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ABSTRACT
Research was insufficient on the surface urban heat islands
(SUHIs) in China during the morning and before midnight.
Therefore, we studied the spatio-temporal variations and ten
determinants of SUHI intensities (SUHIIs) at �10:30 am and
�10:30 pm of 932 urban region agglomerations in the five eco-
logical regions in China and further simulate these SUHIIs using
the machine learning algorithm. The main findings were as fol-
lows. (1) The daytime SUHIIs in all regions were largest in the
summer, and when the humid regions had higher SUHIIs than
other regions. The maximum SUHIIs were usually significantly
positively correlated with the minimum ones. (2) The SUHIIs were
significantly partially correlated with the enhanced vegetation
index, nighttime light intensity, PM2.5, albedo, population density,
precipitation, urban area size and landscape shape index in many
or a few cases. (3) The root-mean-square errors of simulated day-
time and nighttime SUHIIs were mostly less than 1.22 and 2.00 �C,
respectively.
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1. Introduction

China has experienced rapid urbanization in recent decades. Its urbanization rate had
increased from 10.64% in 1949 to 63.89% in 2020. The increase trend will continue until
2050 (United Nations, Department of Economic and Social Affairs (UN DESA) 2014).
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Nowadays, more than 901.99 million populations live in cities in China. Urbanization
could cause higher temperatures in urban regions than outskirts and villages, called the urban
heat island (UHI). The UHI has direct or indirect impacts on the urban thermal environment,
human temperature-related comfort, health and mortality, urban precipitation, energy use, air
quality, etc. The research methods for UHIs mainly include the observation method by meteoro-
logical stations (Shen et al. 2020), in-situ fixed-points (Sf̂ıc�a et al. 2018) or moving transects (Silva
et al. 2018), numerical simulation method (Chen et al. 2022) and remote sensing method (Zhou
et al. 2019). Remote sensing can provide consistent and repeatable observations of land surface
temperatures (LSTs) at various spatial and temporal scales. Close relationships existed between the
LSTs and near-surface air temperatures (Marzban et al. 2018). Therefore, the surface urban heat
island (SUHI) derived by remote sensing has been widely accepted and analyzed (Zhou et al.
2019). The SUHIs were complex and serious in China. The maximum andminimum SUHI inten-
sities (SUHIIs) can be 8.93 and�9.91 �C in China, respectively (Li et al. 2019a).

Some research has studied the spatial-temporal changes and their drivers of SUHI at
the global scale and the national scale in China (Table S1). Their study objects were usu-
ally 419 (Peng et al. 2012), 9500 (Chakraborty and Lee 2019), 193,090 (Clinton and Gong
2013) global cities or urban clusters, thirty large provincial capital cities and above (Zhou
et al. 2014; Cao et al. 2016) or about three hundred Prefecture-level cities and above
(Yang et al. 2019; Niu et al. 2021a; Yao et al. 2021). The SUHIIs and footprints (FPs)
were two widely adopted indicators to quantify SUHI. The SUHIIs were generally defined
as the differences of LSTs between the cities or urban centers and their surrounding rural
or outskirt regions (Cao et al. 2016; Lai et al. 2018; Peng et al. 2018). These regions were
usually derived by the land use, the proportion of impervious surface and waterbodies,
altitude, distance from the cities, etc. (Zhou et al. 2014; Peng et al. 2018; Yao et al. 2021).
The FPs of SUHIs were defined as the cities and their nearby regions whose LSTs were
larger than the mean LSTs in the corresponding rural regions (Zhou et al. 2015) or the
ellipse areas that crossed the fitted Gaussian surfaces (Yang et al. 2019). The cities in the
world or China were usually grouped due to the different climatic zones (Lai et al. 2018;
Chakraborty and Lee 2019), biome areas (Zhang et al. 2010), ecological regions (Li et al.
2019a; Li et al. 2019b), or land cover majority in the rural regions (Clinton and Gong
2013). This was because the SUHIs of cities in different groups have different spatial-tem-
poral change laws and influencing factors. Many influencing factors of SUHIs have been
analysed, including the differences between cities or city centres and outskirts or villages
for the altitude (DAlt) (Zhou et al. 2014), aerosol optical depth (DAOD) (Cao et al. 2016;
Li et al. 2019b; Lai et al. 2021), PM2.5 (DPM2.5) (Niu et al. 2021b), enhanced vegetation
index (DEVI) (Zhou et al. 2016; Yao et al. 2021), vegetation fractional cover (DVFC)
(Peng et al. 2018), several landscape metrics (Yang et al. 2017), nighttime light intensity
(DNLI) (Zhou et al. 2014; Yao et al. 2017), normalized difference vegetation index
(DNDVI) (Cao et al. 2016; Lai et al. 2018), population density (DPD) (Li et al. 2019b),
proportion of impervious surface (DPIS) (Zhou et al. 2014; Yao et al. 2021), and while-
sky albedo (DWSA) (Cao et al. 2016; Yao et al. 2018), cropland fraction of the rural back-
ground (CF) (Cao et al. 2016), latitude (Zhang et al. 2010; Clinton and Gong 2013), longi-
tude, height/width ratio (HWR), the height of the tallest object, the lower surfaces
(Clinton and Gong 2013), anthropogenic heat flux (AHF) (Ma et al. 2021), humidity
index (HI) (Li et al. 2019b; Ma et al. 2021), mean air temperature (MAT) (Zhou et al.
2016; Yao et al. 2018), morphological continuity (MC) (Ma et al. 2021), morphological
continuity fractal dimension (MFD) (Ma et al. 2021), mean solar radiation (MSR) (Ma
et al. 2021), mean wind speed (MWS) (Yao et al. 2018; Yao et al. 2021), urban area size
(UAS) (Zhou et al. 2014; Li et al. 2019b), specific humidity (SH) (Ma et al. 2021), total
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population (T_Pop) (Zhou et al. 2014; Li et al. 2019b), total precipitation (T_Pre) (Cao
et al. 2016; Yao et al. 2021), total sunshine duration (T_SD) (Cao et al. 2016; Yao et al.
2021), area-weighted mean shape index (AWMSI), dispersion index (DI), entropy and
Moran’s I (Liu et al. 2021) etc. Most research used the Pearson’s (Zhou et al. 2014; Yao
et al. 2021) or Spearman’s rank correlation analysis (Zhou et al. 2016; Yang et al. 2019)
and linear regression (Zhou et al. 2014; Chakraborty and Lee 2019) to explore the rela-
tionships between the SUHIIs or FPs and their influencing factors. The previous research
has made important progress that could provide significant references for subsequent
studies. Nevertheless, some issues still existed. First, the spatial-temporal changing rules of
SUHIIs were scarcely studied in the cities with various (mega, large, medium and small)
sizes with different ecological contexts of China during the morning and before midnight,
including the mean, maximum and minimum SUHIIs together with their occurring sea-
sons, and ranges of SUHIIs, etc. (Table S1). Meanwhile, the outdoor activities are frequent
during the morning and before midnight. Moreover, many humans live in county towns
or county-like towns in China. Second, the influences for SUHIIs were insufficiently ana-
lysed for these various cities, especially the PM2.5, urban shape, etc. Third, the SUHIIs
were seldomly simulated using these influencing factors during the morning and before
midnight, although this was quite important for the regulation and optimization of the
urban thermal environment. Fourth, most research did not make the quality control (QC)
of LSTs, which may introduce a certain bias or even errors for SUHI research. How to
realize it more effectively and accurately was worth to be explored.

