fig. S8). In particular, for each 0.1–
unit increase in NDVI, the RRs for overall and ischemic stroke mortality
from extreme heat decreased by 0.162 [−0.162 (95 % CI, −0.312 to
−0.013)] and 0.239 [−0.239 (95%CI,−0.428 to−0.049)], respectively;
for each 0.1–unit increase in SAVI, the RRs associatedwith extreme heat de-
creased by 0.194 [−0.194 (95 % CI, −0.384 to −0.004)] and 0.296
[−0.296 (95%CI, −0.535 to−0.058)]; and for each 0.1–unit increase in
EVI, the RRs from heat reduced by 0.107 [−0.107 (95 % CI, −0.233 to
0.019)] and 0.168 [−0.168 (95 % CI, −0.325 to −0.011)], respectively.
More significant associations between greenness and stroke mortality
were evident after adjusting for average temperature and PM2.5.

The effect estimates of temperature on stroke mortality were relatively
robust in the main model. There, the curves for the temperature-stroke



Fig. 2.County-specific RRs of strokemortality for extremeheat over lag of 0–7 days and for extreme cold over lag of 0–14 days. A1, B1, and C1 represent overall, ischemic and
hemorrhagic stroke mortality associated with extreme heat; A2, B2, and C2 represent overall, ischemic and hemorrhagic mortality associated with extreme cold; The
rectangles are the effect estimates and the horizontal lines represent the 95 % confidence intervals. Extreme cold is defined as the 1st percentiles of temperature and
extreme heat as the 99th percentiles, both compared with the temperature thresholds (minimum-mortality temperatures or median temperatures).
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mortality relationships were similar after changing df of the natural cubic
spline for time trend, confounders and lag variable, extending maximum
lag period and controlling for autocorrelation (Figs. S9–S13).

4. Discussion

Using multiple centers data, we found that exposure bothmoderate and
extreme temperatures were significantly associated with increased mortal-
ity risks of stroke, including RRs andAFs; there were greater effectswith ex-
treme temperatures. The effects of cold and heat varied across the counties
and regions, with the central and northwest regions bearing higher heat
burden for overall and ischemic stroke; the southwest region having a
higher cold burden for hemorrhagic stroke. Furthermore, we determined
that higher levels of greenness (NDVI, SAVI, and EVI) were all significantly
associated with decreased impact of heat-related on overall and ischemic
stroke mortality; thus, there could have been be lower related–heat risks
through stroke mortality in counties with higher levels of vegetation den-
sity, especially after adjusting average temperature and PM2.5.
6

Consistent with previous epidemiological studies, our results suggested
that moderate and extreme temperatures exposures strongly increased the
risk of overall stroke mortality, and that extreme temperatures effects
were higher than those for moderate temperatures (Bunker et al., 2016;
Lv et al., 2020; Rodrigues et al., 2019). We found that 17.16 % of overall
stroke mortality burden was attributable to non-optimum temperature
and identified a significant difference in the relative importance of heat
and cold effects. Specifically, in line with previous findings (Yang et al.,
2015; Yang et al., 2016), our analysis revealed that almost 90 % of overall
stroke mortality burden was attributable to cold, which may be explained
by the presence of a right-shifting trend in the MMT selection and a more
pronounced delayed effect of cold than heat (Gasparrini et al., 2015;
Ingole et al., 2022). We also observed that cold and heat were significantly,
positively associated with both ischemic and hemorrhagic stroke mortality
burdens; that the burden attributable to non-optimum temperatures was
higherwith the former than the latter. Ourfindings on ischemic strokemor-
tality concur with those of studies from multiple-cities in China (Hu et al.,
2021) and Brazil (Ikefuti et al., 2018); however, they differed from a



Fig. 3. The pooled cumulative temperature-stroke mortality response curves based on 19 counties in Shandong province over lag 0–14 days. The blue lines are the maximum
likelihood estimate of RRs and the gray regions are pointwise 95% confidence intervals; The vertical dotted lines indicate minimummortality temperatures (MMT) (22.3 °C
for overall strokemortality, 22.1 °C for ischemicmortality, and 23.2 °C for hemorrhagic mortality). I2 and p-value (Q-test) indicate the residual heterogeneity across counties.

