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A B S T R A C T   

Background: There is insufficient evidence of associations between incident dyslipidemia with PM1 (submicronic 
particulate matter) and PM1-2.5 (intermodal particulate matter) in the middle-aged and elderly. We aimed to 
determine the long-term effects of PM1 and PM1-2.5 on incident dyslipidemia respectively. 
Methods: We studied 6976 individuals aged ≥45 from the China Health and Retirement Longitudinal Study from 
2013 to 2018. The concentrations of particular matter (PM) for every individual’s address were evaluated using a 
satellite-based spatiotemporal model. Dyslipidemia was evaluated by self-reported. The generalized linear mixed 
model was applied to quantify the correlations between PM and incident dyslipidemia. 
Results: After a 5-year follow-up, 333 (4.77%) participants developed dyslipidemia. Per 10 μg/m3 uptick in four- 
year average concentrations of PMs (PM1 and PM1-2.5) corresponded to 1.11 [95% confidence interval (CI): 
1.01–1.23)] and 1.23 (95% CI: 1.06–1.43) fold risks of incident dyslipidemia. Nonlinear exposure-response 
curves were observed between PM and incident dyslipidemia. The effect size of PM1 on incident dyslipidemia 
was slightly higher in males [1.14 (95% CI: 0.98–1.32) vs. 1.04 (95% CI: 0.89–1.21)], the elderly [1.23 (95% CI: 
1.04–1.45) vs. 1.03 (95% CI: 0.91–1.17)], people with less than primary school education [1.12 (95% CI: 
0.94–1.33) vs. 1.08 (95% CI: 0.94–1.23)], and solid cooking fuel users [1.17 (95% CI: 1.00–1.36) vs. 1.06 (95% 
CI: 0.93–1.21)], however, the difference was not statistically significant (Z = − 0.82, P = 0.413; Z = − 1.66, P =
0.097; Z = 0.32, P = 0.752; Z = − 0.89, P = 0.372). 
Conclusions: Long-term exposure to PM1 and PM1-2.5 were linked with an increased morbidity of dyslipidemia in 
the middle-aged and elderly population. Males, the elderly, and solid cooking fuel users had higher risk. Further 
studies would be warranted to establish an accurate reference value of PM to mitigate growing dyslipidemia.   
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confidence interval; O3, ozone; NO2, nitrogen dioxide; SO2, sulfur dioxide; CO, carbon oxide; BMI, body mass index; CES-D, Center for Epidemiology Study 
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1. Introduction 

As one of the major causes of cardiovascular disease, dyslipidemia 
contributes to 4.40 million premature deaths worldwide (Pirillo et al., 
2021). The past few decades have witnessed a marked rise in dyslipi-
demia prevalence, especially in the middle-aged and elderly population 
(Peiris et al., 2021; Wang et al., 2022a). To reduce the prevalence and 
disease burden of dyslipidemia, it is pivotal to recognize modifiable 
factors of dyslipidemia to provide evidence for prevention. 

Ambient air pollutants are modifiable risk factors for dyslipidemia 
(Wang et al., 2021b; Yusuf et al., 2020; Zhang et al., 2021b, 2021c). Air 
pollution leads to 6.9% of disability-adjusted life years and 19.5% of 
cardiovascular disease in China (Roth et al., 2020; Tian et al., 2022; Yin 
et al., 2020). Epidemiological researches have indicated that short-term 
exposure to particular matters (PM) can be an essential determinant of 
dyslipidemia (Chen et al., 2022; Ma et al., 2021; Zhang et al., 2022b). 
Recently, the long-term effect of PM on dyslipidemia has attracted much 
attention (Mao et al., 2020a, 2020b; Wang et al., 2021b). For example, 
children growing up in environments with prolonged PM pollution are 
linked to an upward incidence of hypercholesterolemia (Gui et al., 
2020). Wang et al. reported that 3-year mean concentration of fine PM 
(PM2.5) was related to increased lipids levels in ethnic minorities in 
southwest China (Wang et al., 2021b). Different-sized particles may 
have differential effects on lipids (Guo et al., 2022). However, evidence 
of prolonged exposure to submicronic PM (PM1) and intermodal PM 
(PM1-2.5) on dyslipidemia has been limited, especially in middle-aged 
and elder population in China. 

Based on the China Health and Retirement Longitudinal Study 
(CHARLS), our analysis aimed to determine the long-term effects of both 
PM1, PM1-2.5, PM2.5, coarse PM (PM2.5-10), and inhalable PM with a 
diameter <10 μm (PM10) on incident dyslipidemia respectively. 

