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A B S T R A C T   

Background: Limited studies have examined associations between air pollutants exposure and renal function, 
especially in China, with the most extensive chronic kidney disease (CKD) disease burden worldwide. 
Objectives: This study examines associations between long-term exposure to ambient PM2.5, NO2, CO, O3, SO2 and 
renal function. 
Methods: We included 80,225 participants aged 30–79 years from the baseline data of the China Multi-Ethnic 
Cohort (CMEC) study. Three-year average concentrations of PM2.5, NO2, CO, O3, and SO2 were estimated 
using satellite-based spatiotemporal models. Renal function is determined by the estimated glomerular filtration 
rate (eGFR) using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. After adjusting for 
covariates, generalized propensity scores (GPS) weighting regression was used to estimate associations between 
ambient air pollutants and renal function. 
Results: An increase of 0.1 mg/m3 CO (OR [odds ratio] =1.20 95% CI [confidence interval], 1.05–1.37) was 
positively associated with CKD. An increase of 1 μg/m3 in SO2 (1.07, 1.00–1.14) concentration was positively 
associated with CKD. An increase of 10 μg/m3 in PM2.5 (1.17, 0.99–1.38), NO2 (1.12, 0.83–1.51) and O3 (1.10, 
0.81–1.50) concentration was not associated with CKD. These effects are stronger in those younger than 65, 
smoking and with low BMI. 
Conclusions: In this study, we found that long-term exposure to ambient CO and SO2 were positively associated 
with CKD. Gaseous pollutants should also arouse the concern of relevant departments.   

1. Introduction 

Existing research has shown that exposure to air pollutants (AP) may 

lead to tremendous adverse health outcomes, causing an enormous 
disease burden(Liu et al., 2019). However, most of them focused on 
cardiovascular and respiratory health effects, and little literature has 
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focused on kidney disease(Brook et al., 2010). 
Chronic kidney disease (CKD) refers to irreversible changes in kidney 

function and structure that last for years and months and arise from 
many heterogeneous disorders. CKD is a disease with high prevalence, 
morbidity, and mortality rates. In recent years, the disease burden of 
CKD has been increasing rapidly, especially in China, where the number 
of people with CKD is the highest in the world, with 132 million in 2019 
(Deng et al., 2021). According to WHO, 864,226 deaths (1.5% of all 
global deaths) in 2012 could be attributed to CKD, which ranked 14th 
among the leading causes of death(Angela, Webster, 2017). Apart from 
traditional risk factors, AP may be a new environmental risk factor for 
CKD (Afsar et al., 2019; Wu et al., 2020a). 

The main air pollutants include particulate matter such as fine par-
ticulate matter (PM2.5) and gaseous pollutants such as ozone (O3), car-
bon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2). In 
recent years, World Health Organization (WHO) global air quality 
guidelines 2021 have recommended PM2.5, NO2, CO, O3 and SO2 as 
classical air pollutants(WHO, 2021). Current studies concerning the 
association between air pollution and kidney function focus mainly on 
PM2.5(Wu et al., 2020b; Ye et al., 2021). The few remaining studies 
concerning gaseous pollutants have mostly focused on developed re-
gions such as the United States, Europe and South Korea, and the con-
clusions are inconsistent (Bowe et al., 2017; Kim et al., 2018; Kuźma 
et al., 2021). 

In China, where the concentration of gaseous pollutants has shown 
an increasing trend(Lu et al., 2019; Wang et al., 2021), few epidemi-
ology studies on gaseous pollutants and renal function have been found. 
An emerging question then is whether the results of the above developed 
regions can be extrapolated to other populations, particularly 
less-developed regions, such as Southwest China, where the 
health-related behavior and lifestyle factor differ substantially, and the 
concentration range of gaseous pollutants is wider(Kim et al., 2015). 

Furthermore, the relevant studies mentioned above are observa-
tional and do not have causal explanations. Based on the counterfactual 
framework, causal models can be used to explain the extent to which 
reduced pollutant concentrations alter the health effects, that is, causal 
effects. Fitted regressions tend to be sensitive to model misspecification 
when the observed component characteristics differ greatly in groups, i. 
e., not comparable between groups(Rubin, 1979). When Generalized 
propensity scores weighting (GPSW) regression is taken into account, 
GPSW can be estimated through a regression model called the design 
stage. After that, a balance check is used to ensure similar covariates 
distribution in different groups. Then, causal effects can be estimated in 
pseudo-population after weighting, called the analysis stage. Since the 
parameters can be consistently estimated even when only one of the two 
stages is correctly specified, GPSW is one of the doubly robust methods, 
research results of which provide a critical scientific basis for policy-
making(Wu et al., 2020c). 