Table 2
The pooled cumulative RRs (95%CI) of different temperature levels effect on stroke
mortality over different lag days.

Temperature percentiles (°C) Lag 0–3 days Lag0–7 days Lag0–14 days

Stroke
Extreme cold (−6.25) 1.07 (0.98, 1.17) 1.25 (1.11, 1.41) 1.49 (1.24, 1.78)
Moderate cold (−1.00) 1.02 (0.94, 1.10) 1.14 (1.02, 1.27) 1.31 (1.11, 1.55)
Moderate heat (25.90) 1.15 (1.08, 1.22) 1.14 (1.07, 1.21) 1.08 (1.03, 1.14)
Extreme heat (29.85) 1.45 (1.28, 1.65) 1.48 (1.28, 1.72) 1.36 (1.19, 1.57)

IS
Extreme cold (−6.25) 1.00 (0.91, 1.09) 1.21 (1.05, 1.38) 1.56 (1.26, 1.92)
Moderate cold (−1.00) 0.96 (0.89, 1.03) 1.11 (0.98, 1.25) 1.37 (1.14, 1.66)
Moderate heat (25.90) 1.19 (1.06, 1.33) 1.20 (1.11, 1.31) 1.12 (1.04, 1.21)
Extreme heat (29.85) 1.60 (1.33, 1.94) 1.71 (1.41, 2.04) 1.52 (1.26, 1.83)

HS
Extreme cold (−6.25) 1.16 (0.96, 1.41) 1.32 (1.05, 1.65) 1.37 (1.03, 1.81)
Moderate cold (−1.00) 1.09 (0.94, 1.26) 1.19 (0.98, 1.44) 1.23 (0.95, 1.60)
Moderate heat (25.90) 1.04 (1.00, 1.08) 1.04 (0.99, 1.10) 1.02 (0.98, 1.07)
Extreme heat (29.85) 1.16 (1.03, 1.30) 1.18 (1.02, 1.37) 1.12 (0.98, 1.29)

Notes: Extreme cold, Moderate cold, Moderate heat, and Extreme heat refer the 1st,
10th, 90th, and 99th percentile of daily temperature distribution, respectively, com-
pared with minimum mortality temperature.
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hospital admission study in Jinan, China (Wang et al., 2013); accordingly,
heat could be a protective factor for ischemic stroke occurrence. Further,
zero associations between ischemic stroke mortality and temperature
change were reported in the United States (Cowperthwaite and Burnett,
2011). One study in China observed that heat increased risk of hemorrhagic
Table 3
Attributable fractions of stroke mortality at different lag structures.

Lag days Mortality Attributable fraction (%

Overall

Lag0–3 days
Stroke 6.14 (3.56, 8.01)
IS 1.23 (−0.52, 2.57)
HS 9.29 (4.45, 12.41)

Lag0–7 days
Stroke 10.44 (7.13, 12.70)
IS 10.72 (8.87, 12.18)
HS 12.23 (7.53, 15.40)

Lag0–14 days
Stroke 17.16 (13.38, 19.75)
IS 20.05 (16.46, 22.70)
HS 12.55 (6.59, 16.24)

Notes: Overall indicates stroke mortality fractions attributable to non-optimum temperat
tions caused by low temperatures (blow MMT) and high temperatures (above MMT), re
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stroke mortality (Zhou et al., 2017), which was similar to the present study.
No association was found between high temperature and hemorrhagic
stroke (Lavados et al., 2018); whereas one study did observe a beneficial ef-
fect of heat on death from hemorrhagic in South Korea (Lim et al., 2013).
Moreover, one report revealed that hemorrhagic stroke mortality was
more affected by cold and less affected by heat than ischemic strokemortal-
ity; that was at odds with our results (Chen et al., 2018).

