
Journal of Cleaner Production 337 (2022) 130438

Available online 12 January 2022
0959-6526/© 2022 Elsevier Ltd. All rights reserved.

Environmental regulation and synergistic effects of PM2.5 control in China 

Xinyao Li a,**,1, Wenhao Xue b,1, Kai Wang c, Yunfei Che d, Jing Wei e,f,* 

a Business School, Beijing Normal University, Beijing, China 
b School of Economics, Qingdao University, Qingdao, China 
c College of Global Change and Earth System Science, Beijing Normal University, Beijing, China 
d State Key Laboratory of Severe Weather & Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Science, Beijing, China 
e Department of Chemical and Biochemical Engineering, Iowa Technology Institute, University of Iowa, Iowa City, IA, USA 
f Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA   

A R T I C L E  I N F O   

Handling Editor: Bin Chen  

Keywords: 
PM2.5 

Environmental governance 
Environmental regulation synergy 
Dynamic spatial durbin model 
China 

A B S T R A C T   

In recent years, haze pollution has been widespread across China, and the intensity of environmental regulation 
has been continuously strengthened. Differences in regional environmental regulation intensity brought about 
the spillover effect of air pollution. In this study, we analyze the spatiotemporal variation trends and distribution 
of provincial environmental regulation in China from 2004 to 2017. Considering the spatiotemporal lag effect of 
haze pollution, the dynamic spatial Durbin model was employed to study the spatial impact of environmental 
regulation tools of different pollutants on PM2.5 (fine particulate matter with aerodynamic diameters ≤2.5 μm). 
We found that PM2.5 is significantly negatively related to the environmental regulation intensity and synergy, 
showing a lag effect of 1–2 periods. The environmental regulation level is high in Eastern China but low in 
western areas, however, most regions lack an important understanding of environmental regulation. Overall, 
only 19.8%, 23.0%, and 28.1% of the regions exceeded the average level of the environmental regulation in-
tensity of SO2, smoke/dust (SD), and NOX, respectively. PM2.5 yields a spatial spillover effect and is also nega-
tively correlated to the environmental regulation tools of various pollutants. For every 1% increase in the 
environmental regulation intensity (synergy) of above three pollutants, PM2.5 will be significantly (p < 0.05) 
reduced by 0.02% (0.04%), 0.05% (0.10%) and 0.04% (0.08%), respectively. Inter-regional collaboration has a 
profound and long-term impact on PM2.5 and is conducive to improving the efficiency of environmental 
governance.   

1. Introduction 

In China, extensive economic growth along with the continuous ur-
banization causes severe environmental problems, especially haze 
pollution (Chen et al., 2017; Liao et al., 2017; Song et al., 2021; Xue 
et al., 2021a; Wei et al., 2021a, 2021b, 2022). Fine particulate matters 
have become the major air pollutants that can cause a large number of 
diseases, e.g., cancer, cardiovascular and respiratory diseases (Lu et al., 
2021; Ma et al., 2016; Wei et al., 2019, 2020, 2021c; Zhang et al., 2020; 
Zheng et al., 2015). As stated in the Bulletin on the State of China’s 
Ecological Environment in 2019 issued by the Ministry of Ecology and 
Environment, among 337 prefecture-level and above cities in China, 
46.6% of cities fail to meet the air quality standard, and PM2.5 

(particulate matters with an aerodynamic diameter <2.5 μm), is the 
primary air pollutant. Environmental regulation (ER) is considered to be 
an effective way to reduce PM2.5 concentrations (Yu et al., 2017). 
However, spatial heterogeneities of ER exist in China, which may cause 
the transfer of air pollution, thus reducing the efficiency of ER (Johnson, 
2020). Therefore, exploring the impacts of regional environmental 
regulation intensity (ERI) and environmental regulation synergy (ERS) 
on PM2.5 is crucial in China. 

The relationships between ER by local governments and PM2.5 
pollution have been attracted by the public because it is an important 
part of government management (Dasgupta et al., 2012; Hao et al., 
2018; Zhang et al., 2020). Two viewpoints are mainly expressed now, 
first of all, the Porter Hypothesis (Porter and Linde, 1995). This view 
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indicated that an appropriate ER would promote technological innova-
tion (Hille and Mobius, 2019), which can offset the cost increase caused 
by ER. However, based on the data on environmental protection in 
Mexico, Blackman and Kildegaard (2010) found that the promotion ef-
fect of ER on green technology innovation is not significant, and the 
pollution emissions will be enhanced by contraries. The other viewpoint 
is that a low level of ER can provide shelter for air pollution (Bartik, 
2015; Bildirici and Gokmenoglu, 2020). Konisky (2007) indicated that 
the regional environmental standards would be cheapened to attract 
more foreign investment. Due to the profiting maximization and avoid 
the increase of production costs caused by ER, local enterprises are more 
inclined to move to lower-level ER areas (Li et al., 2021). In short, some 
scholars have pointed out the important relationship between ER, en-
terprise cost, and regional economy, that is, environmental regulation 
can alleviate pollution. However, many problems, e.g., cross pollution, 
repeated control, and low-efficiency government, are still existed in 
China for environmental management, especially for the spillover effect 
of PM2.5. 

The spatial effects of PM2.5 are mainly co-affected by geographical 
attributes and regional economic linkages (Cheng et al., 2017; Ma et al., 
2016). Although ER can alleviate PM2.5, spatial adjacency of PM2.5 are 
existed in most areas of China due to the action of atmospheric circu-
lation, which could form an isolated ‘pollution basin’ through the 
transporting of air masses (Qin et al., 2015). The spatial spillover effect 
of air pollution will cause the definition of responsibility for regional 
environmental governance ambiguous. However, it is impossible to 
avoid the phenomenon of inter-regional air cross-pollution and repeated 
governance, which makes the regional governance mode inefficient 
(Yamagishi, 2019). Thus, the spatial spillover effect of PM2.5 is not 
conducive to the local environmental governance nor the improvement 
of the environment. Therefore, exploring the spatial relationship be-
tween ER and PM2.5 is necessary, which is of practical significance. 

