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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Overall but not visible greenness was 
beneficially associated with diabetes in 
older adults. 

• The association was more pronounced 
among the old adults with higher level 
of education or household income. 

• The association was partially mediated 
by environmental factors of air pollu-
tion, but not by individual physical ac-
tivity, BMI, and social interaction. 

• Increasing overall greenness is a poten-
tial means to lower the diabetes risk for 
the older urban residents.  
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A B S T R A C T   

Neighborhood greenness has been shown to reduce diabetes risk, however, no studies have compared the effects 
of overall greenness with visible greenness, which is crucial for understanding how greenness influences diabetes 
risk. Our study aims to explore the associations between greenness matrix and diabetes, as well as the potential 
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effect modifications and mediating factors. We used logistic regressions to examine the cross-sectional associa-
tions of the satellite-based Normalized Difference Vegetation Index (NDVI) and street view-based Green View 
Index (GVI) with diabetes in 3,924 urban older adults enrolled in the 2017–2018 wave of Chinese Longitudinal 
Healthy Longevity Survey (CLHLS). We conducted the stratified analyses by age, sex, household income and 
education. Mediation analyses were also performed to see whether physical activity, BMI, air pollution, and 
social interaction mediate the associations. Significant associations with diabetes were only observed for NDVI 
but not for GVI. Participants in the highest quartile of NDVI and GVI had 52% (95 % CI: 48%, 63%) and 14% 
(-10%, 44%) lower odds of reporting having diabetes diagnosed by a doctor. The protective effects of NDVI were 
more pronounced in the young old (≥75–95 years) and high-education or high-income groups. No difference 
between males and females were observed. Air pollution (e.g., PM2.5, NO2 and O3) partially mediated the as-
sociations, but physical activity, BMI, and social interaction may not mediate the associations. Our findings 
indicate beneficial associations between overall greenness but not visible greenness surrounding residences with 
diabetes in older urban residents in China, especially for old adults with higher education or household income 
levels. Environmental factors (e.g., air pollution) but not individual behavioural characteristics are the potential 
underlying mechanisms.   

1. Introduction 

Diabetes is among the most challenging health issues of the 21st 
Century (Saeedi, Petersohn, Salpea, Malanda, Karuranga, Unwin, Cola-
giuri, Guariguata, Motala, Ogurtsova, Shaw, Bright, & Williams, 2019; 
Tremblay & Hamet, 2019; Zimmet, Magliano, Herman, & Shaw, 2014). 
China has the largest population with diabetes worldwide (Yang et al., 
2010). With rapid aging and changes in environment and lifestyle, 
diabetes prevalence in China increased from<1% in the 1980s to 12.4% 
in 2018 (Pan, X.-R., Yang, W.-Y., Li, G.-W., Liu, J., Prevention, N. D., 
Group, C. C., 1994; Wang et al., 2021a). In 2018, 1 in 4 people aged over 
70 years in China lived with diabetes (Wang et al., 2021a). Diabetes 
greatly increases the economic burden and causes the loss of produc-
tivity and early mortality (Guo et al., 2021). Effective prevention and 
intervention approaches are needed to stem the rising tide of diabetes in 
China. Diabetes has a complex etiology involving genetic, environ-
mental and behavioral origins (Tremblay & Hamet, 2019). From a 
practical point of view, the identification of environmental factors is 
essential since many factors can be modified by changes in policy or 
behaviors. 

To date, whether greenness produces a beneficial effect on diabetes, 
especially in old adults, remains an open question. Although growing 
evidence shows that neighborhood greenness protects against diabetes 
(Bodicoat et al., 2014; Khan, Sultana, Islam, & Biswas, 2021; Müller, 
Harhoff, Rahe, & Berger, 2018), there is also research reported no as-
sociations (Patino et al., 2021). Most research focuses on Europe and the 
US, while the Asian context has remained oblivious. A challenge for 
these studies is the characterization of people’s exposure to trees and 
plants (Donovan et al., 2022). A common approach is to use the satellite- 
derived Normalized Difference Vegetation Index (NDVI) or the land use 
map to measure the individual exposure around the residence. But these 
indices only reflect the overall greenness but cannot distinguish the 
types of green space. Moreover, such indices only represent a bird’s eye 
(i.e., overhead-level) perspective but do not necessarily reflect the 
people’s eye-level perspective on greenness (Yue, Yang, & Van Dyck, 
2022). Recently, the geo-tagged Street View images combined with 
machine learning techniques provided the opportunity for capturing the 
visible green space by Green View Index (GVI) (Li et al., 2015). Some 
epidemiological studies utilized GVI for individual exposure assessment 
of visible greenness (Helbich, Poppe, Oberski, Zeylmans van Emmic-
hoven, & Schram, 2021; Miron-Celis et al., 2023; Wang et al., 2022; Yu 
et al., 2021a), but the existing comparisons with traditional satellite- 
derived assessments are still mixed and need further investigations 
(Helbich et al., 2019; Larkin & Hystad, 2019; Sun, Song, & Lu, 2022b; Yu 
et al., 2021b; Zhang, Liu, Zhou, Cheng, & Zhao, 2022). 