These different findings are difficult to explain. However, in addition to
varying characteristics in the study cities, such as climate adaptation, use of
air conditioning, housing types, socioeconomic status, and population vul-
nerability (Cho et al., 2018; Ma et al., 2014; Medina-Ramón et al., 2006;
Shen and Lung, 2020; Urban et al., 2014), they could be due to different
study designs, definitions for thresholds of temperature exposure, model
choices, and health outcomes (Lian et al., 2015). For example, studies in
Australia and Hong Kong applied a linear term for temperature to describe
the association between temperature and ischemic or hemorrhagic stroke
mortality (Goggins et al., 2012; Wang et al., 2009). By contrast, the present
study employed a DLNM to clearly demonstrate non-linear associations be-
tween ambient temperature and stroke subtypes. Further, inadequate con-
trol for seasonality or other confounding factors could lead to incorrect
temperature–mortality estimates. In the context of global warming and cli-
mate change, our findings provides an accurate reference for governments
and sectors (such as public health) that should expand adaptation policies
with a focus on both the hazards of heat and primarily preventing the ad-
verse effects of cold.

In the present study, we also observed variations in county-specific and
region-specific analyses. For the mortality burdens of overall and ischemic
, 95 % empirical CI)

Cold Heat

2.12 (0.12, 3.80) 4.02 (3.08, 4.79)
−1.78 (−2.62, −1.07) 3.01 (1.64, 4.00)
5.43 (2.37, 7.72) 3.86 (0.21, 6.38)

7.30 (4.60, 9.34) 3.14 (2.44, 3.71)
6.48 (4.88, 9.92) 4.25 (3.29, 5.02)
9.06 (5.41, 11.81) 3.17 (0.28, 4.96)

14.94 (11.57, 17.34) 2.22 (1.54, 2.72)
17.09 (13.47, 19.45) 2.96 (2.07, 3.64)
11.21 (5.57, 14.56) 1.34 (−1.35, 2.98)

ure (both cold heat effect combining), cold and heat represent stroke mortality frac-
spectively.



Fig. 4. Estimated relationships between greenness and effects of extreme heat on overall and ischemic stroke mortality, before and after the adjustment of confounders. The
numeric results indicate with changes in RR associated with each 0.1-unit increase in NDVI, SAVI and EVI value.
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stroke, the central and northwest regions were more vulnerable to moder-
ate and extreme heat than other regions. That could be mainly related to
the urban heat island effect and temperature adaptation: the central region
is characterized by accelerated urbanization, with the provincial capital
(Jinan) at its core and lower greenness levels (Chen et al., 2021;
Heaviside et al., 2017; Lee et al., 2021); the higher latitude in the northwest
meant lower optimal temperature and a greater impact of high temperature
(Kim et al., 2016; Moghadamnia et al., 2017; Wang et al., 2017). For the
mortality burden of hemorrhagic stroke, we found that cold-relatedmortal-
ity fraction was higher in the southwest: that could be explained by the
lower latitude and poorer adaptation to cold (Lee et al., 2019; Song et al.,
2017); however, it could also be due to a less developed economy, inade-
quate allocation of medical resources, and poor heating conditions
(Barnard et al., 2008; Li and Gu, 2020; Liu et al., 2020).

The potential biological mechanisms that could account for burdens of
stroke mortality attributable to cold and heat are not the same. With the
cold, thrombogenic factors (such as red blood cell count, platelet count,
plasma cholesterol, and fibrinogen increase), and an increased inflamma-
tory response could trigger cerebral ischemia (Cheng and Su, 2010;
Gordon et al., 1988; Manfredini et al., 1997). Further, cold easily leads to
vasoconstriction of peripheral blood vassals and blood transfer to other
vital organs (Kawahara et al., 1989; Park et al., 2020; Yu et al., 2020),
which in turn produces increased blood pressure and hypertension, which
is one of the most important causes of hemorrhagic stroke (Lewington
et al., 2012). To dissipate heat when exposed to high temperatures, the
body may mediate the adverse effects by sweating, dilating blood vessels,
and increasing the heart rate: that may lead to dehydration, increased
blood viscosity, higher cholesterol levels, and further increase the likeli-
hood of thrombosis (Keatinge et al., 1986). In hot weather, blood vessels
in the skin dilate, which reduces bloodflow to the brain and causes possible
blood pressure fluctuations (Liu et al., 2015). Moreover, hot weather can
make people more nervous and irritable, which increase their stress reac-
tions: blood pressure suddenly rising can cause blood vessel rupture and
may induce brain hemorrhage or even death (Zafeiratou et al., 2021).
High temperatures have been found to be associated with endothelial
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dysfunction, which can contribute to the increased stroke mortality
(Nawrot et al., 2005).