The control of air pollution in different regions will inevitably be 
transformed from the traditional control by administrative division to 
collaborative governance. This paper conducts a quantitative analysis 
on the inter-governmental synergy governance of air pollution in China, 
from the perspective of local government ERI and regional ERS. The 
secondary source is the main source of atmospheric particulate matters 
(PM2.5) in China (Lu et al., 2020; Quan et al., 2011; Yang et al., 2011). In 
addition, the secondary sources of PM2.5 are mainly the precursors 
discharged into the air, including sulfur dioxide, nitrogen oxides, smoke 
dust, and volatile organic compounds produced by energy consumption 
in factories. The nitrate, sulfate, and secondary organic aerosol pro-
duced by chemical reactions lead to the increase of PM2.5 concentra-
tions. PM2.5 pollution will also increase under the conditions of high 
concentrations of SO2, SD, and NOX smoke. Therefore, the environ-
mental regulation of those pollutants will directly affect the emission of 
PM2.5. Based on this, we conducts a causal identification of the rela-
tionship between ER and PM2.5 to verify the impact of ER tools of 
different pollutants on PM2.5 concentration and whether the difference 
in ERI between neighboring regions affects the overall effect of envi-
ronmental governance. After that, the dynamic spatial Durbin model 
(SDM) is selected to deal with endogenous problems and explore the 
background effect of environmental pollution in China. This provides 
the key theoretical evidence for regional environmental joint 
governance. 

2. Data and methods 

2.1. Datasets 

2.1.1. PM2.5 and emission data 
The annual high-resolution (1 km) and high-quality PM2.5 data for 

China (i.e., ChinaHighPM2.5) from 2004 to 2017 are collected from the 
ChinaHighAirPollutatns (CHAP) dataset, which is generated using sat-
ellite remote sensing and machine learning (Wei et al., 2020, 2021a; 

2021b). The emission data, including the SO2, SD, and NOX emissions, 
are obtained from the “China Statistical Yearbook”. Here, only the SO2 
data for the available period 2004–2017, and SD and NOX data for the 
available period 2011–2017 are employed. 

2.1.2. Other analysis data 
In the control variables, gross domestic product (GDP) per capita was 

used to measure the level of economic development of the province and 
is represented by GDP in this paper. The regional industrial structure is 
measured by the proportion of industrial added value in GDP (Wu et al., 
2019) and expressed by IS. The regional technical level was represented 
by the number of patents granted, expressed as Patent. Technological 
innovation ability is helpful to improve factor utilization efficiency and 
reduce pollution emission intensity (Omri and Hadj, 2020). The total 
population of the region is represented by Pop. The degree of opening up 
of an area also affects its environmental pollution (Zeng and Zhao, 
2009). In this paper, the proportion of foreign direct investment in the 
GDP of each province is used to measure the openness of a region, which 
is represented by FDI. The main data of this paper is from China Sta-
tistical Yearbook from 2004 to 2017. 

2.2. Methodology 

2.2.1. Environment regulation and synergism 
Quantitative measurement of the enforcement degree of regulation 

has always been the focus of the existing literature. In this paper, the 
ratio of air pollutant emission to air environmental governance invest-
ment is used to measure the intensity of air environmental regulation 
(Xue et al., 2020), and it is shown as follows: 

ERIi = Investi / Emissioni [1]  

where ERI represents the intensity of environmental regulation, i rep-
resents the province, and Invest represents the investment in environ-
mental control of air pollution. Emission represents the concentration of 
air pollutants, including SO2, SD, and NOX emission. 

Furthermore, the degree of ERS is calculated based on the intensity of 
regional atmospheric environmental regulations as follows (Liu et al., 
2009; Hu et al., 2019). 

ERS=

⎧
⎨

⎩

[
∏n

i=1
ERIi

/(
1
n
∑n

i=1
ERIi

)n]k(
∑n

i=1
αiERIi

)⎫
⎬

⎭

1
2

[2]  

where ERS represent the synergy of environmental regulation between 
two provinces. k is the adjustment coefficient, k ≥2, this paper takes k =
2, and all regions are equally empowered. α represents weights, and i 
represents the province. n indicates the number of regions in the area. 

2.2.2. Temporal and spatial correlation 
The mean value of factors (ERI and ERS) for each province from 2011 

to 2017 was calculated. Then, the spatial correlation among provinces 
was investigated according to the spatial distribution of provincial 
values. Besides, the annual factors of all provinces are calculated, and 
the temporal correlation between these factors based on time series is 
studied. To distinguish whether ER has a lag effect, spatial correlation 
and temporal correlation both consider the current period, one period, 
and two periods of lag. Pearson correlation coefficient is selected here 
and the T-test method is employed to test the statistical significance. 

2.2.3. Spatial autocorrelation test 
Moran’s I describes the spatial autocorrelation characteristics of 

PM2.5, which is usually between − 1 and 1, and the values > (<0) 
indicate positive (negative) spatial autocorrelation (Moran, 1948): 

I =
∑n

i=1
∑n

j=1Wij(Xi − X)
(
Xj − X

)

S2
∑n

i=1
∑n

j=1Wij
[3] 
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where n indicates the number of provinces. Xi and Xj are the PM2.5 

concentrations for province i and j, respectively. X indicates the average 
PM2.5 concentration of all provinces and Wij is the spatial weight matrix. 

s2 is the variance value of PM2.5, namely s2 =

∑n
i=1

(Xi − X)2

n . Besides, at a 
certain level of significance, the larger the absolute value of Moran’s I, 
the higher the spatial correlation. Among them, the significance of 
Moran’s I is tested by ZI =

I− E[I]̅̅̅̅̅̅
V[I]

√ , where E[I] is the expectation of Moran’s 

I and V[I] represents the standard deviation of the variable. 

2.2.4. Dynamic SDM and decomposition effect 
Due to ER and environmental pollution may produce trans-regional 

spatial spillover. Therefore, we used the spatial econometric model for 
empirical study. Before that, the LR and LM tests methods were used to 
select the suitable spatial econometric model for our study (Anselin and 
Florax, 1995; Lv et al., 2019; Shurui et al., 2019; Zhang et al., 2018). 