The mechanisms that mediate the associations between greenness 
and health outcomes are only partially known. However, certain path-
ways are likely important for the intervention from a built environment 
perspective. These causal pathways may include increased physical 

activity, less stress, enhanced immune function, better social connect-
edness, less noise, and improved air quality (Dalton et al., 2016; Yang 
et al., 2019). Some of them, such as stress reduction, may be mediated 
visually and aesthetically (Donovan et al., 2022). Compared with the 
satellite-derived index, the street-view greenness index may have a 
better ability to detect the relationship with the improved health 
explained by aesthetic or visual cues from the environment. Hence, the 
comparison of NDVI and GVI would help understand the underlying 
mechanisms linking greenness and diabetes. 

In light of the above-mentioned knowledge gaps, we leverage NDVI, 
GVI, and diabetes data from nationwide representative survey data of 
Chinese older populations to investigate the relation between residential 
greenness exposure metrics (i.e., overall greenness and visible green-
ness) and diabetes. In order to identify the effect modifications of de-
mographic and socio-economic factors, we explored whether the 
associations with overall greenness and visible greenness differed by age 
group, sex, household income, and education. We also investigated 
whether these associations were mediated by air pollution (PM2.5, NO2, 
and O3), physical activity, social interaction, and body mass index (BMI) 
to explore the potential mechanisms linking greenness and diabetes. 

2. Methods 

2.1. Study population 

Our study used a nationally representative sample from the 
2017–2018 wave of the Chinese Longitudinal Healthy Longevity Survey 
(CLHLS). The CLHLS is a prospective cohort aiming to understand the 
social, behavioral, and biological determinants of healthy aging and 
longevity among the older adults in China. Interviews were conducted in 
randomly selected half of the counties and cities in 22/31 provinces in 
China (Fig. 1), representing>80% of China’s total population. Well- 
trained interviewers administered the surveys and collected their data 
on basic demographic characteristics, cognitive function, nutrition and 
lifestyle, history of diseases, psychological status, and physical capacity 
following a structured questionnaire. The details on the sampling 
design, ethics approval, and data quality of the CLHLS were previously 
published by Yao et al. (2022). 

Because the street view images are generally unavailable in rural 
China, we only keep the urban participants in the 2017–2018 wave of 
CLHLS in the statistical analysis. The participants aged ≥65 years and 
lived in cities or towns for >6 months were included. The exclusion 
criteria of our sampling were those with unavailable information on GVI 
or NDVI due to no geoinformation or no available street view images, or 
with missing information on diabetes. Eventually, 3,924 participants 
were included (Figure A1). 
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2.2. Assessment of diabetes 

In the CLHLS, participants were asked whether they had ever been 
diagnosed by a doctor that they had diabetes. The CLHLS survey did not 
distinguish the types of diabetes, since>99% of the diabetics in China 
are known to be type 2 diabetes mellitus (T2DM) (Li, Guo, & Cao, 2021). 

2.3. Greenness exposure metrics 

We used the NDVI to assess the satellite-derived overall greenness 
exposure. NDVI is computed as the ratio of the difference between the 
near-infrared region (NIR) and red reflectance (RED) to their sum (Weier 
& Herring, 2000). The range of NDVI is from − 1 to 1, with higher NDVI 
indicating more greenness. We downloaded all available images at a 
spatial resolution of 30 m from Landsat 8 Collection Tier 1 from June 1st 
to August 31st 2018 through the Google Earth Engine. To minimize 
cloud contamination and consider the seasonal variations in vegetation 
status across different regions in China, Maximum value compositing 
(MVC) technique has been employed by preserving the maximum NDVI 
value by each 30 m grid cell of all satellite images during one year 
(Viovy, Arino, & Belward, 1992). The individual residential address was 
converted to the latitude and longitude coordinates. It remains unknown 
which size of the buffer zone around the residence is the most appro-
priate to explore the environmental impacts on human behaviors and 
their health outcomes, and buffers with radii ranging from 300 m to 1.0 
km have been widely used. Considering that smaller buffers may be 
more appropriate for older populations due to their reduced physical 
capacity (Yue et al., 2022), in this study, individual-level NDVI exposure 
was assessed and computed as the averaged NDVI in a 500 m buffer 
around the coordinate of participant’s residential location. NDVI expo-
sure were converted into 4 quartiles: quartile 1 (Q1: ≤0.14), quartile 2 
(Q2: >0.14–0.17), quartile 3 (Q3: >0.17–0.21), and quartile 4 (Q4: 
>0.21). Effect estimates for the NDVI in 100 m, 300 m, 1 km, and 2 km 
buffers were reported in sensitivity analyses. 

