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Abstract: Ground-level ozone (O3) is a well-known atmospheric pollutant aside from particulate
matter. China as a global populous country is facing serious surface O3 pollution. To detect the
complex spatiotemporal transformation of the population exposure to ambient O3 pollution in China
from 2005 to 2019, the Bayesian multi-stage spatiotemporal evolution hierarchy model was employed.
To insight the drivers of the population exposure to ambient O3 pollution in China, a Bayesian
spatiotemporal LASSO regression model (BST-LASSO-RM) and a spatiotemporal propensity score
matching (STPSM) were firstly applied; then, a spatiotemporal causal inference method integrating
the BST-LASSO-RM and STPSM was presented. The results show that the spatial pattern of the annual
population-weighted ground-level O3 (PWGLO3) concentrations, representing population exposure
to ambient O3, in China has transformed since 2014. Most regions (72.2%) experienced a decreasing
trend in PWGLO3 pollution in the early stage, but in the late stage, most areas (79.3%) underwent
an increasing trend. Some drivers on PWGLO3 concentrations have partial spatial spillover effects.
The PWGLO3 concentrations in a region can be driven by this region’s surrounding areas’ economic
factors, wind speed, and PWGLO3 concentrations. The major drivers with six local factors in
2005–2014 changed to five local factors and one spatial adjacent factor in 2015–2019. The driving of
the traffic and green factors have no spatial spillover effects. Three traffic factors showed a negative
driving effect in the early stage, but only one, bus ridership per capita (BRPC), retains the negative
driving effect in the late stage. The factor with the maximum driving contribution is BRPC in the early
stage, but PM2.5 pollution in the late stage, and the corresponding driving contribution is 17.57%.
Green area per capita and urban green coverage rates have positive driving effects. The driving
effects of the climate factors intensified from the early to the later stage.

Keywords: ground-level ozone; atmospheric remote sensing; Bayesian spatiotemporal LASSO
regression; spatiotemporal causal inference; spatiotemporal propensity score matching

1. Introduction

Ground-level ozone (GLO3) is a well-known major atmospheric pollutant threatening
human health, vegetation and biodiversity worldwide [1–3]. GLO3 is also an important
greenhouse gas contributing to climate change [4]. Significant increasing trends of annual
GLO3 concentrations occurred in most global urban areas from the 1990s, particularly from
2005 to 2014, and annual GLO3 concentrations increased at a fast rate in East Asia, North
America, and Europe [5]. China has established several air pollution control policies and
programs [6,7] since 2016. Consequently, the concentrations of most air pollutants, includ-
ing PM2.5, NO2 and SO2, of China have decreased since 2013, but GLO3 concentrations
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have shown an increasing trend [8]. GLO3 may have become the second most hazardous
pollutant after PM2.5 [9]. Lyu et al. [10] pointed out that the ratio of the population living
in regions with high PM2.5 pollution decreased from 2015 to 2021; however, this ratio
remained almost unchanged for the ozone and even increased.

Considering the complex GLO3 concentration problems in China, a deep understand-
ing of the spatiotemporal trends of O3 concentrations in China can provide helpful evidence
for environmental epidemiology and appropriate regional control strategies of GLO3. Some
researchers have investigated the spatiotemporal characteristics and influencing factors of
GLO3 in a specific city or a limited spatial region in a short-term period, mainly using the
in situ monitored O3 concentrations data. For instance, An et al. [11] explored the temporal
variations of O3 concentrations in Nanjing, Eastern China, and Wang et al. [12] studied
the spatial and temporal patterns of observed ground-level O3 concentrations in China.
The above research found O3 concentrations to be highest in summer and lowest in winter,
with significant diurnal variations. Zhang et al. [13] used the spatial–temporal kriging
model to analyze the daily maximum 8 h ozone concentration data from 55 air quality
monitoring stations in China’s Pearl River Delta Metropolitan Region in 2015, revealing
the O3 concentrations have a spatial autocorrelation that undergoes temporal migration
and conversion across the seasons. Tang et al. [14] and Gao et al. [15] underscored the
influence of anthropogenic emissions, particularly in urban areas, on ozone levels. Liu
et al. [16] suggested that weather patterns and regional interactions should be considered
when designing ozone mitigation strategies. Lyu et al. [17] demonstrated the use of ma-
chine learning algorithms for predicting ozone levels, showing promising results. These
findings emphasize the need for region-specific and season-specific strategies to effectively
address the issue of ozone pollution in China. Some scholars have explored the space-time
variations of the O3 concentrations across China using simple descriptive statistical meth-
ods based on in situ monitored air quality data. Yang et al. [18], Xue et al. [19], and Li
et al. [20] explored the temporal variation and spatial distribution of GLO3 concentrations
in China during 2013–2017, 2005–2017, and 2015–2020, respectively. Based on multi-
source data and machine learning, Liu et al. [21] and Wei et al. [22] estimated and investi-
gated briefly the temporal and spatial trends of the GLO3 concentrations in China during
2005–2017 and 2013–2020. The spatial distribution of the population was not considered
in the above research. However, the health exposure risk of GLO3 concentrations is deter-
mined by GLO3 concentrations and population spatial distribution jointly. Given this, our
study focused on the population exposure to the GLO3 concentrations, instead of semplice
GLO3 concentrations.