By LM Test and LR test (Table 1), LM-lag and robust LM-lag of SO2 
ERI and ERS were significant at 1% level, which rejected the original 
hypothesis. In addition, the Robust LM-error value was not significant, 
indicating that the spatial lag model (SAR) was more suitable than the 
spatial error model (SEM). However, the LR (SAR) value is significant (P 
< 0.01), which indicates the SDM cannot degenerate into SAR. Mean-
while, the LR tests of SD and NOX environmental regulation were also 
significant at 1%. Therefore, SDM is chosen to test the causal relation-
ship between ER (ERI and ERS) and PM2.5, and it is shown as follows 
(Anselin, 1980; Elhorst and Freret, 2009): 

Yit = βXit + θWXit + ρWYit + ui + λt + εit [4]  

where Yit represents the PM2.5 concentration of i province in t year. X 
represents ER, represented by the ERI (ERS) of SO2, SD, and NOX. β is the 
coefficient of ERI (ERS), and W represents the spatial weight matrix. ui 
and λt represent province fixed effect and year fixed effect, respectively, 
and εit indicates random disturbance term. 

Since PM2.5 is time-dependent, PM2.5 concentration with a lag of one 
period was added as an instrumental variable to deal with the endoge-
nies of the model and discuss the environmental background effect of 
PM2.5. The model was constructed as follows: 

Yit = βXit + θWXit + ρWYit + τYi,t− 1 + ui + λt + εit [5]  

where τ represents the time lag coefficient of PM2.5. If it is significantly 
positive, it indicates that the PM2.5 of the previous year has an impact on 
the PM2.5 of the current year. 

At the same time, the spatial and temporal correlation of PM2.5 was 
considered, the temporal and spatial lag terms of PM2.5 are added to the 
right side of the model (5) to construct dynamic SDM, and it is shown as 
follows: 

Yit = βXit + θWXit + ρWYit + τYi,t− 1 + ηWYi,t− 1 + ui + λt + εit [6]  

where η indicates the spatiotemporal lag coefficient of PM2.5. In addi-
tion, the dynamic SDM can be written as follows: 

I − ρWYit = Xitβ + WXitθ + τI + ηWYi,t− 1 + ui + λt + εit [7] 

And then: 

Yit = I − ρW − 1Xitβ + WXitθ + I − ρW − 1τI + ηWYi,t− 1 + I − ρW − 1ui + λt + εit

[8] 

Among them, I − ρW− 1ui + λt + εit represents the constant term. 
Furthermore, take the partial derivative with respect to Xit . 
[

∂ E(Y1t)

∂ XiK
…

∂ E(YNt)

∂ XNK

]

= I − ρW − τI − ηW − 1βI +Wθ= [(1 − τ)I 

− (ρ + η)W]
− 1βI + Wθ [9] 

Assume τ = 0 and η = 0 as follows: 
[

∂ E(Y1t)

∂ XiK
…

∂ E(YNt)

∂ XNK

]

= I − ρW − 1βI + θW [10] 

Accordingly, the short (long) term direct, indirect, and total effects of 
the dynamic SDM can be calculated (Elhorst, 2014a). The short-term 
direct effect is [I − ρW− 1βKIN + θKW]d, the indirect effect is 
[I − ρW− 1βKIN + θKW]rsum, and the total effect is [I − ρW− 1βKIN + θKW]d +

[I − ρW− 1βKIN + θKW]rsum. In addition, the long-term direct effect is 
{[(I − τ) − (ρ + η)W]

− 1βKIN + θKW}d; the indirect effect is 
{[(I − τ) − (ρ + η)W]

− 1βKIN + θKW}rsum, and the total effect is 
{[(I − τ) − (ρ + η)W]

− 1βKIN + θKW}d +

{[(I − τ) − (ρ + η)W]
− 1βKIN + θKW}rsum. Where I represents the identify 

matrix, the superscript d denotes the operator for calculating the average 
diagonal element of the matrix, and the superscript rsum denotes the 
operator that calculates the mean row sum of the non-diagonal 
elements. 

2.2.5. Spatial weight matrix 
Wij is spatial weight matrix, which is used to describe the spatial 

proximity between different regions. The geographical distance weight 
matrix can consider the relationship between the farther spatial units 
(Cliff and Ord, 1973; Kelejian and Prucha, 2010), and it is shown as 
follows: 

Wij =

⎧
⎪⎨

⎪⎩

0, i = j
1

(
dij
)2, i ∕= j [11]  

where dij represents the greater-circle distance calculated according to 
longitude and latitude between province i and province j. To simplify the 
model and make the results easier to interpret, Wij is normalized after 
dividing each element by the sum of its row, ensuring that the sum of 
each row is 1 (Anselin, 1988). 

3. Results and discussions 

3.1. Spatiotemporal trends of ERI and ERS 

To explore the development trend of environmental regulation status 
under different pollutant concentrations, and the time trend analysis of 
ERI (ERS) of SO2, SD, and NOX was conducted, respectively (Fig. 1). In 
recent years, the environmental regulations of various pollutants have 

Table 1 
LM Test and LR test.  

Variables SO2_ERI SO2_ERS SD_ERI SD_ERS NOX_ERI NOX_ERS 

LM-lag 463.082*** 463.082*** 16.710** 16.710** 368.648*** 368.646*** 
Robust LM-lag 116.784*** 116.084*** 282.686*** 282.687*** 72.885*** 72.884*** 
LR(SAR) 25.040*** 25.040*** 35.785*** 35.785*** 18.440*** 18.440*** 
LM-error 346.718*** 346.717*** 275.909*** 275.911*** 295.934*** 295.932*** 
Robust LM-error 0.420 0.420 29.008*** 29.009*** 0.170 0.170 
LR(SEM) 29.010*** 29.000*** 19.030*** 19.030*** 20.580*** 20.580*** 

Note: *, **, *** represent significance at 10%, 5%, and 1% level, respectively. 
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shown an upward trend, and the PM2.5 concentration has shown a 
downward trend. The average PM2.5 concentration was 55.71 μg/m3 

(48% of the samples exceeded the average), with the highest value in 
Henan Province in 2011 (96.19 μg/m3) and the lowest value in Hei-
longjiang Province in 2016 (24.81 μg/m3). The PM2.5 concentration has 
been well controlled in recent years. From 2004 to 2012, it gradually 
developed and remained at 60.0 ± 5.0 μg/m3, and then a downward 
trend was observed since 2013. PM2.5 concentration has dropped 
significantly from 59.37 μg/m3 to 38.94 μg/m3 from 2013 to 2017. 