GVI was used to assess the street view-based visible greenness 
exposure. We first obtained the OpenStreetMap road network within a 
circular buffer of 500 m around each participant’s residence location 
using ArcGIS, and then randomly selected 20 sampling points in the road 
network within each buffer using Grasshopper (Fig. 2). We chose the 
random sampling approach instead of the commonly used method of 
sampling at an equal distance due to that the equal-distance way cannot 
capture the images on winding roads. We downloaded the closest Baidu 
street view images in the horizontal direction of each sampling point 
from different angles (0◦, 90◦, 180◦, and 270◦) from the survey year 
2017–2018. Baidu map is the Chinese equivalent of Google Maps. If no 
street view images were available during the year 2017–2018, we car-
ried forward images from the year prior and up to 2 years before if 
needed. Most street view images were captured in summer when the 
trees and plants are the greenest. In total, 313,920 street view images 
were obtained for the included 3,924 participants. 

GVI was extracted from the street view images by semantic seg-
mentation using the DeepLab V3+, which is the third generation 
improvement version of the DeepLab convolutional neural network se-
ries proposed by Google (Chen, Zhu, Papandreou, Schroff, & Adam, 
2018). DeepLab V3 + was trained using the CityScapes dataset, and the 
xception71_dpc_cityscapes_trainval model (https://download.tensorflo 
w.org/models/deeplab_cityscapes_xception71_trainvalfine_2018_09_08. 
tar.gz) of DeepLab V3 + was used. GVI for each sampling point was 
calculated as the mean proportion of the trees and plants in four 
matched images. GVI for each participant is the average GVI of all 
sampling points in circular buffers of 500 m around each participant’s 
residential location. Therefore, GVI ranges from 0 to 1, with a higher 
value indicating a greener street greenness. To ensure the random 
sampling did not induce biased exposure, we repeated the random 
sampling and found the two sets of GVIs were highly correlated (cor-
relation coefficient = 0.93, P < 0.001). Thus, the random sampling 
would not cause exposure misclassification. GVI exposure were con-
verted into 4 quartiles: quartile 1 (Q1: ≤0.18), quartile 2 (Q2: 

Fig. 1. Residential locations of the study participants and NDVI from Landsat 8 and GVI for each participant in a buffer size of 500 m.  
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>0.18–0.23), quartile 3 (Q3: >0.23–0.30), and quartile 4 (Q4: >0.30). 

2.4. Covariates 

To minimize the bias induced by confounders, we reviewed the 
published paper in recent 20 years to identify the common predictors of 
diabetes as covariates (Chien et al., 2009; Xie, Nikolayeva, Luo, & Li, 
2019). Covariates in our analyses included age, sex, marital status 
(married or not married), years of education (0, ≥1–5, or ≥6 years of 
schooling), household income level (<30000 or ≥30000 RMB Yuan per 
year), smoking status (smoke at present, smoked in the past but not at 
present, or never smoked), drinking status (drink at present, drank in the 
past but not at present, or never drank). We imputed missing data of 
covariates using multivariate imputation by chained equations (van 
Buuren & Groothuis-Oudshoorn, 2011), which allows for building up an 
imputation model with mixed-type covariates. 

2.5. Mediating variables 

To understand the pathways linking greenness and diabetes, we 
considered the individual-level physical activity (exercise at present, 
exercised in the past but not at present, or never exercised), BMI [un-
derweight (<18.5), normal weight (≥18.5–24.0), overweight 
(≥24.0–28.0), or obesity (≥28.0), unit: kg/m2], and social interaction, 
as well as air pollution (PM2.5, O3, and NO2) at the environmental level 
as potential mediators. Information on regular physical activity was 
collected using two questions (1) “Do you do exercises regularly at 
present?” and recoded as yes (Y-1) or no (N-1); (2) “Did you do exercises 
regularly in the past?” and recoded as yes (Y-2) or no (N-2). We 

combined the answers to these two questions to three levels of physical 
activity: (1) exercise at present (Y-1), (2) exercised in the past but not at 
present (N-1 and Y-2), or (3) never exercised (N-1 and N-2). Social 
interaction was measured based on the frequencies of participating in 
three kinds of activities: the group leisure activities (e.g., play cards, 
chess or mah-jongg, square dances), informal interaction (e.g., visit 
people, and socialize with friends), and other organized social activities 
(e.g., did volunteer or charity work). A 1–5 score was given to each 
activity based on five levels of frequency: never (1 score), sometimes but 
not monthly (2 score), at least once in a month but not weekly (3 score), 
once for a week but not daily (4 score), and almost every day (5 score). 
And the final score of the individual’s social interaction was defined as 
the highest frequency of the three kinds of activities. Annual gridded 
concentrations of PM2.5 (1 km × 1 km), NO2 (10 km × 10 km), and O3 
(10 km × 10 km) were obtained from the ChinaHighAirPollutants 
(CHAP, https://weijing-rs.github.io/product.html). Briefly, the CHAP 
dataset integrated big data including remote sensing products (e.g., 
aerosol optical depth), atmospheric reanalysis, ground-based measure-
ments, pollutant emissions and population distribution using artificial 
intelligence (Wei et al., 2020; Wei et al., 2021). This air pollution dataset 
is a series of long-term, high-resolution and high-data quality ground- 
level air pollutant products for China, for instance, the R2 and RMSE 
for the cross-validation of PM2.5 is 0.92 (10.76) μg/m3 on a daily basis 
(Wei et al., 2022a; Wei et al., 2022b). The averaged concentrations of 4- 
year annually averaged PM2.5, NO2, and O3 from 2014 to 2017 in 500 m 
circle buffers were calculated as the air pollution exposure. 