In view of the above problems, GPSW was used to analyze the 
baseline data of 80225 participants aged from 30–79 years based on the 
China Multi-Ethnic Cohort (CMEC) study, trying to get a more accurate 
effect of ambient PM2.5, NO2, CO, O3 and SO2 on renal function in 
Southwest China population. 

2. Method 

2.1. Study population 

CMEC is a natural population-based cohort study in five provinces in 
southwest China, including Sichuan, Chongqing, Yunnan, Guizhou and 
Tibet. Baseline survey data for 99,556 participants aged 30–79 were 
obtained through a multistage stratified cluster sampling between May 
2018 and September 2019(Zhao et al., 2021). 

Based on an electronic questionnaire, face-to-face interviews were 
conducted to collect CMEC baseline data (Demographics and socioeco-
nomic status, Smoking and indoor air pollution, Alcohol consumption, 

Tea and other beverages, Health status, Physical activity, Reproductive 
history (for women), Diet, Life events, Sleep, Psychological conditions 
and social support), medical examinations and clinical laboratory tests. 
The electronic questionnaires were conducted by specially trained in-
vestigators and recorded for subsequent data verification. Local com-
munity hospitals carried out medical examinations after unified 
personnel training and instrument calibration were carried out. Clinical 
laboratory tests were carried out by a third-party company with corre-
sponding national qualifications. 

Ultimately 99,556 baseline participants were collected. The exclu-
sion criteria of this study were as follows: 1. without residential address; 
2. with the length of residence at the residential address at survey < 3 
years; 3. without serum creatinine data; 4. with missing information on 
the covariates. Finally, we included 80,225 participants in this study 
(Fig. S1). All of the participants had signed an informed consent form 
before data collection. Ethical approval was received from the Sichuan 
University Medical Ethical Review Board (K2016038, K2020022). 

2.2. Renal function 

To get comparable results, fasting venous blood was collected from 
each participant and tested by a third-party company with corre-
sponding national qualifications. We used Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation to estimate the 
glomerular filtration rate (eGFR)(Stevens et al., 2011). Compared with 
the traditional modification of diet in renal disease (MDRD) equation, 
the CKD-EPI equation proven more suitable for Chinese for the race 
variable was included in the equation(Liao et al., 2011). The CKD was 
defined as eGFR < 60 mL/min/1.73 m2, representing a reduction in 
renal function of half or more of the normal level. 

2.3. Exposure assessment 

Air pollution data were obtained from the ChinaHighAirPollutants 
(CHAP) Data set (https://weijing-rs.github.io/product.html, accessed 
data: July 9, 2020). Daily surface NO2, CO, O3, and SO2 were predicted 
at a 10 km × 10 km spatial resolution (Wei, 2022a,b), while daily PM2.5 
was predicted at a 1 km × 1 km spatial resolution (Wei et al., 2020; Wei 
et al., 2021). The above daily concentrations were predicted from big 
data including ground-measurements, satellite remote sensing products 
(e.g., Moderate Resolution Imaging Spectroradiometer Multiangle 
Implementation of Atmospheric Correction AOD product), meteorology, 
land use information, pollution emissions, and other spatial and tem-
poral predictors . A space-time extremely randomized trees model was 
used for the estimation. A detailed description of the estimation has been 
described in previous studies. The results of 10-fold cross-validation 
showed a high predictive ability. The R2 (root mean square error) 
values for the daily prediction of PM2.5, NO2, CO, O3, and SO2 were 0.92 
(10.76 μg/m3), 0.84 (7.99 μg/m3), 0.80 (0.29 mg/m3), 0.87 (17.10 
μg/m3) and 0.84 (10.07 μg/m3) respectively. According to the geocoded 
residential address, average concentrations of PM2.5 NO2, CO, O3, and 
SO2 during the three years before the baseline survey were calculated for 
each participant as the estimated surrogate of exposure. 

2.4. Statistical analysis 

We used logistic and GPSW regression to estimate the associations 
between increases in three-year average PM2.5 NO2, CO, O3, SO2 expo-
sure and CKD. 