The mean value of SO2 ERI (ERS) was 6.51 (1.97), the lowest value 
was 0.10 (0.32), which was found in Guizhou Province in 2005, and the 
highest value was 331.29 (18.20), which appeared in Beijing in 2017. 
The reason is that the SO2 emission is well controlled in Beijing, e.g., the 
national average SO2 is 662.9 thousand tons, while it is only 110.5 
thousand tons in Beijing in 2017. In addition, the investment in pollu-
tion control in Beijing is relatively large, accounting for 41.25% and 
5.34% of those in the Beijing-Tianjin-Hebei region and the whole 
country, respectively. The ERI (ERS) of SO2 increased year by year 
during the sample period, from 1.16 (0.99) in 2004 to 26.59 (4.11) in 
2017, indicating that China has paid more attention to the ER of SO2. 
Due to data limitations, the temporal trend of SD and NOX began in 
2011. The ERI (ERS) of SD and NOX averaged 12.53 (3.02) and 5.56 
(2.19), respectively, and fluctuated from 2011 to 2015, ranging from 
8.12–11.45 (2.60–3.05). The ERI (ERS) of SD began to rise steadily after 
2016, to 16.07 (3.39), indicating that compared with SO2, the awareness 
and effective work of environmental regulation on SD started later. 
Although the trend of ERI (ERS) of NOX is relatively flat, it has been 
steadily increasing, with an average annual increase of 19.3% (8.6%). 

The average fluctuation of ERI (ERS) of NOX from 2011 to 2017 ranged 
from 3.16 to 8.43 (1.71–2.77). The highest value was 70.14 (8.38) in 
Beijing in 2016, and the lowest value was 0.90 (0.95) in Tibet in 2012. 

Fig. 2 shows the spatial distribution of ERI and ERS of various pol-
lutants. The SO2 ER in more than 70% of provinces are not optimistic. 
Only 19.8% of the provinces have exceeded the average value of SO2 ER, 
indicating that there is a big gap in environmental regulation levels 
among the provinces, and most provinces lack important awareness of 
environmental regulations (Peng et al., 2016). The ERI of eastern re-
gions is generally high (11.26), while the ER level of central and western 
regions is low (3.67 and 4.06). In addition, the situation of collaborative 
governance among regional governments is also weak in the western 
area (Ren et al., 2018). The ERI of eastern, central, and western regions 
were 2.61, 1.68, and 1.58, respectively. 

For SD, 23.0% of the provinces exceeded the average value of 
environmental regulation. It can be seen that the ERS in the southern 
region is significantly better than that in the northern region, with the 
mean ERS of 3.16 and 2.89, respectively. The main reason is due to a 
large amount of SD caused by heating in the north in winter (Almond 
et al., 2009; Chen et al., 2013). Therefore, with the same total invest-
ment in environmental governance, the ER of SD in northern China is 
weaker than that of SO2 and NOX. By region, Northeast China has the 
lowest environmental regulation status of SD, at 3.62 (1.87), while East 
China has a better general environmental regulation status with an 
average of 22.68 (4.02). The main reason is that the economic devel-
opment level of eastern region is much higher than that of the central 
and western regions, and the average investment in environmental 
governance is 1.59 and 2.44 times that of the central and western 

Fig. 1. Temporal trends of PM2.5 concentration and ERI (ERS) of SO2, SD, and NOX from 2004 to 2017: (a) PM2.5, (b) ERI, and (c) ERS.  

Fig. 2. Spatial distribution of ERI (upper) and ERS (bottom) of (a) SO2, (b) SD, and (c) NOX.  
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regions, respectively. In addition, compared with SO2 and NOX, SD 
emission is much lower in eastern China; thus, with the same investment 
in environmental governance, SD’s environmental regulation intensity 
is higher. 

The NOX environmental regulations of 28.1% of provinces are above 
the average. The ER of NOX in the western region is still worse than that 
in the eastern and central regions. The ERI (ERS) of eastern, central, and 
western NOX was 7.95 (2.55), 4.43 (2.02), and 4.13 (1.96), respectively. 
Although the ER of NOX in the eastern region is better, the overall 
environmental coordination governance of the regions still needs to be 
further improved. From Fig. 2, we can see that there may be a negative 
correlation between PM2.5 and the environmental regulation level of 
various pollutants. 

3.2. Relationship between PM2.5 and environment regulation 

3.2.1. Spatial relevance 
Fig. 3 shows the correlation coefficient between ER of various pol-

lutants and PM2.5, which are the results of the current period, the first 
lag period, and the second lag period respectively. From this, we can see 
that the ERI and ERS increased year by year in the beginning, and this 
spatial correlation gradually decreased when PM2.5 concentration was 
effectively controlled. Moreover, in the early stage, the spatial correla-
tion between ER and PM2.5 in the current period is stronger, while in the 
later stage, the ER and PM2.5 are gradually changed to lag a period with 
a stronger spatial correlation. Especially in 2017, when the environ-
mental regulation was lagging two periods, the ERI (ERS) of all pollut-
ants had the highest spatial correlation with PM2.5. The ERI (ERS) 
correlation coefficients of SO2, SD and NOX were 0.07 (0.12), 0.11 (0.17) 
and 0.14 (0.18), respectively. It shows that the effectiveness of envi-
ronmental regulation in the reduction of PM2.5 concentration is not 
limited to the current period but also plays an important role in the next 
1–2 years. Moreover, the correlation between ERS and PM2.5 is greater 
than the correlation coefficient of ERI, indicating that each region can 
improve governance efficiency through environmental coordination 
while paying attention to its environmental regulation (Li et al., 2018). 