Fig. 2. (a) An example of NDVI surface from Landsat 8 in buffer size of 500 m around a participant’s residential location, sampling points of street view images, and 
(b) examples of using street view images to assess the visible greenness. 
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2.6. Statistical analyses 

The unavailability of historical street view images in China before 
2015 prevented us to use the longitudinal study design, thus a cross- 
sectional research design was utilized in our study. In statistical ana-
lyses, we used logistic regression models to evaluate the association 
between greenness and diabetes. First, we developed a crude model as 
model 1 for regression. Second, model 2 included the covariates of age 
and sex. Third, a fully adjusted model was developed as model 3 to 
further adjust for education, income, marital status, drinking status, and 
smoking status. We introduced diabetes as a dummy variable in the 
models. Considering the associations between greenness and diabetes 
may be non-linear, we categorized NDVI and GVI as quartiles and set the 
lowest quartile (Q1) as the reference. The results were presented as the 
estimates of odds ratios (OR) and their 95% confidence intervals (CI). 
The P-trend values were also calculated by using continuous variables (i. 
e., 1, 2, 3, 4) for quartiles of greenness exposures to test the significance 
of the linear trend of the associations between NDVI or GVI levels and 
diabetes. 

Effect modifications by age, sex, income, and education was evalu-
ated by stratified analyses. In the stratified analyses, we categorized age 
into four groups (>95, >85–95, >75–85, and ≥ 65–75 years), and 
household income levels into two groups [high-income group (≥30,000 
RMB Yuan) and low-income group (<30,000 RMB Yuan)], and years of 
education into three groups [high-education group (≥6 years of 
schooling), median education group (≥1–5 years of schooling), and low 
education group (0 years of schooling)], using the cut-off points referred 
by previous studies (Fu, Sherris, & Xu, 2022; Hou et al., 2019; Hu et al., 
2022). 

To shed light on the hypothetical mechanisms that air pollution, 
weight status, and human behaviors may mediate the associations be-
tween NDVI and diabetes, multi-stage mediation analyses considering 
the potential mediators of BMI, physical activity, social interaction, and 
air pollutants (O3, PM2.5, and NO2) were carried out (Baron & Kenny, 
1986). This mediation analysis divided the total effect of greenness on 
diabetes into a direct and an indirect component. The percentage of 
mediation was calculated as the mediation (i.e., the indirect effect) 
divided by the total effect using 1000 Monte Carlo simulations to esti-
mate the confidence intervals. Sobel tests were performed to test the 
significance of the mediation effects (Sobel and Leinhart, 1982). 

All statistical analyses were performed in R 4.1.2 using the packages 
of “psych”, “mediation” and “gmodels”. A two-tailed P value<0.05 was 
considered statistically significant. 

2.7. Sensitivity analyses 

In order to test the robustness of our results, we also conducted the 
sensitivity analyses for both NDVI and GVI by including the covariates of 
the distance between the main road with a width of>100 m and the 
participant’ s home, the province, and population density and land use 
mixture at the city level in the logistic regression models, since prior 
studies demonstrated that noise, population density, living region, and 
land use mixture may influence the diabetes risks (Liu et al., 2019; 
Pasala, Rao, & Sridhar, 2010; Sakhvidi, Sakhvidi, Mehrparvar, Foraster, 
& Dadvand, 2018). Population density was computed as the total pop-
ulation in 2020 of one city divided by the area of this city, with popu-
lation data collected from the China Seventh National Census (https: 
//www.stats.gov.cn/tjsj/pcsj/). The national land use data in 2018 
based on Landsat remote sensing images was obtained from the Chinese 
Academy of Sciences Resource and Environmental Science Data Center 
(https://www.resdc.cn), and this land use map comprises 32 land use 
types at a 30 m spatial resolution (Xia et al., 2022). The Shannon’s di-
versity index (SHDI) based on all land use types was used to measure the 
city-level land use mixture (Nagendra, 2002). SHDI was computed as −
Σpropi*ln(propi), with propi refers to the proportion of grids belonging to 
the land use type i. 

3. Results 

3.1. Descriptive statistics 

The descriptive characteristics of the study participants are sum-
marized in Table 1. The 3,924 participants had a mean age of 84.6 years 
(standard deviation (SD) ± 11.6); nearly half of them (46.5%) were 
males. Most of the participants never smoke (71.0%) and drank (75.2%). 
There were 43.7% of the participants currently engaged in exercises, 
while 44% of the participants never did any exercise. The prevalence of 
diabetes among the study population was 17.6%. Participants with 
diabetes were younger and more likely to have current exercise, high 
household income, and high BMI, as well as never smoke or drank, than 
participants without diabetes (Table 1). The spearman’s correlation 
coefficient of NDVI and GVI was 0.12 (P<0.001, Figure A2). 