In the logistic regression method (Eq. 1), Y is the status of CKD (yes 
or no), b0 is the intercept, x1 to xm are the covariates, b1 to bm are the 
coefficients of the covariates, β is the coefficient (log odds ratio [OR]) of 
exposure. 

log odds(Y = 1|x) = b0 + b1x1 + … + bmxm + βExposure (1) 

In the GPSW regression method, we modeled the exposure on the 
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covariates we selected; traditional linear regression (Eq. 2) and gradient 
boosting machine (Xgboost) with normal residuals are used to estimate 
GPS(Zhu et al., 2015). Then, we calculated f(Exposure)/GPS as weights, 
where extreme weights (greater than 10) are replaced by 10. We use 
average absolute correlation (AC) between exposures and covariates to 
measure whether covariates are balanced, with average AC less than 0.1 
defined as balanced. We evaluated AC before and after using the two 
methods (GPSW and Xgboost) separately and selected the group with 
the smaller average AC for subsequent analysis(Wu et al., 2020c). Ulti-
mately, we used the logistic regression method to estimate the effects of 
exposure, just like Eq. 1, where the standard deviation was reestimated 
by the sandwich method. 

Exposure ∼ b0 + b1x1 + … + bnxn + ε (2)  

ε ∼ N (0, σ2)

We get the following covariates: age (≥65 years or ＜65 years), sex 
(male or female), ethnic group (Han, Minority), region (Chengdu, 
Chongqing, Yunnan, Guizhou, Lhasa, Aba), annual family income (＜ 
12,000, 12,000–19,999, 20,000–59,999, 60,000–99,999, and≥100,000 
Yuan), highest education completed (bachelor degree or above, high 
school, junior college, junior high school, primary school, illiteracy), 
alcohol (never drinking, drinking or quit), body mass index (BMI[kg/ 
m2], low weight,＜18.5; moderate weight, 18.5–23.9; overweight, 
≥24), smoking status (never smoke, smoke or quite), secondhand smoke 
status (yes, no), metabolic equivalent (MET) (four categories based on 
the percentile of length of non-sedentary time, ranging from 1 to 4, 4 
represents the longest 25% of the population), Mediterranean Diet score 
(MED) (four categories based on the percentile of Mediterranean Diet 
score, ranging from 1 to 4, 4 represents the highest 25% of the popu-
lation), 3-year average temperature (continuous variable), 3-year 
average humidity (continuous variable). Indoor air pollution is 
divided into three levels (light, moderate, and severe), which are a 
summary of three aspects: cooking behavior, fuel type, and ventilation 
equipment. Light is defined as occasionally cooking at home or not 
cooking at home. Moderate is defined as cooking regularly at home and 
meeting only one of the following conditions: (1) using unclean fuels or 
(2) not using ventilation. Severe is defined as cooking regularly at home 
with unclean fuels and no ventilation(Xu et al., 2021). 

In addition, subgroup analyses were done by adding interaction 
terms in the regression model, and sex (male or female), age (≥65 years 
or＜65 years), alcohol (never drinking, drinking or quit), smoke (never 
smoke, smoke or quit), secondhand smoke (yes, no), and BMI (low 
weight, moderate weight, overweight) was taken into account. 

Sensitivity analyses were performed to examine the robustness of the 
results, including:1) excluding Tibetan herdsmen in Aba for they have 
no fixed residence place and Tibetan in Lhasa for the concentration of 
survey sites and low variability in air pollution, 2) using MDRD to es-
timate eGFR, 3) using the 1-year, 2-year and 4-year average concen-
tration of air pollutants as an exposure assessment. 

Moreover, since hypertension and diabetes were important risk 
factors for CKD, we included metabolic syndrome (MetS) as a covariate. 
MetS was defined as the presence of at least three of the following fea-
tures: glucose intolerance, obesity, hypertension, and dyslipidemia 
(Expert Panel On Detection et al., 2001). BMI was of high collinearity 
with waist circumference. Hence, we deleted BMI when MetS was taken 
into account as a fourth sensitivity analysis. Furthermore, we calculated 
E-value to evaluate the unmeasured confounding. Finally, since distri-
butions of air pollutants were distinct between regions, we assigned 
regions as a random effect. 

All the analyses were performed by using R software (Version 3.6.1). 
Xgboost and sandwich package were used to estimate Xgboost weight 
and adjusted standard deviations (SD) in GPSW regression. 

We estimated the odds ratio (OR) of CKD associated with a 0.1 mg/ 
m3 increase of CO, a 1 μg/m3 increase of SO2 and a 10 μg/m3 increase of 
PM2.5 NO2, O3 respectively. Two-sided tests with P-values < 0.05 were 

Table 1 
The general characteristics and CKD results of the participants (N = 80225).   