The ERI and ERS of SO2 maintained a consistent trend on the whole 
(Table S1). Before 2014, the ERI of SO2 was negatively correlated with 
PM2.5, with an average correlation coefficient of − 0.06 from 2004 to 
2013. In particular, a significant turning point occurred in 2014, when 
the negative correlation changed to a positive correlation, indicating 
that the early PM2.5 concentration was high, however, the local gov-
ernment had not yet formed a good awareness of air control (Chan and 
Yao, 2008). Compared with ERI, the ERS of SO2 and PM2.5 has a positive 

correlation before 2014 (Fig. 3 ii-a), but the overall level was still close 
to 0, indicating that the government had a preliminary awareness of the 
governance of the air environment, but the governance may not be 
effective or not in place (Wang et al., 2019). 

The correlation coefficient of SD ERI is greater than 0, the average 
correlation coefficient is 0.11, the highest is 0.18 in 2015, and the lowest 
is 0.04 in 2011 (Table S2). For 2015 and before, the correlation coeffi-
cient increased by 48% per year on average, indicating that high 
pollution was accompanied by high governance. However, from 2015 to 
2017, the correlation coefficient of ERI (ERS) decreased year by year, 
which was 0.18 (0.23), 0.15 (0.20), and 0.11 (0.17), respectively. The 
reason is that after the initial success of air environmental governance, 
PM2.5 concentration has been effectively controlled, and the ERI has 
eased. Moreover, from 2015 to 2017, there was a higher correlation 
between ER and PM2.5 with a lag of two periods. This shows that the 
early treatment of SD not only has a mitigation effect on the haze level of 
the year, even after the mitigation of pollution is effectively controlled, 
the early treatment will also play a mitigation effect in the later stage (Lv 
et al., 2019). 

The spatial correlation of NOX ERS was consistent with the trend of 
ERI (Fig. 3), and the datastet was available in Table S3. In general, the 
spatial correlation of NOX ERI (ERS) was positive from 2011 to 2017. 
Among them, the environmental governance of NOX from 2011 to 2014 
was timely, and the average correlation coefficient was 0.14 (0.19). 
During this period, the correlation coefficient between PM2.5 and ERI 
(ERS) of the current year was significantly greater than that of the first 
lag period and the second lag period. In addition, the correlation co-
efficients of ERI (ERS) in the current period, one lag period and two lag 
periods had no significant difference in 2015, while the correlation of 
environmental regulations with a lag of two periods is significantly 
higher after 2015. 

3.2.2. Temporal relevance 
Fig. 4 shows the different performances of the time correlation be-

tween ERI and PM2.5 of various pollutants in the current period, one lag 
period, and two lag periods. The time correlation of ERI of all pollutants 
in different provinces in each period is significant at the level of 1% or 
5%, which can be seen by us, indicating that ERI has a strong time 
correlation. 

In the current period, the temporal correlation between the ERI of 
SO2 and PM2.5 was negative in all provinces, with an average correlation 
coefficient of − 0.75, indicating that SO2 ERI is conducive to slow down 
PM2.5 concentration. In central China (− 0.73) and eastern coastal China 
(− 0.76), the environmental regulation effect is higher. In terms of 

Fig. 3. Spatial correlation between (i) ERI and PM2.5. and (ii) ERS and PM2.5, respectively.  
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geographic area, the correlation is low in Northeast China (average 
− 0.50). Among them, Heilongjiang has a stronger correlation with the 
two-period lag of ERI, indicating that the governance effect needs a 
certain period. The correlation of current governance in Jilin was 
higher, which decreased in the second year and kept after that. The 
governance relevance of Liaoning decreased year by year and was even 
close to 0 in the third year. In contrast, the temporal correlation of 
environmental regulation in South China and East China is generally 
strong (− 1.0~-0.8), indicating the effectiveness of governance. In South 
China and the southern part of East China, the temporal correlation of 
ERI in the current period is higher than that of the first lag period, and 
the performance of the two lag periods is consistent with that of the one 
lag period. 

Most areas of China need to pay attention to the control of SD, 
especially in the Northeast (- 0.25) and North China (− 0.34). The tem-
poral correlation between SD ERI and PM2.5 differs from that of SO2 due 
to the presence of provinces with positive correlations, i.e., Liaoning and 
Tianjin, with correlation coefficients of 0.32 (p > 0.1) and 0.94 (p <
0.01), respectively. The correlation between SD ERI and PM2.5 in these 
two locations indicates that the higher the pollution intensity, the 
stricter the environmental regulation (Domazlicky and Weber, 2004), 
and the correlation does not change significantly between the first and 
second lagging periods. It is possible that the government is not aware of 
the environmental management of SD or that it is inadequate (Xue et al., 
2021b; Zhang et al., 2020). Both Heilongjiang and Jilin, which are 
located in the same Northeast China region as Liaoning Province, also 
show positive correlations in the year after treatment, which may be 

temporary or short-term treatment, considering only the solution of the 
problem in the current year, without paying attention to the sustain-
ability of air pollution. Furthermore, for the provinces located in North 
China together with Tianjin, there are two scenarios: the correlation 
between ERI and PM2.5 has decreased (i.e., Beijing and Inner Mongolia), 
and the correlation coefficient has turned from negative to positive (i.e., 
Hebei and Shanxi). East China also shows different degrees of perfor-
mance, except for Shanghai, where the correlation is strong and stable 
(Table 4). The ERI correlations of Jiangsu, Anhui, and Zhejiang prov-
inces show the highest correlations in the current year (− 0.56, − 0.69, 
and − 0.78, respectively), but the decline in the second year (− 0.20, 
− 0.33, and − 0.59, respectively). 