The formation regime or driver of GLO3 concentrations is also a vital issue. A large
number of studies have investigated the complicated relationship between GLO3 pro-
duction and main precursors, volatile organic compounds (VOC) and NOx, from the
perspective of atmospheric physicochemistry [23–27]. Some scholars have researched the
spatiotemporal characteristics of GLO3 formation regime of local areas of China, such as
Beijing [28–30] and Shanghai [31,32]. Li et al. [20] and Lu et al. [33] studied the spatiotem-
poral variations of GLO3 formation regimes across China. Although it is well known that
meteorological factors have an influence on O3 concentrations, the specific influencing
mechanism still needs to be further explored. The meteorological factors’ influencing effects
on GLO3 concentrations were studied in some articles [34–38]. These studies all found that
temperature was the dominant driver of GLO3 concentrations at the annual time scale.

Most of the existing research has focused mainly on the pure GLO3 concentrations
without considering the population spatial distribution, and the study phases of these
studies were within a short time range. Additionally, to our knowledge, few studies have
investigated the simultaneous influence of natural and anthropogenic factors on population
exposure to GLO3 concentrations across China. Given this, our paper utilised the advanced
Bayesian spatiotemporal hierarchy model to investigate transitions of spatial distributions
of the annual PWGLO3 concentrations over China in recent 15 years, and then presented a
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spatiotemporal causal inference method for the multiple-factor analysis scenario, which
was used to identify the potential drivers of population exposure to GLO3 concentrations.

2. Methods
2.1. Variable and Data
2.1.1. Population Exposure to GLO3

The outcome variable in this study is population exposure to GLO3 concentrations.
In this study, population exposure to GLO3 concentrations is represented by the annual
population-weighted GLO3 (PWGLO3) concentrations calculated by the grid data of the
GLO3 concentrations and population distribution by the following formula,

PWGLO3,it =
∑Iik

k=1 GLO3,ikt ∗ Popikt

∑Iik
k=1 Popikt

(1)

where GLO3,ikt and Popikt represent the GLO3 concentrations and distributed population
count of the kth grid with spatial resolution of 10 km× 10 km in the ith prefecture region.
Iik is the total number of the 10 km grid of across the ith prefecture region. The grid data
of the GLO3 concentrations at a spatial resolution of 10 km× 10 km was collected from
the CHAP dataset (https://weijing-rs.github.io/product.html (accessed on 6 June 2022)),
which was estimated using the extended space–time extra-trees (STET) model [21] from
big data including ground-based observations, remote sensing products, atmospheric
reanalysis, and emission inventory [21]. The GLO3 estimates are highly consistent with
the ground-based measurements with R2 = 0.96 and the root-mean-square error (RMSE) of
8.64 µg/m3. Additionally, the GLO3 estimates for the whole of China are highly consistent
with surface measurements (R2 = 0.87), and the values of the mean RMSE, the mean
absolute error (MAE), and the mean relative error (MRE) over the entire domain, were
17.10 µg/m3, 11.29 µg/m3, and 18.38%, respectively [21]. The grid data of the population
density with the spatial resolution of 1 km× 1 km were collected from an open database,
WorldPop data (https://www.worldpop.org/ (accessed on 6 June 2022)). In consideration
of the inconformity between WorldPop data and those reported in the statistical yearbook,
the WorldPop data employed a ratio coefficient method to perform the correction based
on the population data of the statistical yearbook. The population weight of each grid can
be calculated by the total population of the grid divided by the total population of the
prefecture-level region covering the spatial grid. Then, the PWGLO3 concentrations of each
prefecture-level region may be calculated with the GLO3 concentrations multiplying by the
population weight and zonal accumulation.