3.2. Greenness metrics and diabetes 

Crude (model 1), adjusted (model 2), and fully adjusted (model 3) 
ORs and their 95% CIs for diabetes in relation between NDVI and GVI 
are given in Table 2. Overall, the likelihood of participants with diabetes 
significantly decreased with higher NDVI levels (Table 2, Ps for 
trend<0.001) in the crude, adjusted, and fully adjusted models. Further 
adjustment for covariates in model 2 and model 3 attenuated slightly the 
associations. Individuals exposed to the highest level of NDVI presented 
around half the likelihood (OR: 0.48, 95% CI: 0.37–0.62 in model 3) of 
reporting having diabetes diagnosed by a doctor compared to in-
dividuals exposed to the lowest NDVI level. In contrast, higher GVI 
exposure seemed to be associated with higher odds of reporting having 
diabetes diagnosed by a doctor, although none of the associations was 

Table 1 
Descriptive statistics of diabetes, non-diabetes, and all study participants. P 
value for the chi-square test for comparing the characteristics between diabetes 
and non-diabetes groups.   

Diabetes 
(n = 693) 

Non-diabetes 
(n = 3,231) 

P value Total 
(n = 3,924) 

Age a 80.18 ± 9.67 85.56 ± 11.73  <0.001 84.61 ± 11.58 
Sex    0.628  
Male 322 (46.5%) 1,534 (47.5%)  1,856 (47.3%) 
Female 371 (53.5%) 1,697 (52.5%)  2,068 (52.7%) 
Household income    <0.001  
<30000 101 (14.6%) 789 (24.4%)  890 (22.7%) 
≥30000 592 (85.4%) 2,442 (75.6%)  3,034 (77.3%) 
Marital status    <0.001  
Married 395 (57.0%) 1,381 (42.7%)  1,776 (45.3%) 
Not married 298 (43.0%) 1,850 (57.3%)  2,148 (54.7%) 
Years of education    <0.001  
0 139 (20.1%) 1,163 (36.0%)  1,302 (33.2%) 
1–5 131 (18.9%) 652 (20.2%)  783 (20.0%) 
≥6 423 (61.0%) 1,416 (43.8%)  1,839 (46.9%) 
Smoking status    <0.01  
Current 59 (8.5%) 415 (12.8%)  474 (12.1%) 
Ever 124 (17.9%) 539 (16.7%)  663 (16.9%) 
Never 510 (73.6%) 2,277 (70.5%)  2,787 (71.0%) 
Drinking status    <0.01  
Current 70 (10.1%) 476 (14.7%)  546 (13.9%) 
Ever 78 (11.3%) 351 (10.9%)  429 (10.9%) 
Never 545 (78.6%) 2,404 (74.4%)  2,949 (75.2%) 
Physical activity    <0.001  
Current 352 (50.8%) 1,363 (42.2%)  1,715 (43.7%) 
Ever 81 (11.7%) 403 (12.5%)  484 (12.3%) 
Never 260 (37.5%) 1,465 (45.3%)  1,725 (44.0%) 
BMI    <0.001  
<18.5 kg/m2 31 (4.5%) 493 (15.3%)  524 (13.4%) 
18.5–24 kg/m2 309 (44.6%) 1,574 (48.7%)  1,883 (48.0%) 
24–28 kg/m2 264 (38.1%) 866 (26.8%)  1,130 (28.8%) 
≥28 kg/m2 89 (12.8%) 298 (9.2%)  387 (9.9%) 
NDVI a 0.17 ± 0.05 0.18 ± 0.05  <0.001 0.18 ± 0.05 
GVI a 0.25 ± 0.09 0.24 ± 0.09  <0.01 0.24 ± 0.09 

Note: a Mean ± standard deviation with t-test. 
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significant (Ps for trend>0.05). 

3.3. Subgroup analysis 

Fig. 3 and Table A1–A4 shows the ORs and their 95% CIs in the age-, 
sex-, education-, and income-stratified analyses. Subgroup analyses 
showed that NDVI level was beneficially associated with the likelihood 
of participants with diabetes only in age groups of≥75–85 years and 
≥85–95 years (P for trend<0.001). For the old adults aged 75–85 years 
and ≥85–95 years, those in the highest NDVI level had 53% (95% CI: 
27–70%, model 3) and 49% (95% CI: 14–70%, model 3) lower odds for 
having diabetes compared with those in the lowest NDVI level, respec-
tively. But we did not observe a statistically significant association for 
older adults aged ≥65–75 and ≥95 years (P for trend=0.06 and 0.53, 
respectively). 