2. Material and methods 

2.1. Participants 

Covering individuals aged 45 and above in China to promote 
research on aging, CHARLS is a nationwide cohort study whose baseline 
investigation was in 2011 (Wave 1) (Zhao et al., 2014). The final 150 
country-level unit samples fell within 28 provinces through multi-stage 
probability sampling. In this study, we utilized cohort data of CHARLS 
between 2013 (Wave 2) and 2018 (Wave 4). All respondents aged ≥45 at 
baseline were included. Participants with missing data on the ques-
tionnaire or air pollution exposure were excluded. After participants 
with dyslipidemia in 2013 were excluded, finally, 6976 participants 
were enrolled in our analysis (Fig. S1). 

Ethics approval for the CHARLS project was obtained from the Ethics 
Review Committee of Peking University (IRB00001052-11015). 

2.2. Exposure assessment 

In our study, four-year annual concentrations of five different sizes of 
PMs and four gaseous pollutants (i.e., nitrogen dioxide [NO2], sulfur 
dioxide [SO2], ozone [O3], and carbon oxide [CO]) were used as in-
dicators of long-term exposure which was similar in the previous studies 
(Zhang et al., 2022a). The daily mean concentration of air pollutants at 
1-km spatial resolution was collected from the China High Air Pollutants 
(CHAP) dataset (https://weijing-rs.github.io/product.html), which was 
generated using big data and artificial intelligence technology, and the 
predictions are reliable compared to ground measurements via 
cross-validated (Wei et al., 2019, 2021a, 2021b, 2022). Additionally, we 
deducted the concentrations of PM1 from PM2.5 to estimate concentra-
tions of PM1-2.5 and subtracted the concentrations of PM2.5 from PM10 to 
estimate concentrations of PM2.5-10. 

We obtained the meteorological data, such as average day-to-day 
wind speed, solar radiation and temperature, from the National 

Meteorological Information Center of China (https://data.cma.cn/en). 
Annual average meteorological factors exposure for each participant 
was estimated by matching the geocoded residential addresses given at 
baseline in CHARLS at the province level. More detailed information can 
be found in the Supplementary Material. 

2.3. Outcomes 

In CHARLS, dyslipidemia was evaluated by self-reported based on 
the question: “Have you ever been diagnosed with dyslipidemia?“. 

2.4. Covariates 

Directed Acyclic Graph (DAG) was applied to show the causal rela-
tionship between PM and dyslipidemia with covariates (Fig. S2). In this 
study, there were five types of covariates adjusted to estimate the in-
dependent effect of PM on incident dyslipidemia: a) sociodemographic 
status, including age, sex, marital status, and education qualifications; b) 
lifestyle behavior variables, including daytime nap, depression status, 
type of cooking fuel, smoking status, and physical activity; c) anthro-
pometric measurement includes height and weight, further to calculate 
body mass index (BMI); d) meteorological factors, i.e., wind speed, solar 
radiation, and temperature; e) gaseous pollutants, i.e., NO2, SO2, O3, and 
CO. 

Depression status was evaluated on a 10-question scale of the Center 
for Epidemiology Study depression (CES-D), with a higher score indi-
cating worse depression status. Liquefied petroleum gas, natural gas, 
marsh gas, and electricity belong to clean energy. Coal and crop residue 
are solid fuels. Physical activity was the dichotomous variable. Partici-
pating in physical activity was considered if they had at least 10 min 
exercise continuously during a usual week. 

2.5. Statistical analysis 

The covariates listed above were adjusted in generalized linear 
mixed models (GLMM) to estimate independent long-term effect of PMs 
on incident dyslipidemia. The equation was as follows: 

Logit
[
P
(
Yij
)]

=
(
α+ γiZj + β1X1ij +…+ βkXkij

)
+
(
uj + eij

)
(1) 

In details, Logit [P (Yij)] is the logit of probability of dyslipidemia. We 
incorporated community level as random effects and covariates as fixed 
effects. In equation (1), (α+ γiZj + β1X1ij + …+ βkXkij) represents the 
fixed effect, and (uj +eij) represents the random effect. More detailed 
information on GLMM is described in the Supplementary Material 
(Supplemental methods). 

We added covariates step by step in the following models. Model 1 
was the crude model, only adjusting for one specific PM, and then Model 
2 was additionally adjusted for CO. Model 3 was further adjusted for 
sociodemographic status (age, sex, marital status, and education quali-
fications), and BMI; Based on Model 3, Model 4 was further adjusted for 
lifestyle behavior variables (type of cooking fuel, depression status, and 
day sleeping status), and then Model 5 was further adjusted for meteo-
rological factors (wind velocity and solar radiation), and Model 6 plus an 
adjustment for smoking status. Model 7 was further adjusted for tem-
perature. Finally, Model 8 was adjusted for CO, sociodemographic status 
(age, sex, marital status, and education qualifications), BMI, lifestyle 
behavior variables (type of cooking fuel, depression status, day sleeping 
status, smoking status, and physical activity), and meteorological factors 
(wind velocity, solar radiation and temperature). Each model included a 
specific size of PM. 