2.1.2. Influencing Factors

The influencing factors of the PWGLO3 concentrations mainly came from three as-
pects [39] illustrated by Figure 1: social economics, traffic development, and natural
environment. Each category driver contains a certain number of proxy variables. The social
economics involved 7 proxy variables: population density (PD), gross domestic product
per capita (GDPPC), tertiary industry proportion (TIP), real estate investment per capita
(REIPC), industrial electricity consumption per capita (IECPC), electricity consumption of
residents per capita (ECRPC), and total social electricity consumption per capita (TSECPC).
It should be noted that, in China, the tertiary industry mainly refers to the service industry,
while the secondary industry refers to the mining, manufacturing, electricity (heating
power, fuel gas, and water) production and supply, and construction industries. The traffic
development included 3 proxy variables: bus ridership per capita (BRPC), number of taxis
per capita (NTPC), and number of buses per capita (NBPC). The data for the above 10 proxy
variables were collected from the China city statistical yearbook in corresponding years.
The natural environment contained 9 proxy variables: urban green coverage rate (UGCR),
urban construction area per capita (UCAPC), ratio of urban construction area (RUCA),
green area per capita (GAPC), difference of summer average temperature from that in

https://weijing-rs.github.io/product.html
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2004 (DSAT), annual PM2.5 concentrations (APMC), annual cumulative duration of sun-
shine (ACDS), annual average wind speed (AAWS), and annual average relative humidity
(AARH). It should be noted that the DSAT was selected in order to underline the rising tem-
perature. As previously mentioned, VOC and NOx, the emissions of human activities that
mainly include industry and traffic, are the common precursors of ozone. The three traffic
factors in this paper include public traffic, bus, and taxi. Additionally, the factor pertaining
to industry emissions lacked data availability. Consequently, the APMC, as a proxy variable
of the emissions of the industry and private cars, was absorbed. Moreover, UGCR, UCAPC,
RUCA, and GAPC, were collected from the China city statistical yearbook in corresponding
years (https://data.cnki.net/trade/yearbook/Single/N2022040095?zcode=Z024 (accessed
on 6 June 2022)). The raw grid data of annual average PM2.5 and temperature with a
spatial resolution of 10 km× 10 km were downloaded from the National Earth System
Science Data Center (http://www.geodata.cn/data/ (accessed on 6 June 2022)). The data
of the three climate factors, ACDS, AAWS, and AARH, were collected from the China
Meteorological Data Service Centre (http://data.cma.cn/en (accessed on 6 June 2022)).
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2.2. Bayesian Multi-Stage Spatiotemporal Evolution Hierarchy Model (BMSSTEHM)

The BMSSTEHM presented by Li et al. [40] was employed to explore the spatiotem-
poral trends of the PWGLO3 concentrations from 2005 to 2019 in mainland China. The
BMSSTEHM integrated the BSTHM [41] and piecewise regression model [42] and can
investigate non-linear local trends by capturing the self-adaptive turning points of local
trends and considering spatial correlations and heterogeneity. The mathematical forms of
the BMSSTEHM are as follows:

cit ∼ Normal
(

µit, σ2
c

)
(2)

µit = α + Si + (b0t + vt) + b1it + b2i(t−a1i) ∗ Gt,a1i + εi,t (3)

Gt,a1i =
1

1 + exp(−λ(t− a1i))
(4)

a1i ∼ Uniform(3, T− 4) (5)

k1i = b0 + b1i (6)

k2i = b0 + b1i + b2i (7)

where cit represents the observed annual average PWGLO3 concentrations of the i-th
prefecture-level region at year t. µit and σ2

c represent the mean and variance of the likelihood
distribution. α is an intercept term. Si is the parameter of spatial fixed effect; (b0t + vt)
describes overall trends containing a linear b0 and non-linear tendency vt, whose prior
distribution adapted Gaussian distribution; b1i, b2i are local piecewise linear regression
coefficients; a1i is the first turning point of the i-th prefecture-level region. If there is one
turning point, the spatiotemporal can be divided into the first (early) and second (later)
stages. The corresponding linear variation parameters are k1i and k2i. Gt,a1i is the logistic
function, as described in Equation (3). λ is a shape parameter that is generally assigned
to a value greater than 10. T is the number of time nodes (T = 15 in this study). Linear
regression is necessary only when there are more than two sample values, namely at least
three sample values. a1i is therefore limited to between 3 and T − 4. Then, it can guarantee
that there are at least three sample values on both linear sides. a1i is assigned to the prior
uniform distribution and can be self-adaptively estimated according to the sample data.
The term εit is a Gaussian noise error whose prior distribution is assigned as a normal
distribution N