Thus, our objective is to explore the spatial-temporal changes and ten associate deter-
minants of SUHIIs during the morning and before midnight (�10:30 pm) in 932 urban
region agglomerations in the five regions with different ecological contexts in China and
further simulate these SUHIIs.

2. Study area and data

2.1. Study area

China was divided into five ecological zones (Figure 1), having considering the different
spatial-temporal variation rules and drivers of SUHIs under different contexts (Li et al.
2019a, 2019b). The ecological zones data were provided by the Database of Ecosystem
Assessment and Ecological Security Pattern in China, which were identified by consider-
ing several factors comprehensively, including the landform, climate, vegetation, human
activity, etc. East China belongs to the monsoon climate zone, where it’s wet and rainy in
the summer while dry and rainy in the winter. Region I, II, IV and V mainly enjoyed the
middle and cold temperate zones, warm temperate zone, subtropical zone, and tropical
zone, respectively. West China (Region III) is not affected by monsoons and has less pre-
cipitation (<400mm in the whole year). It includes the typical temperate continental cli-
mate zone and alpine climate zone (Tibetan Plateau Region).

2.2. Data

Table 1 summarized the main data used in this study. The Terra/MODIS LST data
(MOD11A2.006) were derived by the split-window technique. The satellite passes through
twice a day, at �10:30 am and �10:30 pm. The differences of MODIS LST data were
more minor than 1K in 39 of 47 cases (Wan 2008) and less than 5% in the urban regions
compared to the in-situ measured LSTs (Rigo et al. 2006). The MODIS monthly vegetation
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indices (MOD13A3.006) products were integrated by all the 16 days products (MOD13A2)
that overlapped the months and employed a weighted temporal average. Only the white-sky
albedo for the shortwave band was used due to its high correlation with the black-sky albedo
in the MCD43A3.006 product (Peng et al. 2012). The land use data in 2015 and 2020 with

Figure 1. Locations of 932 urban region agglomerations in the five ecological subareas in China.

Table 1. The main data used in this study.

Data
Spatial

resolution
Temporal
resolution Source Time period

Terra/MODIS LST 1 km 8 days https://search.earthdata.nasa.gov 2014.12–2019.11
Terra/MODIS EVI 1 km 1month https://search.earthdata.nasa.gov 2015.12–2016.11
Combined/

MODIS Albedo
0.5 km 1 day https://search.earthdata.nasa.gov 2015.12–2016.11

Land use 1 km Multi-years https://www.resdc.cn 2015 & 2020
Elevation 1 km No https://www.resdc.cn No
VIIRS Nighttime light 15 arc seconds 1 year https://eogdata.mines.edu/

products/vnl/
2016

PM2.5 1 km 1 day https://weijing-rs.github.io/
product.html

2015.12–2016.11

Air temperature 1 km 1month National Climate Center, China
Meteorological Administration

2015.12–2016.11

Precipitation 1 km 1month National Climate Center, China
Meteorological Administration

2015.12–2016.11

Population 1 km 1 year https://www.worldpop.org/ 2016
Ecological

function zones
�1 km No State Key Laboratory of Urban

and Regional Ecology,
Research Center for Eco-
Environmental Sciences,
Chinese Academy of Sciences

No

LST and EVI represents the land surface temperature and enhanced vegetation index, respectively; MODIS and VIIRS
refer to Moderate Resolution Imaging Spectroradiometer and visible infrared imager radiometer sensor, respectively.
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1 km resolution were primarily derived by interpreting the Landsat TM/ETMþ images (Liu
et al. 2014). The overall accuracy of classification is more than 91.2% for each land use type
(Liu et al. 2014). All the annual visible infrared imager radiometer sensors (VIIRSs) NLIs
were set as 0 when their values were negative or larger than the maximum NLI in all urban
regions of China or the land use was the waterbodies.

The PM2.5 data were collected from the ChinaHighAirPollutants (CHAP) dataset,
which were estimated from the MODIS/TerraþAqua MAIAC AOD products and other
auxiliary data using the artificial intelligence method (Wei et al. 2020, 2021). The daily
PM2.5 estimates agree well with ground-based PM2.5 measurements with average root-
mean-square errors (RMSEs) ranging from 10.0 to 18.4 lg/m3. The air temperature and
precipitation data were interpolated by the Anuspl 4.3 software using the climate records
in more than 2400 weather stations. The Worldpop program could provide high reso-
lution, open and contemporary data in human population distributions (Lloyd et al.
2017), which has been widely accepted and adopted (Mohanty and Simonovic 2021). The
ecological function zones were identified mainly based on landforms, water and heat com-
binations, and vegetation characteristics.

3. Methods

3.1. Quality control of the land surface temperatures

One workflow was proposed to identify these invalid LST pixels (Figure S1). The valid
LSTs should be between �90 and 90 �C, respectively. Both values should be equal or less
to 01 in the 1 & 0 and 3 & 2 bites of the QC data. Moreover, the LST in the pixel should
be less than 12K than its adjacent pixels in most cases by using the search method within
eight directions, smaller than 12 and 20K than the medium and maximum value of its 30
and 50 nearest pixels in the same row using the search method in the horizontal direc-
tion, respectively. It should note that all conditions mentioned above were restricted step
by step. That meant the output data in the former step were the input data in the
next step.