Odds ratio (OR) with 95% confidence interval (CI) was calculated to 
quantify the risk of incident dyslipidemia associated with per 10 μg/m3 

uptick in the concentrations of five sizes of PMs. To evaluate the 
conceivable role of specific size of PM, we used multi-pollutant models 
that were adjusted for various gaseous pollutants. 
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In order to evaluate potential effect modifiers, we conducted strati-
fication analyses by sex, age [younger adults (age <60) vs. the elderly 
(age ≥60)], marital status (married and lived with spouse vs. other 
status), education qualifications (< primary school education vs. ≥
primary school education), the main source of cooking fuel (clean vs. 
solid), and daytime nap (nap vs. no-nap). In light of the age of the 
participants, we conducted stratification analyses by menopause status 
among all female participants. 

The robustness of the associations between PM and incident dysli-
pidemia was evaluated by a series of sensitivity analyses. Considering 
that some variables vary over time, we included the time-dependent 
covariates in the generalized estimating equation (GEE) model. The 
adverse effects on incident dyslipidemia of different lag structure of PM 
were also included and compared. We added a sensitivity analysis using 
the minimally adjusted model, determined by a DAG. Cox proportional 
hazards model with time-varying exposures of PM, CO and meteorologic 
factors was also utilized to assess the correlation between dyslipidemia 
and PM. 

The exposure-response curves for PM and dyslipidemia morbidity 
were portrayed using restricted cubic splines, of which three knots were 
chosen based on the Akaike information criterion according to previous 
studies (Inoue et al., 2020; Johannesen et al., 2020). 

All the statistical analyses were conducted using R software (Version 
4.2.0) with packages lme 4, rms, survival and gee. An α of 0.05 was set as 
the test level for two-tailed tests. 

3. Results 

3.1. Descriptive results 

Finally, 6976 participants were enrolled of the CHARLS in our study, 
of whom 333 (4.77%) developed dyslipidemia after a five-year follow- 
up. Table 1 summarizes the baseline characteristics distribution between 
non-dyslipidemia and incident dyslipidemia groups. The median age 
was 58.0 years for the study population, and males accounted for 48.7%. 
Statistically significant differences were found between non- 
dyslipidemia and incident dyslipidemia groups in marital status, BMI, 
depression status (CES-D scores), and daytime nap (P < 0.05). Partici-
pants who were married and lived with a spouse (χ2 = 10.41, P = 0.001), 
had high BMI (Z = − 4.29, P < 0.001), had depression status (Z = − 2.14, 
P = 0.032), and napped in the daytime (χ2 = 7.29, P = 0.007) at baseline 
tended to have dyslipidemia conditions. 

During the study period, average concentrations of PM1, PM2.5, and 
PM10 were 34.45 μg/m3, 50.22 μg/m3, and 82.87 μg/m3, respectively, 
which were 3.35 times and 1.84 times the Chinese Ambient Air Quality 
Standards limit (15 μg/m3 and 45 μg/m3 for PM2.5 and PM10) (Table S1). 
Four-year average concentrations of PM1 varied extremely among par-
ticipants from 3.97 μg/m3 to 122.98 μg/m3, with a median of 34.45 μg/ 
m3. Spearman rank correlation coefficients between concentrations of 
air pollutants and meteorological factors were described in Table S2 and 
Fig. S3. There were high correlations among PM (Spearman rank cor-
relation coefficients ranged from 0.55 to 0.91). 

3.2. Main analyses of the associations between ambient PM and 
dyslipidemia 

All five sizes of PM were significantly related to an incremental risk 
of incident dyslipidemia (Table 2 and Table S3). Per 10 μg/m3 uptick in 
PM1, PM1-2.5, PM2.5, PM2.5-10 and PM10 concentrations was associated 
with 1.03 (95% CI: 0.96–1.11), 1.24 (95% CI: 1.08–1.43), 1.08 (95%CI: 
1.02–1.15), 1.14 (95% CI: 1.05–1.23) and 1.06 (95% CI: 1.03–1.10) fold 
risks of incident dyslipidemia, respectively. The associations remained 
robust after adjustment for all five types of covariates, with OR of 1.11 
(95% CI: 1.01–1.23), 1.23 (95% CI: 1.06–1.43), 1.09 (95% CI: 
1.02–1.16), 1.09 (95% CI: 1.00–1.20) and 1.05 (95% CI: 1.01–1.10), 
respectively. 