The governance status of NOX performs better than SD, and similarly, 
there is a regional correlation in the temporal correlation of NOX. Na-
tionally, only a few provinces showed a positive correlation in different 
lag periods (less than 6.5%), and there was no clustering. Precisely, 
93.6% of the provinces have a negative time correlation for environ-
mental regulations, and the mean value of the national correlation 

Fig. 4. Temporal correlation between ERI of three pollutants (SO2, SD, and NOX) and PM2.5. (i-iii) represent the current period, one lag period, and two lag periods, 
respectively. (a–c) Represent SO2, SD, and NOX, respectively. The yellow dots indicate significant confidence levels at the 1% level, and the black dots indicate 
significant confidence levels at the 5% level. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 2 
Spatial autocorrelation of PM2.5.  

Variable 2004 2005 2006 2007 2008 2009 2010 

Moran’I 0.10 0.09 0.10 0.10 0.09 0.10 0.07 
P <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Variable 2011 2012 2013 2014 2015 2016 2017 
Moran’I 0.11 0.09 0.08 0.12 0.10 0.10 0.10 
P <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  
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Table 3 
Spatial Durbin results for SO2.  

Variable ERI ERS 

SDM Dynamic SDM Dynamic SDM SDM Dynamic SDM Dynamic SDM 

SO2 − 0.013*(0.008) − 0.021***(0.008) − 0.020**(0.008) − 0.027*(0.015) − 0.043***(0.016) − 0.041**(0.016) 
Р 0.573***(0.104) 0.558***(0.112) 0.533***(0.111) 0.573***(0.104) 0.558***(0.112) 0.533***(0.111) 
Sigma2_e 0.003***(0.000) 0.003***(0.000) 0.003***(0.000) 0.003***(0.000) 0.003***(0.000) 0.003***(0.000) 
W*SO2 − 0.085(0.062) − 0.151**(0.068) − 0.120*(0.068) − 0.170(0.125) − 0.303**(0.137) − 0.240*(0.137) 
L.pm  0.207***(0.050) 0.296***(0.056)  0.207***(0.050) 0.296***(0.056) 
W*L.pm   − 1.305***(0.369)   − 1.305***(0.369) 
Control Variable Yes Yes Yes Yes Yes Yes 

Note: The regression includes the regression results of the constant term, time fixed effect, region fixed effect, and control variables, which are not reported due to the 
limitation of space. ***, ** and * indicate significant at the level of 1%, 5% and 10%, respectively. In parentheses are standard errors for heteroscedasticity robustness. 

Table 4 
Spatial Durbin results for SD.  

Variable ERI ERS 

SDM Dynamic SDM Dynamic SDM SDM Dynamic SDM Dynamic SDM 

SD − 0.044***(0.015) − 0.044***(0.017) − 0.048***(0.017) − 0.087***(0.029) − 0.088***(0.033) − 0.096***(0.033) 
Р 0.543***(0.156) 0.550***(0.169) 0.500***(0.165) 0.543***(0.156) 0.550***(0.169) 0.500***(0.165) 
Sigma2_e 0.004***(0.000) 0.004***(0.000) 0.004***(0.000) 0.004***(0.000) 0.004***(0.000) 0.004***(0.000) 
W*SD − 0.304***(0.115) − 0.228(0.142) − 0.245*(0.140) − 0.607***(0.230) − 0.457(0.284) − 0.490*(0.281) 
L.pm  0.203**(0.081) 0.328***(0.086)  0.203**(0.081) 0.328***(0.086) 
W*L.pm   − 2.322***(0.627)   − 2.322***(0.627) 
Control Variable Yes Yes Yes Yes Yes Yes 

Note: *, **, *** represent significance at 10%, 5%, and 1% level, respectively. 

Fig. 5. Same as Fig. 4 but for ERS.  
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coefficient of ERI is − 0.66. The correlations between NOX ERI and PM2.5 
are relatively high with R values of − 0.72, − 0.76, − 0.82, and − 0.79 in 
central, southern, eastern and northwestern regions, respectively. 

Fig. 5 shows the temporal correlation between SO2 ERS and PM2.5, 
and the R values of each province are all list in Table S5. In general, the 
temporal correlation is high in China, with an average of − 0.73 and 
83.9% of the provinces have a correlation coefficient less than − 0.6. 
Regionally, the temporal correlation of ERS is higher in Central China 
with a mean value of − 0.82, indicating that high governance mitigates 
high pollution. Among them, the performance of Henan remains stable 
in the first and second lagging periods (− 0.81 and − 0.82, p < 0.01), 
while the correlation of Hubei Province decreases at first lag, but also 
remains stable at second lag (− 0.76 and − 0.72, p < 0.01). In addition, 
most provinces in North China showed a high negative correlation 
(− 0.73 on average), and the environmental synergies remained stable 
over the two-year period. The validity decreased only in Hebei in the 
second year but still improved to the original level in the third year 
(− 0.69, − 0.60, and − 0.62, p < 0.01). 

Consistent with the ERI performance of SD, three provinces in 
Northeast China showed a positive correlation in the current year and 
one year lagged, respectively. It shows that the environmental regula-
tion of SD may be inadequate by the regional government, and the 
environmental coordination between governments should be paid more 
attention to. The same problem has occurred in the Beijing-Tianjin- 
Hebei city cluster, which borders the northeastern region, as well as in 
the provinces of Shanxi and Shandong. These areas are geographically 
close to each other and have a relatively consistent environmental 
synergy. Fig. 5 shows that in addition to the northern region, the regions 
with positive co-correlation of SD environment all have geographical 
neighborhood characteristics. For example, starting from Chongqing, 
through Hubei, Jiangxi, Fujian, Guangdong to Hainan, as well as Tibet 
and its neighboring Qinghai region, all have such characteristics. The 
reason is that SD has the characteristics of spatial overflow and can flow 
between regions. Therefore, if the local environmental governance 
cannot be coordinated with the governments of the surrounding areas, 
the fundamental problems cannot be solved (Zhou et al., 2021). 

The NOX ERS with PM2.5 is better than that of SD globally, but at the 
same time, it does not have the obvious geographic proximity charac-
teristics of SD. In general, the time correlation of Northwest, North, 
Central, and East China is relatively high, which is − 0.80, − 0.65, − 0.77, 
and − 0.83, respectively. The high level of environmental coordination 
in these regions is accompanied by the mitigation of pollution. In 
contrast, the environmental co-correlation in Southwest China is rela-
tively low, at − 0.55. 