3.2. Definition of urban and rural regions

A two-step aggregation method was developed to extract the urban regions accurately.
These classified urban land polygons were first aggregated at a distance of 1.5 km. This
threshold could not be larger. Otherwise, some isolated urban regions in humans’ trad-
itional understanding turned to be aggregated together. Then these urban lands were dis-
solved together within the same urban region aggregations. Only the dissolved urban
lands with areas large than 6 km2 were primarily chosen as the study objects, covering the
vast majority of cities in the regions with the densest populations or most developed
economies in China (Li et al. 2019a). Then, perform these operations again for the above-
extracted urban area aggregations. However, the aggregation distance was set as 3.75 km,
which was approximately equalling to the distance that people could go in 15min by
bicycle and large enough to merge the scattered urban lands polygons into their belonging
urban region agglomerations. The operations mentioned above were done for both the
land cover data in 2015 and 2020. Their intersection regions were determined as the final
urban region agglomerations.

The rural areas were defined as the buffer zones of these urban region agglomerations
with the buffer distance of 5–10 km (Clinton and Gong 2013; Li et al. 2019a), excluding
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the construction lands (except rural residential areas), waterbodies, marshlands, pixels
with slopes large than 7.5� (Li et al. 2019a), or elevations that are 50m greater than the
maximum elevations or less than the minimum elevations of their corresponding urban
region agglomerations, respectively (Imhoff et al. 2010; Zhou et al. 2016; Li et al. 2019a).

3.3. Spatial-temporal variation rules of surface urban heat islands

The SUHIIs were defined as the differences of LSTs between the urban and rural regions.
It should note that the winter was defined as the period from the December in the previ-
ous year to February in this year in our study (Li et al. 2019a). First, we analysed the spa-
tial-temporal rules of mean, maximum, and minimum values, their occurring seasons,
and annual ranges of daytime and nighttime SUHIIs using the space mapping method
and mathematical statistics. Second, the mean comparisons were performed using the
nonparametric tests for SUHIIs between the daytime and nighttime, among the four sea-
sons and five ecological regions. Third, the Spearman rank correlation coefficients were
calculated between the annual maximum and minimum SUHIIs during the daytime,
nighttime and all-day in each season and the entire year in China and its five ecological
regions to quantify whether the maximum and minimum values would occur in the same
locations; between the annual daytime and nighttime SUHIIs ranges, and between the
mean daytime and nighttime SUHIIs to explore the relationships between daytime and
nighttime SUHIIs in each region and period.

3.4. Associated determinants of surface urban heat islands

These considered influencing factors included the differences between urban and rural
regions for the mean enhanced vegetation index (DEVI), nighttime light intensity (DNTI),
PM2.5 (DPM2.5), population density (DPD), and medium albedo (DAlb), urban area size
(UAS), total population (T_Pop) in the urban region agglomerations, mean air tempera-
ture (MAT) and total precipitation (T_Pre) in the centroids of these urban region
agglomerations. The partial correlation coefficients and their significance levels were com-
puted between the SUHIIs and their determinants in China and its four regions in the
entire year and four seasons. It should note that the urban region agglomerations in
regions IV and V were considered together due to a limited number of urban region
agglomerations in region V. Moreover, the PM2.5 data could only cover some areas in
West China. Therefore, this study could just consider the influencing factors of SUHIIs in
47/103 urban region agglomerations in region III.

3.5. Simulation of surface urban heat islands

The SUHIIs of China and its four regions in the whole year and four seasons were simu-
lated by the general regression neural network (GRNN) method, which has been univer-
sality applied in previous research (Rooki 2016; Li et al. 2021). The GRNN algorithm has
strong nonlinear mapping ability, high robustness and fault tolerance and could obtain
good simulation results when the samples number is small, and some instability exists.
The ratio was set as 4:1 for the training and testing sample sets. Only these determinants
that were significantly partially correlated with SUHIIs were used as the input data in
most cases. All the variables were used in region III during the daytime in the spring and
autumn and in the autumn night. This was because no significant partial correlation
existed in these three cases. Finally, the RMSEs were calculated to indicate the simulated
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accuracies. The procedure was executed 50 times to avoid uncertainties in the process of
machine learning and obtain stable simulation results.

4. Results

4.1. Spatio-temporal changes of surface urban heat islands

4.1.1. Spatio-temporal changes of surface urban heat islands during the daytime
The annual mean SUHIIs were from 0 to 2 �C and negative in 56.55 and 25.11% urban
region agglomerations, respectively (Figures 2a and S2a). These negative values were
mainly distributed in North China. The order of regions in SUHIIs was V¼ IV> II> I >
III, whose values were most from 1 to 3, 1 to 3, 0 to 1, �1 to 1, �2 to 1 �C, respectively
(Figures S2a and S3a). The SUHIIs showed obvious seasonal variations in China (Figures
2, S2a, and S3a). The values were largest in the summer in all regions when the hot and
cold humid regions had higher SUHIIs than other regions, mostly from 2.0 to 6.0 �C. The
values were less in region II, 77.53% of which were mostly from 1.0 to 3.0 �C; and least in
region III, 43.69% were even negative. The SUHIIs were least in the winter in regions II,
IV and V, and in the Spring and Autumn Seasons in regions I and III. The proportions
of the negative season mean SUHIIs were 67.92, 44.53 and 33.05% in the winter, spring,
and autumn, respectively, mostly distributed in North China.

The largest maximum SUHIIs occurred in the hot-humid region V and IV, in which
63.82% SUHIIs were from 3 to 5 �C (Figures 3a, S4a, and S5a). The order of the rest
regions was region I> II> III, in which the maximum SUHIs were most ranging from 3
to 4, 2 to 3 and �4 to 0 �C, respectively. The maximum SUHIIs were negative in 32.04%
of cities in the dry region III. Moreover, the largest maximum SUHIIs were most occur-
ring in the summer in all regions of China, never in the winter in regions II, V and IV,
least in the Spring and Autumn Seasons in regions III and I (Figures 3d and S6a).