3.3. Multi-pollutant models of associations between ambient PM and 
morbidity of dyslipidemia 

Table S4 and Fig. 1 show the associations between PM and morbidity 
of dyslipidemia using multi-pollutant models after adjustment for 
covariates. After adjusted for CO, per 10 μg/m3 uptick in four-year 
moving average concentration of PM1, PM1-2.5, PM2.5, PM2.5-10, and 
PM10 corresponded to 1.11 (95% CI:1.00–1.23), 1.23 (95% 
CI:1.06–1.42), 1.09 (95% CI:1.02–1.16), 1.09 (95% CI:1.00–1.19), and 
1.05 (95% CI:1.01–1.09) fold risk of dyslipidemia morbidity, respec-
tively. The associations of PM with incident dyslipidemia generally 
remained consistent in multi-pollutant models, which showed the 
robustness of our models. 

Table 1 
Baseline characteristics of participants included in the study (n = 6976).  

Variables Total Non- 
dyslipidemia 

Dyslipidemia P 

Age (years), median 
(IQR) 

58.0 
(13.0) 

58.0 (13.0) 59.0 (14.0) 0.311 

Sex, n (%)    0.306 
Female 3580 

(51.3) 
3400 (51.2) 180 (54.1)  

Male 3396 
(48.7) 

3243 (48.8) 153 (45.9)  

Marital status, n (%)    0.001 
Married and lived 
with spouse 

5848 
(83.8) 

5590 (84.1) 258 (77.5)  

Othera 1128 
(16.2) 

1053 (15.9) 75 (22.5)  

Education qualifications, n (%)   0.493 
< primary school 3144 

(45.1) 
3000 (45.2) 144 (43.2)  

≥ Primary school 3832 
(54.9) 

3643 (54.8) 189 (56.8)  

BMI, median (IQR) 23.3 
(4.8) 

23.3 (4.8) 24.0 (4.8) < 
0.001 

The main source of cooking fuel, n 
(%)   

0.683 

Clean fuel 3386 
(48.5) 

3228 (48.6) 158 (47.4)  

Solid fuel 3590 
(51.5) 

3415 (51.4) 175 (52.6)  

CES-D scores, median 
(IQR) 

6.0 (8.0) 6.0 (8.0) 7.0 (8.0) 0.032 

Daytime nap, n (%)    0.007 
Yes 2884 

(41.3) 
2770 (41.7) 114 (34.2)  

No 4092 
(58.7) 

3873 (58.3) 219 (65.8)  

Smoking status, n (%)    0.385 
Never smoke 3994 

(57.3) 
3798 (57.2) 196 (58.9)  

Quit smoking 735 
(10.5) 

695 (10.5) 40 (12.0)  

Current smoking 2247 
(32.2) 

2150 (30.8) 97 (29.1)  

Physical activity, n 
(%)    

0.059 

Yes 978 
(14.0) 

943 (14.2) 35 (10.5)  

No 5998 
(86.0) 

5700 (85.8) 298 (89.5)  

Abbreviations: n, number; IQR, interquartile range; BMI, body mass index; CES- 
D, the Center of Epidemiology Study depression. 
Note: 

a Married but do not live with spouse temporarily for reasons such as work, 
separation, not living together as a couple anymore, divorced, widowed, and 
never married. 
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3.4. Dose-response curves of associations between PM and incident 
dyslipidemia 

We found a nonlinear, reverse V-shaped dose-response association 
between exposure to PM and incident dyslipidemia, except for PM1-2.5 
(Fig. 2). With the increase of the concentration of PM, the OR value 
continued to increase sharply, leveling out at a concentration which is 
higher than the median. For example, with the increase of PM2.5 con-
centration, OR value continued to rise until the concentration reached 
about 55 μg/m3. When the concentrations of PM2.5 reached a specific 
level, the OR value reached its maximum and began to decrease due to 
marginal utility slowly. An approximately linear relationship was 
observed between PM1-2.5 and dyslipidemia in the range from 0 to 35 
μg/m3. 