In general, environmental regulation in most regions has achieved 
some effectiveness, and the pattern of collaborative governance in some 
regions has sprouted, but more substantial progress is lacking. Thus, the 
spatial relationship between ERI (ERS) and PM2.5 was empirically 
examined after considering the spatial spillover effect of PM2.5. 

3.3. Synergistic variations of PM2.5 and environmental management 

3.3.1. Spatial autocorrelation analysis 
The global Moran index was calculated based on the geographical 

distance weight matrix, which was used to explore the spatial autocor-
relation of PM2.5 in China from 2004 to 2017, and the analysis results are 
shown in Table 2. Moran’s I values were all positive (p < 0.01), which 
indicates that the PM2.5 distribution in different provinces had a high 
spatial correlation. Therefore, the spatial spillover effect must be 
considered when exploring the impact of ERI (ERS) on PM2.5 in China. 

3.3.2. Synergistic relationship among PM2.5-ERI-ERS 
Table 3 shows the estimated result of the SO2 ERI and ERS on PM2.5. 

The first column is the regression results of SDM, the second column is 
the regression results of dynamic SDM with time lag items added, and 
the third column is the regression results of dynamic SDM with a time 

lag and spatiotemporal lag term added. It can be found that the envi-
ronmental regulation intensity of SO2 is negatively correlated with 
PM2.5, and it is significant at the level of 10%. However, endogeneity is 
also an important issue that we need to pay attention to, and adding a 
time lag term can alleviate the endogeneity problem, which leads to 
more robust estimation results. Therefore, on the basis of the SDM, the 
lagged term of the explained variable is added into the explanatory 
variable, and the unconditional maximum likelihood estimation (MLE) 
is used to regression the model (Elhorst, 2014b). Furthermore, the 
Hausman test was performed on the model, and the statistical results 
rejected the original hypothesis of random effects, so the fixed-effects 
SDM should be chosen. 

Table 3 shows that the coefficient results of the dynamic spatial panel 
model are similar to those of the static spatial panel in terms of symbol 
and significance, showing good robustness. In addition, the spatial 
spillover coefficient ρ is lower, which indicates that the static model 
overestimates the effect of explanatory variables. The regression results 
of the dynamic SDM with time lag are shown in the third column of 
Table 3. The coefficient of ERI (ERS) of SO2 is significantly negative (p <
0.01), indicating that the SO2 ERI (ERS) is conducive to the reduction of 
PM2.5. The estimated coefficient of PM2.5 with a 1-year lag is signifi-
cantly positive, indicating that there is an environmental background 
effect of regional PM2.5, and the time dependence significantly increases 
the concentration of PM2.5 in China (Zhang et al., 2020). 

The regression results of the temporal lag term and the spatiotem-
poral lag term are shown in column 4 of Table 3. Among them, ρ is 
greater than 0 (p < 0.01), indicating that PM2.5 in the province has an 
obvious spatial spillover effect, and the area with more PM2.5 will 
aggravate the PM2.5 in the surrounding areas (Chen et al., 2019). Not 
only that, it will also force local provinces to strengthen the enforcement 
of regulations, thus reducing the concentration of PM2.5. The negative 
coefficient of SO2 environmental regulation indicates that enhanced 
environmental regulation is beneficial to mitigate PM2.5 concentrations. 
In addition, the negative coefficient of the spatial lag term of ER 
(W*SO2) indicates that the ER in neighboring areas has a mitigating 
effect on PM2.5 in the region. The results of the control variables 
(Table S6) show that the coefficients of per capita GDP and FDI are both 
significantly negative (p < 0.01), indicating that these two variables 
significantly alleviate the concentration of PM2.5. On the one hand, the 
rapid economic development in China has brought more green tech-
nology innovation and equipment sharing, which helps to reduce 
emissions. On the other hand, the adjustment of industrial structure 
caused by foreign investment has resulted in the transfer of heavily 
polluting industries (Feng and Wang, 2020). 

The coefficient of SD environmental regulation is negative under all 
three models (p < 0.01). It shows that the higher SD ERI, the lower the 
regional PM2.5 concentration. Moreover, Table 4 shows the regression 
coefficient of the dynamic SDM of ERS is − 0.096, that is, after con-
trolling for time and spatiotemporal lag terms, when the environmental 
synergy of SD increases by 1 unit, local pollution emissions will decrease 
by 0.096 units. The low degree of ERS between local governments will 
lead to little joint treatment effect, which is not conducive to the 
improvement of environmental pollution. 

Table 5 shows the regression results of NOX ERI (ERS) and PM2.5. The 
estimated coefficient of PM2.5 lagged by one period remains significantly 
positive, confirming the existence of a time-lagged effect of PM2.5. 
Moreover, the estimated coefficient of ERI (ERS) of NOX is − 0.039 
(− 0.078), which is significantly negative (p < 0.05), indicating that ER 
of NOX is conducive to reducing PM2.5 concentration. For each unit in-
crease in NOX ERI (ERS), PM2.5 concentration decreased by 0.039 
(0.078) units. The environmental regulation coefficients in the dynamic 
SDM of SO2, SD, and NOX are − 0.020(− 0.041), − 0.048(− 0.096), and 
− 0.039(− 0.078), respectively, indicating that the ER of SD is more 
conducive to the reduction of PM2.5 compared with the other two pol-
lutants. Environmental regulation of SD and inter-regional joint man-
agement should receive attention from all regions. 
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3.3.3. Effects of spatial decomposition 
The dynamic SDM model can be decomposed into direct, indirect, 

and total effects (Fig. 6). Among them, the direct effect measures the 
effect of each unit change in the explanatory variable on the explained 
variable in the region. The indirect effect (spillover effect) measures the 
impact of each unit change in the explanatory variable on the explained 
variables in other relevant areas. In addition, the total effect is the sum 
of the direct and indirect effects, indicating the overall effect of changes 
in the explanatory variables on the explained variables (Qiang et al., 
2020). 