Total CKD P-value  

Yes No 

Sex n (%) 
male 31,809 

(39.6%) 
894 
(45.2%) 

30,915 
(39.5%) 

< 0.001 

female 48,416 
(60.4%) 

1086 
(54.8%) 

47,330 
(60.5%)  

Age, years n (%) 
<65 67,881 

(84.6%) 
867 
(43.8%) 

67,014 
(85.6%) 

< 0.001 

≥65 12,344 
(15.4%) 

1113 
(56.2%) 

11,231 
(14.4%)  

Income, Yuan n (%) 
<12,000 14,144 

(17.6%) 
615 
(31.1%) 

13,529 
(17.3%) 

< 0.001 

12,000–19,999 14,769 
(18.4%) 

367 
(18.5%) 

14,402 
(18.4%)  

20,000–59,999 29,170 
(36.4%) 

647 
(32.7%) 

28,523 
(36.5%)  

60,000–99,999 11,620 
(14.5%) 

208 
(10.5%) 

11,412 
(14.6%)  

≥100,000 10,522 
(13.1%) 

143 (7.2%) 10,379 
(13.3%)  

Education n (%) 
bachelor degree or 
above 

3350 (4.2%) 24 (1.2%) 3326 (4.3%) < 0.001 

high school 9201 
(11.5%) 

154 (7.8%) 9047 
(11.6%)  

junior college 5375 (6.7%) 48 (2.4%) 5327 (6.8%)  
junior high school 20,375 

(25.4%) 
335 
(16.9%) 

20,040 
(25.6%)  

primary school 20,613 
(25.7%) 

609 
(30.8%) 

20,004 
(25.6%)  

illiteracy 21,311 
(26.6%) 

810 
(40.9%) 

20,501 
(26.2%)  

Ethnic n (%) 
Han 46,339 

(57.8%) 
1039 
(52.5%) 

45,300 
(57.9%) 

< 0.001 

Minority 33,886 
(42.2%) 

941 
(47.5%) 

32,945 
(42.1%)  

Smoke n (%) 
never smoke 60,055 

(74.9%) 
1418 
(71.6%) 

58,637 
(74.9%) 

< 0.001 

smoke or quit 20,170 
(25.1%) 

562 
(28.4%) 

19,608 
(25.1%)  

Secondhand smoke n (%) 
no 41,361 

(51.6%) 
1084 
(54.7%) 

40,277 
(51.5%) 

0.004 

yes 38,864 
(48.4%) 

896 
(45.3%) 

37,968 
(48.5%)  

Indoor air pollution n (%) 
light 12,893 

(16.1%) 
366 
(18.5%) 

12,527 
(16.0%) 

< 0.001 

moderate 63,296 
(78.9%) 

1464 
(73.9%) 

61,832 
(79.0%)  

severe 4036 (5.0%) 150 (7.6%) 3886 (5.0%)  
BMI n (%) 

low weight 
(≤ 18.5 kg/m2) 

2815 (3.5%) 115 (5.8%) 2700 (3.5%) < 0.001 

moderate weight 
(18.6–23.9 kg/m2) 

36,453 
(45.4%) 

909 
(45.9%) 

35,544 
(45.4%)  

overweight 
(≥ 24 kg/m2) 

40,957 
(51.1%) 

956 
(48.3%) 

40,001 
(51.1%)  

MET n (%) 
1 (≤ 1.7 h/day) 19,724 

(24.6%) 
931 
(47.0%) 

18,793 
(24.0%) 

< 0.001 

2 (1.8–3.2 h/day) 19,808 
(24.7%) 

396 
(20.0%) 

19,412 
(24.8%)  

3 (3.3–3.7 h/day) 20,269 
(25.3%) 

347 
(17.5%) 

19,922 
(25.5%)  

4 (≥ 3.8 h/day) 20,424 
(25.5%) 

306 
(15.5%) 

20,118 
(25.7%)  

Alcohol n (%) 
never drinking 46,368 

(57.8%) 
1425 
(72.0%) 

44,943 
(57.4%) 

< 0.001 

(continued on next page) 
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considered statistically significant. 

3. Results 

3.1. General characteristics 

We included 80,225 participants aged 30–79 years in this study. The 
mean age of the study population was 51.8 years. 31,809 (39.6%) of the 
participants were male, and 12,344 (15.4 of the participants were 65 
years old or older. 1980 (2.47%) study participants had CKD. The 
baseline information of study participants and CKD outcome are shown 
in Table 1. The geographical location of participants at baseline and 
corresponding exposure concentrations are shown in Fig. 1. 

The 3-year average PM2.5 NO2, CO, O3, and SO2 concentrations were 
40.7 μg/m3, 21.4 μg/m3, 0.87 mg/m3, 79.2 μg/m3, 14.4 μg/m3 respec-
tively at participants’ addresses (Table S1). Fig. 2 demonstrates the 
distribution of the 3-year average temperature, relative humidity, and 
concentrations of the above five pollutants in Southwest China and their 

correlation. The topography of Southwest China and the main sources of 
air pollutants are shown in Text S1. 