3.5. Stratified analyses 

The associations between ambient PM and incident dyslipidemia 
stratified by sex, age, marital status, education qualifications, type of 
cooking fuel, and daytime nap status are shown in Fig. 3 and Table S5. 
The effect size of PM1 on incident dyslipidemia was slightly higher in 
males [1.14 (95% CI: 0.98–1.32) vs. 1.04 (95% CI: 0.89–1.21)], the 
elderly [1.23 (95% CI: 1.04–1.45) vs. 1.03 (95% CI: 0.91–1.17)], par-
ticipants who did not married or lived with a spouse [1.14 (95% CI: 
0.87–1.50) vs. 1.09 (95% CI: 0.98–1.22)], people with less than primary 

school education [1.12 (95% CI: 0.94–1.33) vs. 1.08 (95% CI: 
0.94–1.23)], solid cooking fuel users [1.17 (95% CI: 1.00–1.36) vs. 1.06 
(95% CI: 0.93–1.21)], and participants with napping in the daytime 
[1.08 (95% CI: 0.95–1.21) vs. 1.02 (95% CI: 0.81–1.30)], however, the 
difference was not statistically significant (Z = − 0.82, P = 0.413; Z =
− 1.66, P = 0.097; Z = 0.31, P = 0.759; Z = 0.32, P = 0.752; Z = − 0.89, 
P = 0.372; Z = − 0.36, P = 0.718). 

The effect size of PM1-2.5 on incident dyslipidemia was statistically 
significantly higher in males than that in females [1.49 (95% CI: 
1.18–1.89) vs. 1.04 (95% CI: 0.85–1.27), Z = − 2.27, P = 0.023). 

The effect size of PM on incident dyslipidemia was slightly higher in 
postmenopausal women [e.g., PM1: 1.08 (95% CI: 0.09–1.31) vs. 0.69 
(95% CI: 0.06–8.05), Z = − 0.36, P = 0.717], although the difference was 
not statistically significant. 

Overall, the effect size of PM on incident dyslipidemia was higher in 
males [e.g., PM1-2.5: 1.49 (95% CI:1.18–1.89) vs. 1.04 (95% 
CI:0.85–1.27)], the elder [e.g., PM1-2.5: 1.33 (95% CI: 1.05–1.68) vs. 
1.13 (95% CI: 0.93–1.37)], people with less than primary school edu-
cation [e.g., PM1-2.5: 1.28 (95% CI: 1.02–1.59) vs. 1.16 (95% CI: 
0.94–1.43)], solid cooking fuel users [e.g., PM1-2.5: 1.37 (95% CI: 
1.12–1.67) vs. 1.09 (95% CI: 0.88–1.35)], participants with napping in 
the daytime [e.g., PM1-2.5: 1.30 (95% CI:1.07–1.57) vs. 1.03 
(0.80–1.33)], and statistically significant difference was observed 
merely in sex groups (Z = − 2.27, P = 0.023; Z = − 1.03, P = 0.303; Z =
0.63, P = 0.527; Z = − 1.51, P = 0.132; Z = − 1.40, P = 0.160). 

3.6. Sensitivity analysis 

Overall, the sensitivity analysis results were consistent with the main 
analyses. The associations between PM and incident dyslipidemia 
remained significant using the GEE model (Table 3). We constructed 
Model 9 and Model 10 using GEE, where the covariates of model 9 were 
based on the Wave 2 survey in 2013, and the covariates of model 10 
were time-dependent variables. The difference in the results of model 9 
and model 10 was not statistically significant [e.g., PM1: 1.11 (95% CI: 
1.01–1.21) vs. 1.08 (95% CI: 1.03–1.14), Z = 0.48, P = 0.636]. 

Association between long-term exposure to PMs with different lag 
structure and incident dyslipidemia are shown in Fig. 4 and Table S6. 
The moving average 1-year, 2-year, and 3-year concentrations of PMs 
(PM1, PM1-2.5, PM2.5, and PM10) showed statistically significant positive 
associations with morbidity of dyslipidemia. The 1-year moving average 
PM2.5-10 concentration showed a positive correlation with incident 
dyslipidemia (OR = 1.08, 95% CI: 1.01–1.15). 

The results of the sensitivity analysis remain consistent with our 
main findings based on the minimally adjusted model using a DAG 
(Table S7). The minimally adjusted model was adjusted for solar radi-
ation, carbon oxide, education qualification, age and gender, selected by 
the DAG (Fig. S2). 

The results of Cox proportional hazards models remain consistent 
with our main findings. Hazards ratio (HR) with 95% CI of risk of 
incident dyslipidemia associated with PM are presented in Table S8. Per 
10 μg/m3 uptick in PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10 concentra-
tions was associated with 1.06 (95% CI: 1.04, 1.08), 1.03 (95% CI: 0.80, 
1.34), 1.03 (95% CI: 1.01, 1.05), 1.03 (95% CI: 1.01, 1.04), and 1.02 
(95%CI: 1.01, 1.03) fold risks of incident dyslipidemia, respectively. 