Gender-stratified results showed that higher NDVI level was associ-
ated with the lower likelihood of diabetes in both males significantly 
(NDVI Q4 vs. Q1 in model 3: OR=0.44 [95% CI: 0.30–0.63]) and females 

(NDVI Q4 vs. Q1 in model 3: OR=0.70 [95% CI: 0.49–0.98]) (Table A2). 
Point estimates show stronger protective effects for males than females 
but the gender differences in the ORs were not statistically significant. 

In the stratified analysis by education or household income, the 
satellite-derived greenness’s effects on diabetes were more pronounced 
in older participants with higher education or income level (Fig. 2). The 
trend by household income level shows that being exposed to green 
spaces is equally beneficial for high-income groups, regardless of the 
quantity of greenspace exposure; whereas for low-income individuals 
the protective associations were non-significant for all levels of green-
ness (Table A3). In addition, results by educational level do not show a 
trend; although the strongest associations are found for individuals with 
higher education (NDVI Q4 vs. Q1 in model 3, OR=0.47 [95% CI: 
0.34–0.66], P for trend<0.001, Table A4), the effect seems to be stronger 
for individuals with low education level compared to individuals with 
medium education level. 

In line with the results from all included participants, we did not find 
any significant exposure–response associations between GVI and 

Table 2 
Associations between NDVI and GVI and diabetes in the 2017–2018 CLHLS.   

Model 1 Model 2 Model 3 

OR, 95 %CI P for trend OR, 95 %CI P for trend OR, 95 %CI P for trend 

NDVI Lowest Reference <0.001 Reference <0.001 Reference <0.001  

2nd 0.78 (0.63, 0.97) *  0.83 (0.66, 1.03)  0.87 (0.69, 1.08)   
3rd 0.65 (0.52, 0.81) ***  0.70 (0.56, 0.88) **  0.80 (0.63, 1.00)   
Highest 0.46 (0.36, 0.59) ***  0.48 (0.38, 0.62) **  0.55 (0.43, 0.71) ***  

GVI Lowest Reference  0.136 Reference  0.054 Reference  0.214  
2nd 0.86 (0.68, 1.09)  0.87 (0.68, 1.11)  0.88 (0.69, 1.12)   
3rd 0.99 (0.78, 1.25)  0.99 (0.78, 1.25)  0.95 (0.74, 1.20)   
Highest 1.14 (0.91, 1.44)  1.22 (0.97, 1.54)  1.14 (0.90, 1.44)  

Model 1 was a crude model. 
Model 2 included covariates of age and sex. 
Model 3 included covariates from model 2 plus marital status, education level, household income level, smoking status, and drinking status. 
Significance levels: *P<0.05, **P<0.01, ***P<0.001. 
Note: NDVI: Lowest (Q1: >0.05–0.14), 2nd (Q2: >0.14–0.17), 3rd (Q3: >0.17–0.21), Highest (Q4: >0.21–0.42); 
GVI: Lowest (Q1: >0–0.18), 2nd (Q2: >0.18–0.23), 3rd (Q3: >0.23–0.30), Highest (Q4: >0.30–0.60). 

Fig. 3. Multivariable-adjusted association between NDVI and diabetes by age groups (A), gender groups (B), household income levels (C), and education levels (D).  
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diabetes in the stratified analyses (results now shown). 

3.4. Mediating analyses 

Mediation analysis suggested that, after full adjustment, PM2.5, NO2 
and O3 significantly mediated 5.0% (95 %CI: 0.6, 12%), 41.0% (95 %CI: 
26.4, 76.0%) and 10.7% (95 %CI: 3.7, 23.0%) of the estimated associ-
ations between NDVI and diabetes, respectively (Table 3 and Figure A2). 
However, Table 3 revealed no evidence of the mediation effect of 
physical activity, BMI, and social interaction. 

3.5. Sensitivity analyses 

We found that additionally including each of the distance between 
the main road and resident’s location, the living province, the popula-
tion density, or the land use mixture in the logistic regressions did not 
alter the results for both NDVI and GVI (Table A5–A8, and 
Table A13–A16). The choice of a larger or smaller radius of buffer (100 
m, 300 m, 1 km, or 2 km) also did not change the beneficial associations 
between NDVI and diabetes (Table A9–A12). Therefore, our results 
passed robustness tests. 

4. Discussion 

To our best knowledge, this study is among the first nationwide 
investigation to date, to compare the associations between the overall or 
visible greenness and diabetes from a large sample of old adults. Our 
population-based study indicates that higher overall greenness but not 
visible greenness level was significantly associated with diabetes for old 
adults in China. The associations between overall greenness and dia-
betes were robust by changing the buffer radius and controlling for the 
potential confounders. The potential protective effect was more pro-
nounced for old residents with higher education or income level. These 
associations were partially mediated by the environmental factors of air 
pollution (PM2.5, NO2 and O3), rather than individual characteristics of 
physical activity, BMI, and social interaction. 