Figure 2. Distribution of the annual and seasonal mean surface urban heat island intensities (SUHIIs) during the day-
time and nighttime, and the differences between them in China and its five ecological regions during 2015–2019.
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The minimum SUHIIs were mostly negative in North China (region III< II< I). The
values were mostly from �4.0 to �2.0, �2.0 to �0.5, �3.0 to �1.0 �C in the three regions
mentioned above, respectively (Figures 4a, S5b, and S7a). Meanwhile, most of the min-
imum SUHIIs became positive in South China (region V¼ IV). The values were mostly
from 0.5 to 2.0 and �0.5 to 2.0 �C in the two regions mentioned above, respectively.
Moreover, the minimum SUHIIs occurred in the winter in 66.63% of cities in China
(Figures 4d and S6b). From the region aspect, the minimum daytime SUHIIs mostly
occurred in the winter in the hot and humid South China (regions V and IV), and region
II, in the Spring and Autumn Seasons in regions I and III, and never in the summer in
all regions except region III. In addition, the maximum and minimum of daytime SUHIIs
were significantly correlated in all regions, especially in the hot and humid tropic region
V (r¼ 0.68, p< 0.05) and subtropic region IV (r¼ 0.50, p< 0.05) (Figure 5).

The ranges of daytime SUHIIs were from 2 to 5 �C in 75.32% of cities in China. The
order of regions in the daytime ranges of SUHIIs was region I> II¼ III> IV>V, in
which the values mainly were from 4 to 6, 3 to 5, 2 to 5, 2 to 4, and 2 to 4 �C, respect-
ively (Figures 6a, S8a, and S9). The maximum ranges of SUHIIs (>10 �C) were located in
the five cities in Northeast China, while the minimum ranges (<1 �C) in the nine cities in
dry West China and six cities in the southeast coastal regions of China.

4.1.2. Spatio-temporal changes of surface urban heat islands during the nighttime
The spatio-temporal variations of SUHIs during the nighttime were less than the daytime
(Figures 2, S2, and S3). The annual mean SUHIIs were from 1 to 2 �C and negative in
53.43 and 2.47% urban region agglomerations, respectively (Figures 2f and S2f). These 23
urban region agglomerations with negative annual mean SUHIIs were discretely distrib-
uted in North China and the Yangtze River Basin. The order of regions was region
II> III¼V> I¼ IV (Figure S3b). The annual mean SUHIIs were mostly from 1 to 2 �C

Figure 3. Distribution of the maximum surface urban heat island intensities (SUHIIs) (a–c) and the occurrence seasons
(d–f) during the daytime, nighttime and all-day in China and its five ecological regions during 2015–2019.
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in all regions (Figure S2f). The largest seasonal variation occurred in region I (whose sea-
son order was winter> summer¼ spring> autumn) and least in region V (Figure S3b).
Moreover, there were no significant differences in the mean nighttime SUHIIs during the
spring and summer in all regions except in region IV.

The spatial variations were also lesser for the maximum and minimum SUHIIs during
the nighttime than daytime (Figures 3 and S5). Their values were positive, and most from
1 to 3 �C in each region of China (Figures 3b and S4b). The maximum SUHIIs were sig-
nificantly larger in North China than in South (Figure S5a). The variations were complex
in the occurring seasons of the maximum nighttime SUHIIs (Figures 3e and S6a). These

Figure 4. Distribution of the minimum surface urban heat island intensities (SUHIIs) (a–c) and the occurrence seasons
(d–f) during the daytime, nighttime and all-day in China and its five ecological regions during 2015–2019.

Figure 5. Spearman correlation coefficients between the maximum and minimum surface urban heat island intensities
(SUHIIs) during the daytime, nighttime and all-day, and between the daytime and nighttime ranges of SUHIIs in China
and its five ecological regions during 2015–2019. The symbol of “�” represented that the correlation coefficients have
not passed the significant level of 0.05.
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maximum SUHIIs were most in the summer in region IV, in the autumn or spring in
regions V and II, and in the winter in regions I and III.

The most minimum nighttime SUHIIs were from 0.0 to 2.0 �C in China (Figures 4b
and S7b). The order of regions was region II>V ¼ III> IV> I (Figure S5b). The largest
values (>2.0 �C) were mostly located in some cities in the North Plain (Figure 4b). The
minimum values were negative in 18.03% (168/932) urban region agglomerations, which
could occur in each region, especially the humid regions I and IV. The minimum night-
time SUHII were most occurring in the winter in South China, while in the autumn in
North China (Figures S6b and 5e). In addition, the maximum and minimum of nighttime
SUHIIs were significantly correlated in all regions, especially in the hot and humid tropic
region II (r¼ 0.69, p< 0.05) and subtropic region V (r¼ 0.67, p< 0.05) (Figure 5).

The spatial variations of SUHIIs ranges were less during the nighttime than daytime
(Figures 6 and S8). The ranges of nighttime SUHIIs were from 0 to 2 �C in 83.15% of
urban region agglomerations in China. The order of regions was region
I> III> II¼ IV>V for the ranges of SUHIIs during the nighttime (Figure S9). The max-
imum ranges (>5 �C) were located in the 13 cities in Northeast China and three cities in
regions II and III. Meanwhile, the minimum ranges (<0.5 �C) were mainly in some cities
in the North Plain and southeast coastal areas.

4.1.3. Spatio-temporal changes of surface urban heat islands during the all-day period
The annual day-night differences (DNDs) of SUHIIs were generally larger and positive in
South China (region IV>V), while smaller and negative in North China (region
I> II> III) (Figures 2k, S2k and S3c). Obvious seasonal changes existed in these DNDs in
each region. The day-night differences (DNDs) of SUHIIs were largest in the summer in
all areas and when their mean values were positive in each region except region III in
which the mean DNDs were always negative in the four seasons (Figure S3c). The largest
DNDs were mainly located in the humid South and Northeast China in the summer.
Meanwhile, these urban region agglomerations in each region had the lowest DNDs in
the winter, and their regional mean values were all negative. It should note that no sig-
nificance existed in the DNDs between during the winter and spring in region I, winter
and spring or autumn in region III, autumn and spring in region V. Moreover, no signifi-
cance existed between region IV and V for the DNDs in all seasons.