3.2. Associations between PM2.5 NO2, CO, O3, SO2 and CKD 

The balance check plot of covariates and results of average AC before 
and after weighting were shown in Fig. 3 and Table 2, respectively. We 
chose the method with a smaller average AC after weighting for the 
subsequent analysis, even though the average AC was greater than 0.1 
(PM2.5, NO2, and SO2). Ultimately, we used the GPS method for PM2.5 
and Xgboost method for NO2, CO, O3, and SO2 to estimate the 
association. 

An increase of 0.1 mg/m3 3-year average CO concentration 
(OR=1.20, 95% CI, 1.05–1.37) and 1 μg/m3 3-year average SO2 con-
centration (1.07, 1.00–1.14) were positively associated with CKD. 
PM2.5, NO2, and O3 were not associated with CKD. More details of the 
regression results are shown in Table 3. 

3.3. Subgroup analyses 

Due to the positive association of CO and SO2 with CKD, forest plots 
for the CO and SO2 subgroup analyses are presented in Fig. 4 and for the 
remaining pollutants in Fig. S2, Fig. S3, and Fig. S4. 

The effects of PM2.5 (p = 0.022), CO (p = 0.459), O3 (p = 0.020), 
SO2 (p = 0.053) are higher in male, while the effects of NO2 (p = 0.632) 
are higher in female. The effects of PM2.5 (p < 0.001), NO2 (p = 0.001), 
CO (p = 0.335), O3 (p = 0.432), SO2 (p = 0.042) are higher in those 
younger than 65 years. The effects of PM2.5 (p = 0.048), NO2 
(p = 0.882), CO (p = 0.349) are higher in those not drinking alcohol, 
while the effects of O3 (p = 0.006), SO2 (p = 0.680) are higher in those 
drinking alcohol. The effects of PM2.5 (p = 0.187), NO2 (p = 0.004), O3 
(p = 0.027), CO (p = 0.376), SO2 (p = 0.004) are higher in those 
smoking. The effects of PM2.5 (p = 0.705), NO2 (p = 0.015), SO2 
(p = 0.015) are higher in those with second-hand smoking, while the 
effects of O3 (p = 0.855), CO (p = 0.896) are higher in those without 
second-hand smoking. Compared with those with low weight, the effects 

Table 1 (continued )  

Total CKD P-value  

Yes No 

drinking or quit 33,857 
(42.2%) 

555 
(28.0%) 

33,302 
(42.6%)  

MED n (%) 
1(≤ 22) 25,624 

(31.9%) 
845 
(42.7%) 

24,779 
(31.7%) 

< 0.001 

2 (23–25) 20,133 
(25.1%) 

500 
(25.3%) 

19,633 
(25.1%)  

3 (26–27) 18,562 
(23.1%) 

366 
(18.5%) 

18,196 
(23.3%)  

4 (≥ 28) 15,906 
(19.8%) 

269 
(13.6%) 

15,637 
(20.0%)  

Abbreviations: CKD: chronic kidney disease; BMI, body mass index; MET, 
metabolic equivalent; MED, Mediterranean Diet score; 
PM2.5:particulate matter with aerodynamic diameters of≤ 2.5 µm; NO2: nitro-
gen dioxide; CO: carbon monoxide; O3: ozone 

Fig. 1. The spatial distribution of the 3-year average PM2.5 (μg/m3), NO2 (μg/m3), O3 (μg/m3), CO (mg/m3) and SO2 (μg/m3) concentration. Abbreviations: PM2.5: 
particulate matter with aerodynamic diameters of≤ 2.5 µm; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; SO2: sulfur dioxide. 
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of PM2.5 (p < 0.001), NO2 (p = 0.477), CO (p < 0.001), O3 (p = 0.003), 
SO2 (p = 0.002) are lower in those with moderate weight, and the effects 
of PM2.5 (p = 0.003), NO2 (p = 0.760), CO (p = 0.011), O3 (p = 0.001), 
SO2 (p = 0.151) are lower in those overweight. 

Based on the above subgroup analysis results, we can conclude with 
some caution that age, smoking and BMI are the effect modifiers for the 
associations between the above five pollutants and CKD. 

3.4. Sensitivity analyses 

Sensitivity analyses (Table S2, Table S3, Table S4, Table S5, Table S6, 
and Table S7) showed the results were robust to 1) exclude Tibetan in 
Aba and Lhasa, 2) use MDRD to estimate eGFR, 3) use 1-year, 2-year and 
4-year average concentrations of pollutants as exposure, 4) delete BMI 
and use MetS as a covariate, 5) assign the region as a random effect. 