The estimation results of parameters showed that the direct effects of 
SO2, SD, and NOX ERI were negative both in the short and long term, 
indicating that the effect of previous regulation of various pollutants on 
the current PM2.5 concentration was negative. In addition, the intensity 
of early-period environmental regulation will also express a negative 
spatial spillover effect on PM2.5 in the surrounding areas. The direct 
(indirect) effects of the environmental synergies of all pollutants are also 
negative, indicating that the synergies between different regions are not 
only beneficial to the development of the region in the current period, 
but also have a long-term impact on the environmental quality of 
neighboring regions. Fig. 6 shows that the long-term effects of direct 
effects, indirect effects, and total utility are all greater than the short- 
term effects (absolute value), indicating that the ERI and ERS of each 
pollutant have a more far-reaching long-term impact on PM2.5. 

4. Conclusion and policy suggestion 

Atmospheric pollution seriously affected economic development, 
especially in China. However, due to the spatial spillover effect of PM2.5, 
the traditional administrative division becomes limited and thus the 
importance of joint air pollution control gradually emerges. The ERI 
(ERS) of SO2, SD, and NOX were used to quantitatively analyze the ef-
fects of intra-provincial governance and co-governance in China. 
Moreover, the spatial and temporal trends of ER of three pollutants and 
the impact of ERI (ERS) on PM2.5 from 2004 to 2017 were investigated. 
The results show that ERI (ERS) varies greatly among provinces, and 

most regions still lack the important awareness of ER. In addition, the 
ERI (ERS) of the three pollutants have the characteristics of spatial 
contiguity, which is highly consistent with the main administrative di-
vision in China. From the perspective of regional heterogeneity, the level 
of ERI tends to be higher in the east (11.26) and lower in the west (4.06). 
ER and PM2.5 are spatially and temporally correlated, and a lag effect 
exist. Furthermore, PM2.5 has spatial spillover characteristics. The 
environmental regulation in this region is not only conducive to the 
current local haze pollution situation but also improves the environ-
mental level of neighboring regions. When the environmental synergy of 
the three pollutants increased by 1 unit, PM2.5 was reduced by 0.04 (p <
0.05), 0.1 (p < 0.01), and 0.08 (p < 0.05) units. In general, the low 
degree of ERS between local governments will lead to a poor joint 
treatment effect, which is not conducive to the reduction of PM2.5. 

Air pollution control, especially PM2.5, has become the focus of 
environmental protection in China. The source analysis and control of 
air pollution is an important practical issue. All kinds of pollutants must 
be controlled collaboratively in order to maximize the benefits of 
pollution control. In addition, the top-level design of indicators and 
policies should be carried out by the country, further improve relevant 
standards and technical guidelines, and establish a collaborative control 
technology system. Local governments need to strengthen environ-
mental governance and expand the jurisdictional of environmental 
regulation. Collaborative regulatory consensus among geographically 
adjacent local governments should be promoted to avoid duplication of 
related infrastructure and waste of resources. On this basis, the gov-
ernment should formulate targeted environmental supervision measures 
according to the actual situation and characteristics of the specific re-
gion. Finally, joint prevention and control of air pollution should be 
carried out among regions to prevent and reduce urban air pollution as a 
whole. 
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d’économique 52 (3), 1165–1194. 

Yu, W., Ramanathan, R., Nath, P., 2017. Environmental pressures and performance: an 
analysis of the roles of environmental innovation strategy and marketing capability. 
Technol. Forecast. Soc. Change 117, 160–169. 

Zeng, D.Z., Zhao, L., 2009. Pollution havens and industrial agglomeration. J. Environ. 
Econ. Manag. 58 (2), 141–153. 

Zhang, M., Liu, X., Sun, X., Wang, W., 2020. The influence of multiple environmental 
regulations on haze pollution: evidence from China. Atmos. Pollut. Res. 11 (6), 
170–179. 

Zhang, X., Shi, M., Li, Y., Pang, R., Xiang, N., 2018. Correlating PM2. 5 concentrations 
with air pollutant emissions: a longitudinal study of the Beijing-Tianjin-Hebei 
region. J. Clean. Prod. 179, 103–113. 

Zheng, S., Pozzer, A., Cao, C.X., Lelieveld, J., 2015. Long-term (2001–2012) 
concentrations of fine particulate matter (PM2.5) and the impact on human health in 
Beijing, China. Atmos. Chem. Phys. 15 (10), 5715–5725. 

Zhou, Q., Zhong, S., Shi, T., Zhang, X., 2021. Environmental regulation and haze 
pollution: neighbor-companion or neighbor-beggar? Energy Pol. 151, 112183. 

X. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0959-6526(22)00084-1/sref55
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref55
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref55
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref56
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref56
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref56
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref57
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref57
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref57
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref58
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref58
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref58
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref59
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref59
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref60
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref60
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref60
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref61
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref61
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref61
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref62
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref62
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref62
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref63
http://refhub.elsevier.com/S0959-6526(22)00084-1/sref63

	Environmental regulation and synergistic effects of PM2.5 control in China
	1 Introduction
	2 Data and methods
	2.1 Datasets
	2.1.1 PM2.5 and emission data
	2.1.2 Other analysis data

	2.2 Methodology
	2.2.1 Environment regulation and synergism
	2.2.2 Temporal and spatial correlation
	2.2.3 Spatial autocorrelation test
	2.2.4 Dynamic SDM and decomposition effect
	2.2.5 Spatial weight matrix


	3 Results and discussions
	3.1 Spatiotemporal trends of ERI and ERS
	3.2 Relationship between PM2.5 and environment regulation
	3.2.1 Spatial relevance
	3.2.2 Temporal relevance

	3.3 Synergistic variations of PM2.5 and environmental management
	3.3.1 Spatial autocorrelation analysis
	3.3.2 Synergistic relationship among PM2.5-ERI-ERS
	3.3.3 Effects of spatial decomposition


	4 Conclusion and policy suggestion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