Identification of the different lag structures of low and high tempera-
tures could be useful for policy makers to develop early response plans to
prevent the adverse effects of climate change. Previously,most studies dem-
onstrated cold cumulative effects lasting 2 weeks or longer, whereas heat
effects generally occurred within 1 week (Breitner et al., 2014; Deng
et al., 2019; Mohammadi et al., 2021); those findings are in accordance
with our own. Using either a longer lag period to determine the effects of
heat or a shorter one to assess the effects of cold could produce underesti-
mation of the results. For example, we obtained the following results: the
mortality burden of ischemic stroke through cold at lag 0–14 days (17.09
%; 95 % eCI, 13.47–19.45 %) was greater than at lag 0–7 days (6.48 %;
95 % eCI, 4.88–9.92 %); while that attributable to heat at lag 0–7 days
(4.25 %; 95 % eCI, 3.29–5.02 %) was higher than at lag 0–14 days (2.96
%; 95 % eCI, 2.07–3.64 %). Various potential mechanisms could explain
those differences. The difference in duration of some physiological stress re-
sponses at low and high temperatures may be a contributing factor
(Cheshire, 2016; McArthur et al., 2010). For example, with exposure to
cold, it may take days to weeks for the accumulation of causative factors
for less acute stroke events, such as the formation of thrombotic factors, in-
creased blood viscosity, elevated inflammatory response, and changes in
some microorganisms, e.g., influenza ( Warren-Gash et al., 2009); By con-
trast, heat exposure may result in a series of immediate physiological re-
sponses—particularly when the body temperature exceeds regulatory
thresholds. Examples here are salt depletion, dehydration, increased body
surface circulation, increased heart rate, decreased cerebral blood flow,
and raised blood pressure; they may directly lead to acute stroke events
and even death (Keatinge et al., 1986). Aging has also been associated
with attenuated sweat gland output during heat exposure. The elderly are
the most sensitive group for stroke; heat exposure may cause much greater
heat production than heat dissipation, further contributing to acute stroke
complications and death (Balmain et al., 2018). The choice of the optimal
lag for the temperature effect is unclear: different studies made a relatively
arbitrary choice based on their own model fits, which could have led to
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false estimates. Moreover, to date, the underlying environmental and phys-
iological mechanisms for various lag effects of heat and cold exposure re-
main to be clarified (Gronlund et al., 2018). Each mortality outcome has
its own induction period in response to non-optimum temperature stress;
in term of environment, that phenomenon may be related to differences
in geographic, climatological, socioeconomic, and demographic factors. Ev-
idence suggests that people's adaptation to climate may be modified by so-
cioeconomic and education levels, intensity of the heat island effect,
greenness level, housing characteristics, and access to air conditioning;
they could alter the lag effects of temperature on local population health
(Lay et al., 2021; Sera et al., 2019; Zhao et al., 2021). In terms of physiolog-
ical mechanisms, those factors may involve different thermoregulation and
physiological feedback at low and high temperatures. As noted above re-
garding the mechanism of temperature-stroke mortality associations, cold
is associated with cardiovascular stress(Fares, 2013). Similarly, cold can in-
duce some immunological and inflammatory reactions and increase the risk
of infection; those physiological changes persist (Woodhouse et al., 1994);
By contrast, heat can cause sudden physiological reactions that result in a
loss of control of the core body temperature, producing a significant in-
crease in body temperature within a short period; that may lead to organ
dysfunction and structural damage and eventually cause failure or even
death (Kenny and Jay, 2013). Studies have revealed that extra heat load
may have fatal consequences for patients with cardiovascular disease
(Rowell, 1983). In short, future studies should develop a criterion for the
optimal lag time and investigate potential mechanisms to further explain
the different lag effects.