The largest maximum all-day SUHIIs were from 2 to 4 �C in 65.34% urban region
agglomerations in China (Figures 3c and S4c). The values were larger in the hot and cold
humid regions than in other regions (Figure S5). Meanwhile, the maximum all-day SUHII

Figure 6. Distribution of the ranges of surface urban heat island intensities (SUHIIs) during the daytime, nighttime
and all-day in China and its five ecological regions during 2015–2019.
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values mostly occurred in the summer in the hot and cold humid regions, winter in the
dry region III, and autumn in region II. Moreover, the spatial patterns of the minimum
all-day SUHIIs were quite similar to the daytime SUHIIs (Figures 3 and S5). The larger
differences between them were in some cities in humid and hot South China.

The minimum SUHIIs during the all-day period were smaller than during the daytime,
especially in the southeast coastal areas (Figures 4, S6 and S7). Moreover, 62.02% of urban
region agglomerations owned the minimum SUHIIs in the winter in the whole China
(Figures 4f and S6b). From the region aspect, the minimum all-day SUHIIs mostly
occurred in the winter in the humid and hot South China (regions V and IV), and region
II, in the Spring and Autumn Seasons in regions I and III, and never or least in the sum-
mer in all region except region V (Figure S6b). In addition, the relationships between the
maximum and minimum values of the all-day SUHIIs were insignificant (p� 0.05) in
regions II and III, and significant in region I (r¼ 0.30), IV (r¼ 0.46) and V (r¼ 0.71)
(Figure 5).

The spatial patterns and values of the SUHIIs ranges during the all-day period were
quite similar to them during the daytime. Moreover, the daytime ranges of SUHIIs were
insignificant with the nighttime values in most regions of China (p> 0.05) (Figure 6). In
addition, the daytime SUHIIs were insignificantly correlated with the nighttime values in
46.67% of cases for the urban region agglomerations in China and its four regions in the
entire year and four seasons (Figure S10). However, the daytime SUHIIs were significantly
positively correlated with nighttime SUHIIs in region V (r� 0.44 and r� 0.58) except in
the winter.

4.2. Associated determinants of surface urban heat islands

The DEVIs were significantly negatively partially correlated with SUHIIs in the summer
and the whole year in China, and insignificantly partially correlated with SUHIIs in the
winter in all regions. Moreover, the DEVIs were significantly negatively and positively
partially correlated with the SUHIIs in the autumn and spring in regions II, IV and V,
and the whole China, respectively (p< 0.05) (Figure 7a). It should note that regions IV
and V were treated as a whole region (called region IV and V in this article) to study the
associated determinants and simulation of SUHIIs. The DEVIs were significantly nega-
tively partial correlated with SUHIIs in the summer in each region (p< 0.05), in the
whole year in all areas except region I, in the winter in regions II, IV and V, and the
whole China, in the spring in region II and the whole China, and in the autumn in region
IV and V. Significant positive relationships only existed in the autumn in region I (Figure
7b). The most obvious impacts occurred in the summer in region III (r¼�0.79) and
region I (r¼�0.61). During the nighttime, the DEVI was significantly negatively partially
correlated with SUHIIs in the summer in each region (p< 0.05), in the whole year in all
areas except region I, in the winter in region II, IV, and the whole China, in the spring in
region II and the whole China, and in the autumn in region IV and V. Significant posi-
tive relationships only existed in the autumn in region I. The most obvious impacts
occurred in the summer in region III (r¼�0.58) and region IV and V (r¼�0.55).

The DNLI was significantly positively and insignificantly partially with SUHIIs, espe-
cially during the nighttime. The significant negative relationships existed in regions II and
III during the winter daytime. The DAlb was most significantly with SUHIIs during the
nighttime in the summer, spring, and the whole year, and during the daytime in the
spring and summer in China. These significant positive partial correlations usually
occurred during the daytime in the summer, autumn and the entire year. The

GEOCARTO INTERNATIONAL 11



insignificant cases usually existed during the nighttime in the winter and autumn and
during the daytime in region III. The impacts were most obvious in the spring in region
II (r¼�0.69). The DPM2.5 was insignificantly partially correlated with SUHIIs in 16 of 25
and 20 of 25 cases during the daytime and nighttime, respectively. During the daytime,
the significant positive relationships did not occur in the summer and in South China.
The largest effect was in the winter in region III (r¼ 0.52). During the nighttime, four
positive relationships occurred in the spring in region III (r¼ 0.38), in the summer in
region IV and V (r¼ 0.20), and in the whole China in the spring and summer (r¼ 0.08).
The T_Pre was significantly negatively and positively in 20 of 25 and 13 of 25 cases dur-
ing the nighttime and daytime, respectively. The MAT was significantly positively and
negatively partially with daytime SUHIIs in 4 of 25 and 1 of 25 cases, respectively.
Meanwhile, significant positive and negative relationships existed in 4 of 25 and 3 of 25
cases during the nighttime.

Figure 7. Partial correlation coefficients between mean surface urban heat island intensities and their drivers during
the daytime and nighttime in China and its four ecological regions in the whole year and four seasons during
2015–2019. The symbol of “�” represented that the partial correlation coefficients have not passed the significant
level of 0.05. Regions IV and V were treated as a whole region (called region IV and V in this article) to analyze the
associated determinants of SUHIIs.
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The DPD was significantly positively partially correlated with the nighttime and day-
time SUHIIs in 9 of 25 and 3 of 25 cases, respectively, and negatively with them in 1 of
25 cases. The T_Pop was significantly positively and negatively partially with SUHIIs in 2
of 25 and 7 of 25 cases, insignificantly in other cases. The UAS was insignificantly par-
tially correlated with the daytime SUHIIs in 23 of 25 cases and only significantly nega-
tively with SUHIIs in 2 of 25 cases. Meanwhile, the UAS was insignificantly partially
correlated with the daytime SUHIIs in 16 of 25 cases and only significantly positively and
negatively in 8 of 25 and 1 of 25 cases, respectively. The LSI was significantly positively
partially correlated with the daytime SUHIIs in 12 of 25 cases. However, the impact was
small in the vast majority of cases (r< 0.18) and largest in the winter in region I
(r¼ 0.31). The significant positive and negative relationships only existed in 3 of 25 and 2
of 25 cases during the nighttime, respectively. The larger impacts occurred in the spring
in region III (r¼ 0.49) and I (r¼ 0.32).