4. Discussion 

In our study, long-term exposure to PMs was linked with an increased 
morbidity of dyslipidemia in the middle-aged and elderly Chinese 
population. The associations remained consistent after adjusting for 
various covariates, including individual demographic, lifestyle 
behavior, meteorological factors, and gaseous contaminants variables. 
Nonlinear exposure-response curves were observed between PM and 
incident dyslipidemia. Stratified analysis showed that males, the elderly, 
and people with less than primary school education, and solid cooking 

Table 2 
Odds ratio (95% confidence interval) of risk of incident dyslipidemia associated 
with per 10 μg/m3 increment in 4-year average concentrations of particular 
matter (n = 6976).  

Particular matters OR (95% CI) 

Model 1a Model 5b 

PM1 1.03 (0.96, 1.11) 1.11 (1.01,1.23) * 
PM1-2.5 1.24 (1.08, 1.43) * 1.23 (1.06, 1.43) * 
PM2.5 1.08 (1.02, 1.15) * 1.09 (1.02, 1.16) * 
PM2.5-10 1.14 (1.05, 1.23) * 1.09 (1.00, 1.20) 
PM10 1.06 (1.03, 1.10) ** 1.05 (1.01, 1.10) * 

Note: *P-value < 0.05; **P-value < 0.001. 
Abbreviations: PM1, submicronic particulate matter; PM1-2.5, intermodal par-
ticulate matter; PM2.5, fine particulate matter; PM2.5-10, coarse particulate 
matter; PM10, inhalable particulate matter with a diameter <10 μm; OR, odds 
ratio; CI, confidence interval. 

a Model 1 was the crude model. 
b Model 5 was adjusted for carbon oxide, age, sex, marital status, education 

qualifications, body mass index, cooking fuel, depression status, day sleeping 
status, wind velocity, and solar radiation. 

Fig. 1. Associations between per 10 μg/m3 uptick in PM with morbidity of 
dyslipidemia in multi-pollutant models. 
Abbreviations: PM1, submicronic particulate matter; PM1-2.5, intermodal par-
ticulate matter; PM2.5, fine particulate matter; PM2.5-10, coarse particulate 
matter; PM10, inhalable particulate matter with a diameter <10 μm; NO2, ni-
trogen dioxide; SO2, sulfur dioxide; O3, ozone; CO, carbon oxide; CI, confi-
dence interval. 
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fuel users were more vulnerable to adverse effects of PM on dyslipide-
mia. To the best of our knowledge, it is the broadest study investigating 
the correlation between long-term PM exposure and incident dyslipi-
demia in middle-aged and elderly Chinses population. Our study pro-
vided evidence for the chronic effects of PM pollution in the middle-aged 
and elderly population in developing countries. 

In our study, long-term exposure to PMs was linked to dyslipidemia 
in the middle-aged and elderly Chinese population. Similarly, Wang 
et al. reported a positive association of PM1 with hypertriglyceridemia 
and hypo-alpha-lipoproteinemia (Wang et al., 2021b). The correlation 
between PM and incident dyslipidemia has been extensively studied 
(Aryal et al., 2021; Fioravanti et al., 2018; Miyamura et al., 2021). 
However, few studies focused on PM1 and PM1-2.5 (Gui et al., 2020; Mao 
et al., 2020b). 

Our study found that PM1-2.5 could have more deleterious health 
effects than other PMs (PM1, PM2.5, PM2.5-10, and PM10). Different-sized 
particles may have differential effects on lipids (Gui et al., 2020; He 
et al., 2021; Shin et al., 2020; Yan et al., 2022). Some studies have also 
shown that smaller particles are more harmful to health since they can 
easily enter and get deposited in the human airway (Guo et al., 2022; 
Peng et al., 2020; Wang et al., 2021c). However, our result showed that 
the effect of PM1 is less than PM1-2.5. Manojkumar and colleagues have 
indicated that the deposition of PM1-2.5 may differ from PM1 in the head 
and pulmonary regions (Manojkumar et al., 2019). Previous research 
suggested that there are correlations between PM1 and PM1-2.5, and PM1 
may grow into PM1-2.5 via complex processes, including stagnation of 
aerosols in high relative humidity conditions followed by advection 
during daytime hours (Geller et al., 2004). Besides, the toxic effects of 
size-specific PM may also be related to its composition and deposition 
fraction (Kelly and Fussell, 2012; Wang et al., 2022b). According to 
previous studies (Peralta et al., 2021), the specific PM components may 
contribute to different health effect (Nunez et al., 2022). Wang et al. 
reported that doses may be more related to the health influence due to 
PMs and they found that the total deposition fraction of PM1 was about 
72% lower than that of PM1-2.5 (Wang et al., 2021a). 