Although some studies have explored factors that may contribute to the
heterogeneity of cold or heat effects across countries or regions: they in-
clude geographic indicators (longitude and latitude), demographic and so-
cioeconomic indicators (population density and GDP); however, the results
have been inconsistent (Gasparrini et al., 2012; Rodrigues et al., 2019). To
date, few studies have reported that greenness may ameliorate the adverse
health effects of non-optimum temperatures (moderate and extreme), par-
ticularly the cooling effect of high temperatures (Bao et al., 2021; Burkart
et al., 2016; Qiu et al., 2021). Greenness may modify local micro- and
meso-climate through various mechanisms: shading, evapotranspiration
and albedo. On the one hand, vegetation plays a vital role in inducing
cooling effects in the warm seasons: it does so through biophysical effects,
which emphasize interactions between leaves and the atmosphere; it also
does so through biochemical effects, which depend mostly on changes in
vegetation biomass (Lian et al., 2022). Regarding biophysical effects,
trees allow evapotranspiration to absorb long-wave radiation, thereby
converting liquid water to water vapor and replacing sensible heat with la-
tent heat; Canopy provides shade to intercept incoming short-wave radia-
tion, which traps heat fluxes and reduces the ground and wall surface
temperatures; greenery enhances the surface albedo of urban environ-
ments, which increases the proportion of reflected incident radiation,
decreases the absorbed fraction, and further reduces surrounding tempera-
ture (Wong et al., 2021). Regarding biochemical effects, vegetation per-
forms photosynthesis, thereby promoting carbon uptake and indirectly
relieving local thermal stress (Piao et al., 2020). On the other hand, the
cooling effects of greenness diminish or even turns to net warming owing
to snow cover and lower vegetation density. That results in weakened
evapotranspiration and enhanced albedo and water vapor feedbacks in
the cold season (Alkama et al., 2022).

Consistent with previous research (Dang et al., 2018; Denpetkul and
Phosri, 2021), the present study primarily found negative associations be-
tween greenness and risks of overall and ischemic stroke mortality from
moderate or extreme temperatures; this result implied that increasing
greenness levels can mitigates stroke mortality from non-optimum temper-
atures, especially heat. However, the role of greenness inmodifying the vul-
nerability of stroke patients to unsuitable temperatures remains unclear. In
addition to the natural cooling effects of greenness described above, expo-
sure to greenness may alter indoor and outdoor activity patterns, thereby
influencing exposure at a given temperature (Markevych et al., 2017;
Nieuwenhuijsen, 2021). For example, as we explained in the introduction,
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living in greener areas could relieve stress, increase opportunities for phys-
ical activity and social interaction, enhancewell-being and diminish air pol-
lution hazards, which may relieve non-optimal temperature—especially
heat stress, and ultimately may also alleviate the burdens of temperature-
related cardiovascular and cerebrovascular disease in various populations
(Crouse et al., 2021; Gianfredi et al., 2021; Liu et al., 2022). Moreover, in-
creasing greenness could decrease a number of physiological stress re-
sponse, such as reducing sweating frequency, maintaining a steady heart
rate, and preventing dehydration, thereby keeping blood and cholesterol
at normal levels (Orioli et al., 2019). Greenery can also moderate vascular
aging and reduce aortic extension and sclerosis, which helps mitigate the
risk of hypertension, a major cause of stroke (Dzhambov and Dimitrova,
2018).