The E-value of PM2.5 NO2, CO, O3, and SO2 were 1.62, 1.49, 1.69, 
1.43, and 1.34, respectively. The E value is defined as the minimum 

Fig. 2. Distribution of five pollutants, two meteorological factors and their correlation. The names of the five pollutants and two meteorological factors are shown at 
the top and far right of the figure. The first row of the vertical coordinates indicates the probability density of O3, and the rest of the coordinate scales are the 
temperature/relative humidity/ concentration of the corresponding pollutant. The diagonal part of the figure shows the distribution of five pollutants and two 
meteorological factors. The top right part of the figure shows the correlation coefficients, and the bottom-left part plots the scatter plot between the corresponding 
two pollutants or meteorological factors. ***: p < 0.001 PM2.5 (μg/m3), NO2 (μg/m3), O3 (μg/m3), CO (mg/m3), SO2 (μg/m3), TEMP (degrees Celsius) and RH (%). 
Abbreviations: PM2.5: particulate matter with aerodynamic diameters of≤ 2.5 µm; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; SO2: sulfur dioxide; Corr: 
correlation; TEHP: temperature; RH: relative humidity. 
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unmeasured confounding effect that is required to completely subvert 
the OR in your study, controlling for the measured confounding factor 
(Mathur et al., 2018; VanderWeele and Ding, 2017). 

4. Discussion 

Current literature on air pollutants exposure and CKD remains rela-
tively limited, especially for gaseous pollutants. To our knowledge, this 
is the first large population-based study in China to examine the rela-
tionship between not only particulate matter (PM2.5) exposure but also 
gaseous pollutants (NO2, CO, O3, and SO2) exposure and kidney func-
tion. We found that long-term exposure to CO and SO2 was associated 
with CKD. Although the association between PM2.5 NO2, O3 and CKD 
was insignificant, we concluded the following pattern from the subgroup 
analysis that the risk to kidney function from the five pollutants 
mentioned above was stronger in men, smokers and those with low BMI. 

This study gives us the following insights: First, the effects of PM2.5, 
which has been widely demonstrated to be associated with CKD, may be 
geographically heterogeneous, and caution is needed when comparing 
and extrapolating across different previous studies. Second, for re-
searchers, it is essential to focus on gaseous pollutants alongside par-
ticulate matter and to consider further susceptible populations for the 

association of gaseous pollutants and CKD. Third, policy makers could 
develop policies to control sources of CO and SO2 in Southwest China to 
curb the gaseous pollutants related to CKD burden. 

The mechanism of renal damage by CO and SO2 remains unclear. 
Oxidative stress and inflammation are shown to be the link between 
cardiovascular disease and CKD(Cachofeiro et al., 2008). Both epide-
miological and experimental animal studies have demonstrated that 
exposure to SO2 was associated with cardiovascular risk(Hong et al., 
2002; Zhang et al., 2014). As for CO, intermittent CO exposure is asso-
ciated with arterial wall damage and atherogenesis(Huang et al., 2016). 
Davutoglu et al. found that chronic CO exposure was positively associ-
ated with high-sensitivity C-reactive protein and carotid intima-media 
thickness(Davutoglu et al., 2009). The inflammatory mediators 
induced by CO and SO2 and other pollutants in the lungs could spill over 
into the circulation, resulting in systemic inflammation, oxidative stress 
and damage to distant organs, including kidneys. However, studies on 
the direct renal toxicity of CO and SO2 are still scarce, and further 
research is needed. 

Several studies have found that long-term exposure to ambient PM2.5 
was associated with CKD(Bowe et al., 2018; Li et al., 2021a). However, 
we found that PM2.5 was not associated with CKD and the findings were 
relatively stable in the sensitivity analysis. Existing studies have 
confirmed that the association between PM2.5 and CKD varies greatly 
geographically(Bowe et al., 2020). Heterogeneity of study populations 
might lead to different conclusions on the same scientific issues. In 
addition, the statistical approach used in this study yields larger esti-
mates of variance and thus more conservative conclusions. When esti-
mating the effect of PM2.5, we found the lower limit of the confidence 
interval is close to 1, which also suggests that we may draw false 
negative conclusions due to the inadequate sample size or the conser-
vative feature of the method. The existing literature examining SO2 and 
CKD is still relatively limited. We only found two studies with consistent 
findings, and our study provides positive results on this issue for a 
different population(Jeong et al., 2020; Lee et al., 2022). 