4.3. Simulation of surface urban heat islands

Both daytime and nighttime SUHIIs could be well estimated in China and its four regions
in the entire year and four seasons (Figure 8). The simulation accuracies were higher dur-
ing the nighttime than daytime except in the winter in regions I and II. The RMSEs were
less than 1.22 �C in 88.00% of cases during the nighttime. The lowest and highest RMSEs
were 0.44 �C in region III in the summer and 2.09 �C in region I in the autumn.
Meanwhile, the RMSEs were less than 2.00 �C in 76.00% of cases during the daytime. The
lowest and highest RMSEs were 0.78 �C in region II in the whole year and 2.40 �C in
region III in the winter.

5. Discussion

5.1. Quality control of the land surface temperatures using different methods

Some invalid LSTs exist in the MODIS product, which may be quite smaller than the true
LSTs in these pixels and could probably cause some errors in calculating SUHIIs.
Therefore, it was necessary and important to remove them, especially when using the
MODIS LSTs data under bad meteorological conditions. During the summer daytime,

Figure 8. Simulation accuracies of surface urban heat island intensities in China and its four ecological regions in the
whole year and four seasons based on the generalized regression neural network algorithm. RMSE meant the root-
mean-square error. Regions IV and V were treated as a whole region (called region IV and V in this article) to simulate
SUHIIs.
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such four images were chosen, including four images on the 153rd day in region IV,
193rd day in region II, 225th day in region V, and 241th day in region I and III in 2020.
We could distinguish these invalid LSTs easily in these images because the true LSTs were
usually positive and large during this period in the vast majority of regions in China
except in some southwestern mountain regions with high altitudes. Moreover, only the
daytime data were analyzed in this study because the accuracies of LSTs were usually
lower during the daytime than nighttime. Seven methods were adopted to control the
LSTs quality, including two methods used in previous research (Clinton and Gong 2013;
Wang et al. 2018) and five proposed by ourselves (Table S3). The stratified sampling
method was adopted to create 30,000 samples to estimate the performances of these meth-
ods, including 1000 points in each region and land use. There were five regions and six
land uses here, including cropland, woodland, grassland, waterbody, built-up land and
unused land (Zhang et al. 2014).

The percentages of invalid LSTs derived by the visual interpretation were 15.93, 6.83,
4.05, 6.18 and 24.83% in the five regions. Those invalid LSTs were mainly affected by bad
weather conditions. They were seldomly related to the land use types. But a few of them
could distribute in the ecotone of land and waterbodies. The first method could not basic-
ally identify the invalid LSTs at all (Figure S11). The second method could find about
12.71% invalid values in most regions of China except region II, but eliminated the right
LSTs with the proportion from 24.20% in region III to 90.58% in region V. The percen-
tages of invalid grids that were correctly identified continued to increase from 46.77%
using the third method to 100.00% by the seventh method. Meanwhile, the percentage of
valid grids that were wrongly removed increased from 9.42 to 18.96%. We encouraged the
quality of LSTs should be controlled at least using the fourth method for the SUHIIs
research in the future. Moreover, our results showed that some invalid LSTs could not be
removed only using the search method within horizontal or eight directions, especially for
the clusters of invalid values with large areas.

5.2. Significance of findings of the spatio-temporal changes rules of surface urban
heat islands

The daytime SUHIIs were largest in the hot summer in all regions, which was consistent
with previous research (Yao et al. 2017; Peng et al. 2018; Ma et al. 2021). During the sum-
mer daytime, the hot and cold humid regions had higher SUHIIs than other regions. This
was similar to previous work, in which during the summer days, the SUHII in Northeast
China and Southwest China was the highest, with the median of 2.64 and 2.14 �C, respect-
ively (Ma et al. 2021). Meanwhile, the daytime SUHIIs were least in the winter in regions
II, IV and V, and in the Spring and Autumn seasons in regions I and III. Moreover, the
minimum nighttime SUHIIs were most in the winter in South China. These findings indi-
cated that the SUHIIs in China could decrease temperature-related comfort, increase the
energy consumption required for cooling and heating, and lead to more emissions of
warm gases and atmospheric pollutants.

Both urban heat islands and sinks were possible in the same location for many global
cities, though timing may differ by the qualitative observation method (Clinton and Gong
2013). Nevertheless, the maximum and minimum SUHIIs were significantly positively
correlated in all regions during the daytime and nighttime (p< 0.05) in our work. The
results indicated that it was difficult for humans to decrease the maximum SUHIIs while
increasing the minimum SUHIIs simultaneously. This finding was more crucial during
the daytime. The maximum daytime SUHIIs were most occurring in the hot summer in
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all regions of China. Meanwhile, the minimum SUHIIs mostly occurred in the winter in
the hot and humid South China (regions V and IV), and region II, and in the Spring and
Autumn Seasons in regions I and III. Besides, the daytime ranges of SUHIIs were insig-
nificant with the nighttime values in most regions of China (p� 0.05). Moreover, the day-
time SUHIIs were insignificantly correlated with the nighttime values in 46.67% of cases
for the urban region agglomerations in China and its four regions in the entire year and
four seasons. This was consistent with previous research, which found no significant cor-
relation existed between daytime and nighttime annual SUHII across 419 global big cities
(Peng et al. 2012). These results showed that the mechanisms were different for the
SUHIs during the daytime and nighttime. They should be studied and considered separ-
ately in future work. The related descriptions were added as follows. Air temperatures
have more direct impacts on human thermal comfort than LSTs. Although the LSTs were
closely associated with temperature (Schwarz et al. 2011; Ho et al. 2016; Bechtel et al.
2017), it was still impossible to obtain satisfactory results by directly converting them
under the urban context. Therefore, the SUHIs cannot be directly comparable to air UHIs
(Voogt and Oke 2003; Zhou et al. 2019). In the future, the urban temperature prediction
should be strengthened based on the land surface temperature, landscape composition
and pattern, surface biophysical parameters, etc. (Hengl et al. 2012; Ho et al. 2016).