Exposure to PM2.5 and PM10 has been connected with an increment 
in the level of blood lipids (Bo et al., 2019; McGuinn et al., 2019; Wu 
et al., 2019; Zhang et al., 2022b), although the results remain incon-
sistent (Li et al., 2021; Wang et al., 2021b; Zhang et al., 2021c). Several 
studies reported negative results (Fioravanti et al., 2018; Shanley et al., 
2016; Yeatts et al., 2007). These discrepancies might be attributed to 
various causes, such as diversity in the samples, study geographies, or 
methodology. Our research focused on the population in China, where 
PM levels were higher than in developed countries. The comparison of 
research was hampered by geographic location, the health status of 
population, as well as covariables included in statistical models. 

In our research, the estimate effects were majored contributed by a 
specific size of PM, since we didn’t assess the potential effects of the co- 
exposure of PMs. Wang et al. reported that the estimated risk based on a 
specific size of PM was close to that based on total deposited PM (Wang 
et al., 2021a). A recently research showed that analysis of NO2 without 
considering its collinearity with PM2.5 may lead to overestimation (Ji 
et al., 2022). The collinearity of PMs and CO was not observed in our 
study. Thus, our models were robust when adjusted CO. 

Stratified analysis showed that the elderly and male participants 
tended to have slightly larger effect of PM on incident dyslipidemia. 
Recent studies indicated that the elderly population are more easily 
influenced by air pollution-related blood lipid changes than younger 
adults (Wang et al., 2018a; Zhang et al., 2021a). Yang et al. reported that 
sex might modify the effects of air pollutants on blood lipid with mixed 
pattern (Wang et al., 2018a; Yang et al., 2018). Compared with women, 
men were more likely to engage in physical activity and thus had higher 
prevalence of dyslipidemia (Wang et al., 2018b). The trade-off between 
the benefits of physical activity and the potentially detrimental effects of 
augmented exposure to particular matter remains unclear. 

We also find postmenopausal women were more susceptible to dys-
lipidemia. To the best of our knowledge, no previous study has reported 
the correlation between PM and dyslipidemia in women during meno-
pause. Previous studies have shown that postmenopausal women often 
have dyslipidemia (Wooten et al., 2021). Postmenopausal women are 

Fig. 2. Dose-response relationship between PM and incident dyslipidemia in China (2014)–2018. 
Note: Shaded areas represent the 95% CI (95% confidence interval) of the OR (Odds ratio). The reference value of PM2.5 (15 μg/m3) and PM10 (45 μg/m3) from WHO 
global air quality guidelines 2021 were marked as the green dotted line in (b) and (c). 
Abbreviations: PM1, submicronic particulate matter; PM1-2.5, intermodal particulate matter; PM2.5, fine particulate matter; PM2.5-10, coarse particulate matter; PM10, 
inhalable particulate matter with a diameter <10 μm; CI, confidence interval. . (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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more sensitive to PM (Niehoff et al., 2020). However, some studies have 
shown no significant difference in sensitivity to PM between premeno-
pausal and postmenopausal women (White et al., 2019). 

Our study observed nonlinear exposure-response curves were 
observed between PMs and incident dyslipidemia. Roughly consistent 
with a most recent study, we found a nonlinear, reverse V-shaped, dose- 
response association between exposure to PM and incident dyslipide-
mia, except for PM1-2.5 (Zhou et al., 2022). Similarly, Li et al. reported 
nonlinear associations between PM2.5 and blood lipids level (Li et al., 
2021). According to the exposure-response curve of PM1, we can reduce 
the incidence of dyslipidemia by reducing the concentration of PM1 in 
the environment. The average concentrations of PM2.5 and PM10 were 
substantially higher than the WHO global air quality reference value. 
Our next goal is to reduce the pollutant concentration to the reference 
value (Qi et al., 2021). 

Although various pieces of evidence support positive association 

between PM and dyslipidemia, the potential mechanism by which PM 
affects lipid profile remains largely unknown. Some studies supposed 
that PM may contribute to higher lipid levels through oxidative stress 
processes and inflammatory (Ritz et al., 2022; Xu et al., 2019). An ani-
mal experiment demonstrated that PM pollution is characterized by 
elevated free fatty acid species and decreased phospholipid species, 
which may contribute to vascular inflammatory (Hill et al., 2021). It has 
been proved that exposure to PM2.5 accelerates to deterioration of 
inflammation and oxidative stress in the circulation system of hyper-
lipidemic rats, causing hypercoagulability and cardiomyocyte apoptosis 
(Wang et al., 2019). 