There are several studies on CO exposure and CKD, but little atten-
tion has been paid to the general population, and the results were 
inconsistent(Bowe et al., 2017; Chin et al., 2018; Kim et al., 2018). For 
example, Bowe et al. found an interquartile range (IQR) increase of CO 
was positively associated with CO and CKD (HR=1.09, 95% CI, 
1.08–1.10) in US veterans(Bowe et al., 2017). While Chin et al. found CO 
was positively associated with an annual urinary albumin-to-creatinine 
ratio (ACR) increase in patients with type 2 diabetes(Chin et al., 2018). 

Fig. 3. Balance check plot for different pollutants scenarios. Abbreviations: PM2.5:particulate matter with aerodynamic diameters of≤ 2.5 µm; NO2: nitrogen dioxide; 
CO: carbon monoxide; O3: ozone; SO2: sulfur dioxide; BMI: body mass index; MET: metabolic equivalent; MED: Mediterranean Diet score; gps: generalized propensity 
score method; xgb: xgboost method. 

Table 2 
Average AC a between exposure and covariates.  

Exposure Original 
data 

After gps 
weighting 

After xgb 
weighting 

Method 
selectionb 

PM2.5  0.228  0.129  0.152 gps 
NO2  0.222  0.183  0.172 xgb 
CO  0.101  0.076  0.062 xgb 
O3  0.110  0.097  0.084 xgb 
SO2  0.153  0.194  0.130 xgb 

Abbreviations: 
AC: absolute correlation; PM2.5:particulate matter with aerodynamic diameters 
of≤ 2.5 µm; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; SO2: sulfur 
dioxide; gps: generalized propensity score method; xgb: xgboost method. 

a : Average AC represents the correlation coefficient between exposure and 
covariates. Smaller average AC indicates better covariates balance. AC for each 
covariate will be shown in Fig. 3. 

b : Covariates are generally considered well balanced when the average AC is 
less than 0.1. The method with the smaller average AC will be chosen, even if the 
results are greater than 0.1 for both methods. 

S. Li et al.                                                                                                                                                                                                                                        



Ecotoxicology and Environmental Safety 242 (2022) 113851

7

Unlike all of the above results, Kim et al. found that a 0.1 ppm increase 
of CO was not significantly associated with CKD (OR=1.02, 95% CI, 
0.95–1.09) in Korean adults(Kim et al., 2018). In our study, CO con-
centration was positively associated with CKD. In addition to differences 
in populations, differences in pollutants concentrations may result in our 
analysis not being comparable to existing studies. For example, the 
median concentration of CO in our study is 0.69 ppm. In the above three 
studies on CO, the median concentrations are 0.51 ppm, 0.9 ppm, and 
0.6 ppm, respectively. Thus, our study provides additional evidence for 
medium to high concentrations of CO. 

The association of air pollutants with CKD risk was stronger in those 
smoking. The effect modification of smoking was generally consistent 
with Li and his colleagues(Li et al., 2021b). Air pollutants may act 
synergistically with chemicals in tobacco. The association of air pol-
lutants with CKD risk was stronger in men. The effect modification of sex 
was generally consistent with Li and his colleagues(Li et al., 2021b). 
However, Yang and his colleagues came to a different conclusion(Yang 
et al., 2017). Previous studies have shown that women have slightly 

higher respiratory reactivity and lung particle deposition than men, 
which may account for their susceptibility to air pollution(Zhang et al., 
2018). However, in our study, smoking rates were much higher in men 
(61.3%) than in women (1.4%). The effect of sex can also be explained 
considering the positive interaction between smoking and air pollution 
mentioned earlier. It is worth noting that this paper focuses on gaseous 
pollutants and the mechanism of effect modifiers needs further research. 

Trying to accurately estimate the effects of air pollutants on renal 
function, we used robust causal inference methods in this study. In 
general, not only traditional approaches but also causal inference 
methods need assumption, without which the results we get will not 
hold. The assumption that guarantees we draw accurate conclusions in 
this study is accounting for all confounders. GPSW method provides 
protection against confounding by measured covariates and interactions 
for a better balance of covariates after a balance check. Traditional 
sensitivity analyses and the calculation of E-value were conducted to 
unmeasured confounding and showed that our results are robust. We 
found that even after weighting, the average AC for PM2.5 NO2 and SO2 

Table 3 
Estimated effects of five pollutants exposure on CKD in Southwest China using three different methods.  