Our principal finding adds to the growing evidence that vegetation 
could be beneficial to multiple health outcomes including diabetes 
(Fong, Hart, & James, 2018; Kang, Zhang, Gao, Lin, & Liu, 2020). For 
example, a US study found that each 0.1-unit increase in NDVI is asso-
ciated with an 8% (95 %CI: 6, 10%) lower risk of diabetes (Brown et al., 
2016); a cross-sectional study based on the data from 33 Chinese com-
munities showed that a 0.1-unit increase in NDVI was significantly 
associated with 12% (95 %CI: 6, 18%) lower odds of diabetes (Yang 
et al., 2019); and recently, two cohort studies in Taiwan province and 
Ningbo city in China also found that higher long-term exposure of NDVI 
is associated with a lower risk of diabetes (Tsai et al., 2021; Yu et al., 
2022). Although it’s difficult to compare the estimates due to different 
NDVI settings (as a continuous variable or a categorical variable) and 
study designs (as an ecological, cross-sectional, or longitudinal study), 
we searched the literature regarding NDVI and diabetes in recent 10 
years in PubMed and Web of Science and found the majority of existing 
literature (10/11) provided consistent evidence that the neighborhood 
vegetation may lower the diabetes risk, while one ecological study has 

no such evidence (Patino et al., 2021). 
Very few studies have examined the link between visible greenness 

and diabetes. Only one study based on the survey data of 4,155 adults 
aged 20–98 in Harbin, China, concurred with our study reporting no 
significant association between neighborhood GVI and diabetes (Leng, 
Li, Yan, & An, 2020). Our findings support the evidence from Yang et al. 
(2020b) and Helbich et al. (2019) that the associations with health 
outcomes (e.g., mental health) or human behaviors (e.g., mobility) vary 
by greenness measures. Researchers speculated that it was because the 
greenness matrix represents different aspects (e.g., types, quantity, and 
quality) of green spaces, considering the correlations among various 
greenness measures are often weak (Wang et al., 2021b). For example, 
satellite-derived greenness reflects the overall quantity of the greenness 
surrounding the residence, but street view-based greenness almost 
exclusively reflects the quantity of visible greenery in and around the 
streets. 

The effects of greenness on individual health were described as a 
function of the types, quantity, and quality of greenness, the actual 
contact or use of the greenness, and the psychological and physiological 
characteristics of individuals. The diversity of lifestyles affects the het-
erogeneity in the contact with greenness, for example, some people 
often do physical exercise in the park but others do not. Other behavior 
factors also play roles in the actual greenness exposure, for instance, old 
populations often spend most of their time at home, hence, the actual 
contact with green space is limited. From this behavior pattern, the 
impacts of greenness on the broad environment, such as reducing air 
pollution or increasing negative air ions, may be a causal factor for the 
protective effects, considering green space was found to mitigate the air 
pollution-related inflammatory response (Elten, Benchimol, Fell, & 
Lavigne, 2019). Importantly, it suggests we consider the roles of the 
widespread green-related environmental effects in the health benefits of 
greenness. In addition, modifications of the types and quality of green 
space exist, since greenness acts on health by a complex mechanism 
involving multiple pathways (Donovan et al., 2022). For example, the 
visible greenness was reported to reduce short-term markers of stress, 
with much of the effect mediated aesthetically (James, Banay, Hart, & 
Laden, 2015; Li & Sullivan, 2016). 

Although the biological mechanism of greenness–diabetic outcomes 
is still unclear, previous research has proposed several environmental 
and biopsychosocial pathways (Fong et al., 2018; James et al., 2015). 
First, green space may lower the diabetes risk by reducing air pollution 
(Hirabayashi & Nowak, 2016), considering that numerous studies have 
demonstrated the adverse effect of air pollution on metabolic health and 
the incidence of diabetes (Eze et al., 2015; Yang et al., 2020a; Ye, Li, 
Han, Wu, & Fang, 2022). The mediating analysis in our study also re-
veals that the overall reduced PM2.5, NO2 and O3 by higher greenness 
could partly mediate the association (proportions = 5.0%, 41.0% and 
10.7%, respectively, Ps < 0.05). Other potential pathways include 
reduced noise, decreased stress, higher social interaction, and higher 
physical activity (Shen et al., 2021; Yue et al., 2022). For example, urban 
parks, gardens, and forests could increase people’s physical activities, 
which is an important protective factor against diabetes (Sigal, Kenny, 
Wasserman, Castaneda-Sceppa, & White, 2006). However, our study 
provided no evidence that the individual characteristics of physical ac-
tivity, BMI, and social interaction mediated the relation, which implies 
that the benefits were mainly credited to a healthier environment, but 
not to the individual behavior through directly contacting or using green 
spaces. 

Previous literature suggested that greenness-related health benefits 
may differ by socioeconomic status (Son et al., 2021). For diabetes, we 
did not find beneficial associations with greenness for participants with 
lower levels of education or household income. Although the reason for 
this result is unascertained, it indicates that improving the socioeco-
nomic status of low-income or low-education old adults in China may 
provide greater equity in access to the protective effects of greenness for 
better health. In contrast, one study in the Netherlands reported 

Table 3 
Proportions of the associations between NDVI and diabetes mediated by physical 
activity, BMI, social interaction, PM2.5, NO2, and O3.   