There are several advantages of our research. First, the study adds 
new evidence of the adverse effect of PMs, particularly PM1, on blood 
lipids among the middle-aged and elderly based on the high-quality 
microdata in China. Second, the main source of cooking fuel was 
adjusted as indicator of the indoor pollution since indoor air pollution 

Fig. 3. Odds Ratio with 95% confidence intervals in dyslipidemia per 10 μg/m3 increment in particular matter, stratified by (a) gender; (b) age (the younger group: 
age <60; the older group: age ≥60); (c) marital status; (d) education qualifications; (e) cooking fuel; (f) nap status. 
Abbreviations: PM1, submicronic particulate matter; PM1-2.5, intermodal particulate matter; PM2.5, fine particulate matter; PM2.5-10, coarse particulate matter; PM10, 
inhalable particulate matter with a diameter <10 μm. 
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has drawn much attention due to the expansion of modern lifestyles 
featured with intensive urbanization and more time spent indoors (Deng 
et al., 2021; Qiu et al., 2022). Third, considering that variables may vary 
over time, we included the time-dependent covariates in the GEE model 
to test the robustness of our findings. 

Limitations should also be addressed in this study. First, despite the 
high resolution (1 km2), individual exposure to air pollution may be 
biased due to unevenly distributed emission sources, dilution, and 
physicochemical transformations. Second, information on diet pattern, 

family history of dyslipidemia, and occupational exposure were not 
included in our study, and further study would be warranted. Third, the 
incidence of dyslipidemia was based on self-reported, which may lead to 
misclassification and underestimation since many people in China, 
especially those in rural areas, may not have their blood lipid levels 
tested. 

5. Conclusion 

In conclusion, long-term exposure to PM1 and PM1-2.5 were linked 
with an increased morbidity of dyslipidemia in the middle-aged and 
elderly population. PM had a nonlinear exposure-response relationship 
with incident dyslipidemia. Males, the elderly, and people with less than 
primary school education, and solid cooking fuel users were more 
vulnerable to the detrimental effect of PM on dyslipidemia. Our study 
added new evidence of the adverse effect of PMs, particularly for PM1 
and PM1-2.5, on the development of dyslipidemia. Further studies should 
be warranted to establish an accurate reference value of PM to mitigate 
growing dyslipidemia. 
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Table 3 
Associations between per 10 μg/m3 uptick in particular matter and incident 
dyslipidemia using generalized estimating equations (GEE) model (n = 6976).  

Particular 
matters 

OR (95% CI) Z- 
value 

P- 
value 

Model 9a Model 10b 

PM1 1.11 (1.01, 1.21) 
* 

1.08 (1.03, 1.14) * 0.48 0.636 

PM1-2.5 1.22 (1.06, 1.41) 
* 

1.13 (1.04, 1.23) * 0.90 0.367 

PM2.5 1.08 (1.02, 1.15) 
* 

1.07 (1.03, 1.11) 
** 

0.34 0.737 

PM2.5-10 1.09 (1.00, 1.19) 1.10 (1.04, 1.16) 
** 

− 0.10 0.916 

PM10 1.05 (1.01, 1.09) 
* 

1.05 (1.02, 1.07) 
** 

0.15 0.878 

Note: *P-value < 0.05; **P-value < 0.001. 
Abbreviations: PM1, submicronic particulate matter; PM1-2.5, intermodal par-
ticulate matter; PM2.5, fine particulate matter; PM2.5-10, coarse particulate 
matter; PM10, inhalable particulate matter with a diameter <10 μm; OR, odds 
ratio; CI, confidence intervals. 
a, b Model 9 and Model 10 were adjusted for carbon oxide, age, sex, marital 
status, education qualifications, body mass index, cooking fuel, depression sta-
tus, smoking status, day sleeping status, wind velocity, and solar radiation. 
Covariates in model 9 were based on the surveys in 2013 (Wave 2). Time- 
dependent covariates were included in model 10. 

Fig. 4. Odds ratio (95% confidence interval) 
of risk of incident dyslipidemia associated 
with per 10 μg/m3 increment in particular 
matters with different lag structure. 
Abbreviations: PM1, submicronic particulate 
matter; PM1-2.5, intermodal particulate mat-
ter; PM2.5, fine particulate matter; PM2.5-10, 
coarse particulate matter; PM10, inhalable 
particulate matter with a diameter <10 μm; 
OR, odds ratio; CI, confidence interval; Lag 
1, the 1-year moving average concentrations 
of PM; Lag 1_2, the 2-year moving average 
concentrations of PM; Lag 1_3, the 3-year 
moving average concentration of PM; Lag 
1_4, the 4-year moving average concentra-
tion of PM.   
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