5.3. Associated determinants of surface urban heat islands

5.3.1. Vegetation activity
During the daytime (the morning), DEVI generally could mitigate SUHIIs due to the
vegetation transpiration, especially under the conditions with more and denser vegetation,
such as in the summer in all regions and in the autumn in region II and South China.
This finding was consistent with the previous study (Yao et al. 2017). No significant rela-
tionships existed in each region in the winter, mainly due to the least vegetation activities.
It should note DEVI was significantly positively partially correlated with the daytime
SUHIIs in the spring in regions II, IV and V. One previous study has found the positive
correlations existed in certain cities in North China during the winter daytime (Yao et al.
2017). They inferred the reason might be the spurious EVI values. The detailed mechan-
ism needed to be studied further.

During the nighttime, the grasses (especially short grasses) generally had lower LSTs
than the urban land because of the large sky view factor (SVF), low heat capacity, the
mixture of bare soil, gravel, and other inert materials (Kim 1992; Chudnovsky et al. 2004;
Chen 2017). However, the impacts of forests on LSTs were complex during the nighttime.
On the one hand, the forests could decrease the LSTs because the shading effects of trees
could reduce the amount of heat stored during the daytime and reduce the nighttime
LSTs (Tiangco et al. 2008; Quan et al. 2016; Yao et al. 2017). Moreover, the LSTs could
be lowered due to the considerable amount of evapotranspiration during the nighttime,
especially in tropical forests (Li et al. 2015). On the other hand, the forests may increase
the LSTs due to the small SVF (Chudnovsky et al. 2004; Li et al. 2019b), the stored energy
within and beneath canopies during the daytime, and the re-emitted longwave radiation
from both the vegetation canopy and the underlying ground during the nighttime
(Chudnovsky et al. 2004; Li et al. 2019b), etc. In this study, the DEVI was significantly
negatively partially correlated with SUHIIs in most cases, especially under conditions with
more and denser vegetations. One reason may be the most cities were surrounded by
farmland, and the thermal characters of crops were quite similar to the grasslands. The
insignificant cases mainly occurred in the dry region III and cold region I in the winter
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and Spring Autumn Seasons. Only one positive relationship existed in region I in
the autumn.

5.3.2. Anthropogenic heat emissions
The DNLI was usually used to indicate the anthropogenic heat flux, enhancing the
SUHIIs during the daytime (Peng et al. 2012; Chen et al. 2016; Yao et al. 2017) and night-
time (Peng et al. 2012; Zhou et al. 2014; Yao et al. 2017). Meanwhile, the previous
research found that the DNLI was not significantly partially correlated with daytime
SUHIIs in the global 419 large cities in the winter and summer (Peng et al. 2012) and 32
major cities of China in the winter (Zhou et al. 2014). The DNLI was insignificantly cor-
related with the daytime and nighttime SUHIIs in the winter and summer and negative
with the daytime SUHIIs in the winter and summer in 31 major cities of China (Yao
et al. 2017). Our study was consistent with the previous research. The significant positive
and insignificant correlations commonly existed. Two negative cases existed during the
winter daytime in regions II and III.

5.3.3. Albedo
Materials with smaller albedos could absorb more energy during the daytime and emit
them during the nighttime, resulting in higher air and surface temperatures during the
nighttime in most research (Jin et al. 2005; Peng et al. 2012; Zhou et al. 2014; Cao et al.
2016). Nevertheless, the relationships were complex during the daytime. All insignificant
and significant positive and negative relationships existed in previous research (Peng et al.
2012; Zhou et al. 2014; Quan et al. 2016; Duncan et al. 2019). Our results were consistent
with these findings.

5.3.4. Aerosol pollution
Aerosols could affect the urban heat island intensities (UHIIs) by changing the surface
energy balance by the aerosol radiative effect (ARE) and planetary-boundary-layer (PBL)
stability and airflow intensity by modifying the thermodynamic structure, which was
referred to as the aerosol dynamic effect (ADE) (Cao et al. 2016; Han et al. 2020). The
ARE included not only the absorption and emitting of radiation in the longwave atmos-
pheric spectrum but also the reduction of the shortwave radiation that reached the
ground surface (Jacobson 1998; Cao et al. 2016). The annual nighttime SUHIIs could be
obviously enhanced by haze pollution in China (Cao et al. 2016). The aerosols could
increase and reduce the UHIIs during the winter and summer daytime in China domi-
nated by the ARE and ADE, respectively (Han et al. 2020). The DPM2.5 could slightly
enhance the annual daytime SUHIIs in China (Niu et al. 2021b). The effects of air pollu-
tions were larger in the cities in semi-arid climates than in humid climates because the
coarser aerosols could result in higher longwave radiative forcing (Cao et al. 2016; Li
et al. 2019b). Our results were consistent with these findings to some degree. For instance,
the DPM2.5 could enhance SUHIIs significantly in some cases during the daytime and
nighttime. The largest effects were located in the dry region III during the daytime and
nighttime. However, some differences also existed. The insignificant rather than the sig-
nificant negative relationships were found in the summer daytime in this study.

5.3.5. Climate
The precipitation could enlarge the soil moisture (especially in the rural regions) and fur-
ther increase the differences of thermal inertia between the urban and rural regions.
Therefore, T_Pre could mitigate and enhance the SUHIIs during the nighttime and
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daytime, respectively (Peng et al. 2012; Cao et al. 2016; Zhou et al. 2016; Yao et al. 2018;
Li et al. 2019b). Our study verified this.

The effects of MAT were complex on the daytime and nighttime SUHIIs. Our findings
were consistent with previous research, in which all the insignificant, significant positive
and negative relationships existed (Peng et al. 2012; Zhou et al. 2014; Cao et al. 2016;
Zhou et al. 2016; Yao et al. 2018).

5.3.6. Population
Population density is a more effective indicator of the impact of human activities on local
climate per unit area than the total population. Therefore, the DPD has more direct
impacts on SUHIIs than T_Pop and was a more appropriate indicator than T_Pop, but
was rarely used (Peng et al. 2012; Li et al. 2019b). We have found the DPD had significant
positive impacts on SUHIIs in some cases, especially during the nighttime, and negative
in one case during the daytime or nighttime. The results were consistent with previous
research, but some differences still existed. The DPD was insignificantly correlated with
the daytime and nighttime SUHIIs in the winter, summer, and the entire year for 419 big
global cities (Peng et al. 2012). Moreover, the significant positive partial correlations
existed in some cases during the nighttime, especially in South China (p< 0.01) in a pre-
vious study whose study objects included the 1449 urban region clusters in China (Li
et al. 2019b). Only two significant negative relationships existed during the daytime (Li
et al. 2019b). These differences were mainly caused by the different study objects, observa-
tion times, population data, etc.