Exposure Methoda Outcome 

βb OR LCI HCI P-value STD 

PM2.5 logistic regression  0.0101  1.11  0.97  1.26  0.129  0.00665 
gps weightingc  0.0153  1.17  0.99  1.38  0.070  0.00848 
xgb weighting  0.00863  1.09  0.88  1.35  0.435  0.0111 

NO2 logistic regression  0.0044  1.05  0.93  1.18  0.478  0.00621 
gps weighting  0.00896  1.09  0.93  1.29  0.288  0.00843 
xgb weighting  0.0113  1.12  0.83  1.51  0.456  0.0151 

CO logistic regression  0.698  1.07  1.01  1.14  0.021  0.302 
gps weighting  0.958  1.10  1.01  1.20  0.037  0.458 
xgb weighting  1.82  1.20  1.05  1.37  0.007  0.675 

O3 logistic regression  -0.000310  1.00  0.87  1.15  0.966  0.00719 
gps weighting  -0.00243  0.98  0.82  1.16  0.782  0.00879 
xgb weighting  0.00968  1.10  0.81  1.50  0.541  0.0158 

SO2 logistic regression  0.0146  1.01  0.99  1.04  0.283  0.0136 
gps weighting  0.0294  1.03  0.97  1.09  0.316  0.0293 
xgb weighting  0.0649  1.07  1.00  1.14  0.032  0.0324 

Abbreviations: 
PM2.5:particulate matter with aerodynamic diameters of≤ 2.5 µm; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone; SO2: sulfur dioxide; gps: generalized 
propensity score method; xgb: xgboost method; β: regression coefficients of exposure in the model; OR: odds ratio; LCI: low confidence interval; HCI: high confidence 
interval; STD: standard error. 

a : The same covariates were adjusted in all three different methods: age, sex, ethnic group, region, annual family income, highest education completed, alcohol, 
body mass index, smoking status, secondhand smoke status, indoor air pollution status, metabolic equivalent, Mediterranean diet score, 3-year average temperature, 3- 
year average humidity. 

b : Due to the wide variation in results between exposures, three significant digits have been retained for both β and STD to ensure readability. By convention, OR, 
LCI, HCI and P-value are retained to two and three decimal places respectively. 

c : For every single exposure, we chose one of the two weighting methods as a representative result (bold) based on the conditions in Table 1, and the results of the 
remaining methods were used as a comparison. 

Fig. 4. The associations between long-term CO, SO2 exposure and CKD in participants with different subgroups in Southwest China. Abbreviations: CO: carbon 
monoxide; SO2: sulfur dioxide; OR: odds ratio; LCI: low confidence interval; HCI: high confidence interval; BMI: body mass index. 
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was still greater than 0.1. Although GPSW is a doubly robust method, 
and we chose a weighted method with a more minor average AC for 
further effect estimation, causal associations for pollutants whose 
covariates were not fully balanced still need to be interpreted with 
caution. Besides, the standard deviation in GPSW regression consists of 
variance in GPS estimate and in GPSW regression itself, and we used the 
sandwich method to reestimate it. Consequently, the standard deviation 
in GPSW regression is relatively larger, seen in Table 3. This also shows 
that this method is conservative because it is more difficult to get sig-
nificant results. 

Our study has several strengths. First, data collection was carried out 
by uniformly trained investigators, and the suspected unqualified 
questionnaires were checked and corrected by recording. All biochem-
ical tests were performed by the same third-party company, ensuring 
data comparability across a wide range of surveys. Second, we ended up 
involving 80,225 participants aged from 30 to 79. We obtained robust 
associations between air pollutants exposure and CKD based on the large 
sample size and we further identified age, smoking and BMI as effect 
modifiers. Finally, we use GPSW regression to estimate the effect. This 
robust causal inference method can improve the robustness of statistical 
methods and the interpretability of statistical results, which provide a 
critical scientific basis for policy-making. 

Our study also has some limitations. First, the data for this study 
were derived from baseline data from the CMEC study and were cross- 
sectional. Although we have collected exposure data for the three 
years before the baseline survey, the strength of the evidence is still 
relatively weak. We can improve this problem in the follow-up investi-
gation. Second, our exposure data is based on the residential addresses 
of participants. Other influencing factors of individual environmental 
exposure such as indoor or outdoor and travel patterns have not been 
taken into account. Finally, this study estimated eGFR using SCr to make 
inferences about renal function. On the one hand, SCr has limited ac-
curacy in estimating GFR. Due to limited research conditions, we did not 
use the gold standard to measure GFR. On the other hand, renal function 
is also affected by various factors, and even if we include various 
possible covariates, some related diseases may be omitted, resulting in 
biased results. 

5. Conclusion 

In conclusion, long-term exposure to ambient CO and SO2 was 
positively associated with CKD among Southwest China aged 30–79. 
Smoke, age and BIM might modify the above associations. This study 
was expected to provide a scientific basis for relevant departments to 
make policies. 
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