We observed slight differences in the results of the association between
the three vegetation indices and the heat-related RR for overall stroke mor-
tality; however, the differenceswere not statistically significant.We believe
this variation is due to differences in the inherent characteristics of the in-
dexes. For example, NDVI is calculated based on the reflectance of the infra-
red and near-infrared light bands; it has “ratio” properties, which allows it
to eliminate some of the effects of solar radiation, such as topography and
clouds (Huete and Justice, 1999). SAVI has a correction factor (L), which re-
duces the effect of soil brightness (Huete, 1988). EVI includes a blue light
band, mainly for atmospheric correction (Huete et al., 2002). The sensitiv-
ity of the three indexes to vegetation varies precisely because of their partic-
ularly properties. NDVI is commonly used to monitor the growth state of
healthy vegetation owing to its insensitivity to densely vegetated areas
and its oversensitivity to soil background; SAVI is suitable for assessing
areas with low vegetation cover; while EVI is often used in densely vege-
tated areas, such as tropical forests, because its saturation point is above
NDVI (Jiang et al., 2006; Zeng et al., 2022). Nevertheless, all three indica-
tors were essentially designed to assess quantitatively the level of greenness
exposure.

We also found that the modifying effects of greenness differed between
summer and winter at extreme and moderate temperatures. In summer,
high levels of greenness significantly alleviate the adverse effects of heat,
especially extreme heat, highlighting that greenness may be more sensitive
to extreme heat and bridging this knowledge gap has important implica-
tions for development public health programs to prevent the burden of
stroke (Dang et al., 2018; Xu et al., 2022). However, in winter, we found
that low levels of greenness do not appear to have a significant protec-
tive effect against cold or extreme cold. That result is perhaps related
to the fact that the insulating effect of vegetation is offset by the heat-
absorbing nature of snowmelt. Thus, to reduce cold hazards, public
health and other relevant authorities should consider anthropogenic
mitigation as the primary means and natural mitigation as a supplemen-
tary measure (Leng et al., 2020). Generally, authorities should consider
increasing green vegetation cover to mitigate the adverse effects of non-
optimum temperatures a good strategy to promote health–especially
with stroke prevention.

Our study has several advantages. First, previous studies focused on the
relative contributions (e.g., RR and OR) of extreme temperatures; however,
we expanded the research basis and found that moderate and extreme tem-
peratures increased mortality risks for stroke subtypes based on multicen-
ter; we observed that cold accounted for greater stroke mortality burden
(AFs) than heat. Second, we identified a spatial distribution variability in
the temperature-stroke mortality associations; that could help policy
makers recognize high-risk areas. Third, our relatively comprehensive con-
trol for potential confounders (which included other air pollutants in
models in addition to adjusting for PM2.5) enhanced the interpretability
of our results. Finally, to the best of our knowledge, this study is the first
to usemultiple indicators (i.e., NDVI, SAVI and EVI) as greenness exposure;
it is the first to examine comprehensively the effects of greenness modifica-
tions on temperature-stroke mortality associations, which have important
implications for public health interventions.

Several limitations ought to be acknowledged. First, this research was
biased toward ecological study: we may not have completely ruled out



F. He et al. Science of the Total Environment 851 (2022) 158046
potential confounding at the individual level. Second, exposure measure-
ment errors were inevitable in accordance with the monitoring site data;
the lack of indoor temperature data could have underestimated the true ef-
fect of temperature on mortality. Third, owing to data availability, we did
not conduct subgroup analyses by sex, age, education, and other factors.
We also failed to fully examine other potential sources of estimated hetero-
geneity among the counties: they should be addressed in future studies.
Fourth, owing to regional limits, our findings may not directly apply to dif-
ferent climatic zones or socioeconomic environments.

5. Conclusions

This study provides strong evidence that ambient temperature is associ-
ated with increased mortality risks for overall, ischemic, and hemorrhagic
stroke. Combining data from multiple centers we found that unlike with
hemorrhagic stroke, ischemic stroke mortality burden was more attribut-
able to non-optimum temperatures and was mostly caused by cold temper-
ature. Cold and heat effects on stroke mortality varied spatially across the
investigated regions: the central and northwest regions weremore sensitive
to heat for overall and ischemic stroke; the southwest was more vulnerable
to cold for hemorrhagic stroke. A higher greenness level could significantly
alleviate the effects of heat on overall and ischemic stroke mortality. Our
findings can provide important assistance when developing and imple-
menting targeted, adaptive strategies to address climate change. However,
more studies involving different urban characteristics and climate zones are
needed to yield more comprehensive information.
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