The T_Pop was usually used to indicate the population effects on SUHIIs using the
correlation analysis method in many previous researches. However, two limitations
existed. On the one hand, the T_Pop has neglected the population density between the
urban and rural regions. On the other hand, the correlation method only considers two
variables and omits other influencing factors’ roles, and thus leading to a certain bias or
errors. For instance, significant correlations were found between SUHIIs and T_Pop in
the vast majority of cases during the daytime and nighttime in the 1449 urban region
clusters (Li et al. 2019b). Nevertheless, no significant partial correlations existed during
the daytime, and the significant positive ones only occurred in 4 of 25 cases during the
nighttime (Li et al. 2019b). Our study was consistent with the previous findings, in which
the T_Pop showed poor explanation ability to the daytime and nighttime SUHIIs.

5.3.7. Uran area size and shape
The UAS was usually significantly positively correlated with SUHIIs (Li et al. 2019b) and
foot-print areas (Zhou et al. 2015). But the partial correlations were quite weak between
UAS and SUHIIs (Peng et al. 2012; Zhou et al. 2014; Li et al. 2019b). Our findings were
consistent with these previous conclusions to some degree. The UAS was insignificant
partially correlated with daytime and nighttime SUHIIs in 23 of 25 and 16 of 25 cases,
respectively. Nevertheless, the UAS had significant positive effects on nighttime SUHIIs in
8 of 25 cases. The LSI could significantly enhance the daytime SUHIIs in some cases in
China except in region III. The mechanism needed to be studied further. Although the
impacts of urban shape were usually minor, the urban planners should consider designing
the urban regions with more simple shapes to mitigate SUHIs.
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5.4. Simulation of SUHIIs

It is crucial to realize the simulation of SUHIIs with high accuracy by simple methods
using a small number of highly accessible indicators. To our knowledge, this research was
very scarce, which focused on the SUHIIs of many cities at a large scale simply by using
several key influencing factors and did not adopt the complex and professional climato-
logic model (Wang et al. 2015; Li et al. 2019b). No significant differences existed between
these simulated SUHIIs using three different indicators (including all potential drivers or
only these drivers that were significantly correlated or partially correlated with the
SUHIIs) and four machine learning methods (including the GRNN and three Support
Vector Machine algorithms based on the genetic algorithm, particle swarm optimization,
and grid search methods) (Li et al. 2019b). Therefore, this study simulated SUHIIs only
using these drivers, which were partially correlated with SUHIIs in most cases. We used
all drivers to estimate these SUHIIs when no influences were significant with SUHIIs.
Moreover, all influencing factors adopted in this study could be easily accessed. In add-
ition, their values could be specific to each grid. Both daytime and nighttime SUHIIs
could be well estimated in all papers and the simulation accuracies were generally higher
during the night than daytime. The high simulation accuracies in the research could indi-
cate the urban planners could consider the SUHI issue by managing several key determi-
nants, which is quite helpful for monitoring, assessing, and optimizing the urban thermal
environment.

6 Conclusions

We studied the spatio-temporal variations and ten associate determinants of SUHIIs dur-
ing the morning (�10:30 am) and before midnight (�10:30 pm) of 932 urban region
agglomerations in the five regions with different ecological contexts in China and further
simulated these SUHIs. Some important conclusions can be summarized as follows:

1. It was necessary and important to remove these invalid LSTs to study SUHIIs. The
proposed QC method of LSTs could identify almost all wrong values effectively while
eliminating the valid LSTs as little as possible.

2. The daytime SUHIIs were largest in the hot summer in all regions when the hot and
cold humid regions had higher SUHIIs than other regions. Meanwhile, the SUHIIs
were least in the winter in regions II, IV and V and in the Spring and Autumn
Seasons in regions I and III. The minimum nighttime SUHIIs were most in the win-
ter in South China. Besides, the maximum and minimum SUHIIs were significantly
positively correlated in all regions during the daytime and nighttime. Moreover, the
daytime ranges of SUHIIs were insignificant with the nighttime values in most
regions of China (p> 0.05). The daytime SUHIIs were insignificantly correlated with
the nighttime values in 46.67% of cases.

3. The DEVI was generally significantly negatively partially correlated with the daytime
and nighttime SUHIIs, while the DNLI was positively partially correlated with them
in some cases. The DAlb was significantly negatively partially with some nighttime
SUHIIs. The DPM2.5 was significantly positively partially correlated with 9 of 25 day-
time and 4 of 25 nighttime SUHIIs, respectively. The largest effects of DPM2.5 on
SUHIIs were occurring in the dry region III during both the daytime and nighttime.
The T_Pre was significantly negatively and positively partially correlated with SUHIIs
in most cases during the nighttime and daytime, respectively. The DPD was
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significantly positively partially correlated with nighttime and daytime SUHIIs in 9 of
25 and 3 of 25 cases, respectively. The UAS and LSI were significantly positively par-
tially correlated with the nighttime SUHIIs in 8 of 25 cases and daytime SUHIIs in
12 of 25 cases.

4. Both daytime and nighttime SUHIIs could be well estimated in China and its four
regions in the entire year and four seasons. The simulation accuracies were higher
during the nighttime than daytime except in the winter in regions I and II. The
RMSEs were less than 1.22 �C in 88.00% and less than 2.00 �C in 76.00% of cases
during the nighttime and daytime, respectively.

5. One contribution of the present research was to improve the research framework and
methods of SUHIs, including proposing a method to remove the invalid values of
LSTs data, developing a two-step aggregation method to extract the urban regions
accurately, analysing the spatial-temporal changes of SUHIs by several aspects during
the morning and before midnight, exploring ten associated determinants for these
SUHIs, including the PM2.5, urban shape, etc., and simulating SUHIIs accurately by
the GRNN algorithm. Another significance was to obtain the corresponding results
by the methods mentioned above, which can help master the status of SUHIs accur-
ately, assess the positive and negative effects of urban heat islands comprehensively,
regulate and optimize SUHIIs scientifically and predictably, etc.
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