Proportion mediated (%, 95% CI) P value 

Physical activity − 0.81 (− 4.13, 2.00)  0.47 
BMI 2.47 (-0.72, 7.00)  0.13 
Social interaction − 0.03 (− 1.36, 1.00)  0.90 
PM2.5 5.04 (0.57, 12.00)  <0.05* 
NO2 41.02 (26.37, 76.00)  <0.001*** 
O3 10.71 (3.66, 23.00)  <0.001*** 

Note: Significance levels: *P<0.05, **P<0.01, ***P<0.001. 
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contrary findings that green space alleviates the effects of air pollution 
on the prevalence of diabetes only in low socioeconomic status (SES) 
areas (Groenewegen et al., 2018). The inconsistent results indicate a 
considerable heterogeneity of the differences in beneficial effects of 
greenness between high-SES and low-SES populations globally and 
regionally, however, this issue thus far received very little attention. 
Intersectionality between SES and greenness exposure may contribute to 
health disparities through multiple pathways (e.g., the inequality in the 
quality of greenness), which is worth exploring in more detail. 

A strength of our study was our ability to compare the satellite- 
derived overall greenness and street view-based visible greenness 
within participants’ neighborhoods with diabetes at a national level. 
Together with the comparison, the comprehensive investigations of 
modifications and intermediate factors enabled our study to examine the 
potential underlying mechanisms linking greenness and diabetes. This 
overcomes past limitations of previous greenness–diabetes analyses that 
have been published. This study also has several limitations. First, the 
assessment of diabetes was self-reported and did not distinguish type 1 
and type 2 diabetes, which may bias the risk estimates and mediating 
effects. Second, the cross-sectional design limited our capability to 
establish causality. Further longitudinal studies are needed to explore 
the long-term effect of greenness and determine the underlying mech-
anisms by including other personal, environmental, and family infor-
mation. Third, although we used multiple buffer sizes to assess the 
neighborhood vegetation, we did not consider the types, quality, and 
actual use of vegetation, which may induce exposure measurement 
error. Incorporating time-activity patterns to estimate the actual expo-
sure and use of greenness should be an important focus of future inter-
disciplinary studies. Fourth, though the majority of the street view 
images were taken during the clear summer months, a small portion 
(<20%) of the sampled street view images in our study were collected 
during other seasons. The convolutional neural network model has a 
partial solution by predicting the canopy based on the trunks and 
branches, this problem may still lead to exposure misclassification 
considering the amount of street greenery is seasonally dependent. Fifth, 
since the Baidu street view images are only available in inner-city areas 
in China, excluding participants with missing information on GVI may 
eliminate samples in suburban areas of cities and small and middle-sized 
towns and thus cause bias for risk estimates, as those living in these areas 
may have a lower risk of diabetes (Zhao et al., 2023). 

From 2021 to 2045, it is projected that the number of adults with 
diabetes would increase from 140 million to 174 million in China (Sun 
et al., 2022a). Policy approaches through shaping the built environment 
to reduce diabetes risk are promising. Despite China being one of the 
leading countries in the greening of the world through land-use man-
agement (Chen et al., 2019), a number of regions in China are experi-
encing vegetation decreasing under the pressure of both climate 
warming and population increase (Lü et al., 2015). The results of our 
study recommended the importance of urban greening strategies, 
including maintaining diverse types of green space (e.g., urban parks) 
beyond the street greenery and improving their quality and use. The 
incorporation of dense patches of vegetation and more vegetation 
complexity in the planning and management of urban green spaces is 
recommended because people prefer to visit green spaces with more 
dense or complex vegetation (Harris, Kendal, Hahs, & Threlfall, 2018). 
Certainly, while the protective effect of the current street view-based 
greenness on diabetes was not found, it doesn’t mean that there is no 
role for visible greenness in human health. Our results can inform the 
government to reconsider the health effects of the increased visible 
greenery, particularly the street greenery. Considering we observed that 
vegetation may lower the diabetes risk by reducing the air pollution 
level, future work should examine the impacts of the design and choice 
of neighborhood visible vegetation on the health effects, such as tall or 
short trees, and dense or sparse vegetation. It may aid in the detailed 
explanation of the differences between the effects of overall and visible 
greenness on diabetes. 

5. Conclusions 

Our findings indicate the protective effect of neighborhood overall 
greenness but not visible greenness on diabetes for urban old residents in 
China, especially for those with higher education or household income 
levels. Our findings imply that the benefits of greenness on diabetes may 
be partially credited to a healthier environment by greening (e.g., 
reduced air pollution), but not to the BMI, enhanced physical activity, or 
social interaction through directly contacting or using green spaces. 
Increasing the diverse types of greenness but not only street greenery in 
the neighborhoods would be worth considering the approach against 
diabetes, however, the government should be cautious about the SES 
disparity in the benefits. 
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