(
0, σ2

ε

)
. The spatial relative magnitude of the PWGLO3 concentrations of

the i-th prefecture-level region in the two stages, denoted as SR1i and SR2i, quantifying the
PWGLO3 polluted level relative to the global overall level can be estimated. SR1i and SR2i
can be expressed as follows:

SR1i =
µ̂i,t∗1

1
M ∑M

i=1 µ̂i,t∗1

(8)

SR2i =
µ̂i,t∗2

1
M ∑M

i=1 µ̂i,t∗2

(9)

µ̂i,t∗1
= α + Si + b0t∗1 + b1it∗1 + ε1 (10)

µ̂i,t∗2
= α + Si + b0t∗2 + b1it∗2 + b2i(t∗2−a1i) ∗ Gt,a1i + ε2 (11)

t∗1 =
1 + a1i

2
(12)
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t∗2 =
a1i + T

2
(13)

where t*
1 and t∗2 represent the temporal centre points of the early and later stages, respec-

tively. In this study, M is the number of prefecture-level regions of mainland China, which
is 338. The parameters, Si, b1i, b2i, and a1i, are all considered simultaneously spatial struc-
tured and unstructured effects by assigning the prior of the BYM model [43]. Therefore,
the ‘Queen’ spatial adjacency structure sharing a common edge or a common point was
adopted in this paper. ε1 and ε2 represent Gaussian error terms.

The Bayesian statistics calculations in this paper were implemented by WinBUGS
14.0 [44] based on the Markov chain Monte Carlo (MCMC) algorithm. The number of
iterations was set to 200,000, 180,000 were the burn-in period, and 20,000 were the sampling
number of the posterior distribution of parameters. The convergence of the Bayesian
inferences in this study was monitored by standard autocorrelation plots and trace plots.

2.3. Bayesian Spatiotemporal LASSO Regression Model (BST-LASSO-RM)

For spatiotemporal process, the spatial endogenous and exogenous interaction effects
should be considered [45–47]. Considering possible multicollinearity problems due to the
no little number of explanatory variables, this study presented a BST-LASSO-RM based on
the Bayesian LASSO regression model [48] to overcome the problem of multicollinearity,
considering the spatial endogenous and exogenous interaction effects. The regression
parameters of the BST-LASSO-RM were assigned to Laplace priors [49]. The BST-LASSO-
RM can acquire a more stable estimation and automatically provide interval estimates
for all parameters, including the error variance [48]. The mathematical structure of the
BST-LASSO-RM can be expressed as follows:

yit ∼ Normal
(

µit, σ2
y

)
(14)

µit = φ + ρ(W iµit) + +∑k
j=1 β jxj,i,t + ∑k

j=1 ϑj(Wixj,i,t) + ξit (15)

β̂ = argminβ(µ− ρWµ− βX− ϑWX)T(µ− ρWµ− βX− ϑWX) + λβ‖β‖1 (16)

ρ̂ = argminρ(µ− ρWµ− βX− ϑWX)T(µ− ρWµ− βX− ϑWX) + λρ‖ρ‖1 (17)

ϑ̂ = argminϑ(µ− ρWµ− βX− ϑWX)T(µ− ρWµ− βX− ϑWX) + λϑ‖ϑ‖1 (18)

β|λβ, σ2
y ∼

k

∏
j=1

λβ

2σy
exp(−

λβ

∣∣β j
∣∣

σy
) (19)

ρ|λρ, σ2
y ∼

λρ

2σy
exp(−

λρ|ρ|
σy

) (20)

ϑ|λϑ, σ2
y ∼

k

∏
j=1

λϑ

2σy
exp(−

λϑ

∣∣ϑj
∣∣

σy
) (21)

where µit and σ2
y represent the mean and variance of the normal likelihood distribution

of the observed PWGLO3 concentrations. φ is an intercept term. Wi presents the spatial
adjacent matrix of the i-th prefecture-level city and adopts Queen contiguity that includes
common vertices and edges. Wiµit and Wixj,i,t represent the spatial adjacent average
PWGLO3 concentrations and the j-th explaining variable around the i-th prefecture-level
region in the t-th year. ρ is the parameter of the spatial endogenous effect of the annual
PWGLO3 concentrations, Wiµit. β j is the regression parameters of local influencing factors,
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xj,i,t., and ϑj is the parameter of spatial exogenous effects of spatial adjacent influencing
factors, Wixj,i,t; k is the number of the explanatory variables, ξit represents the random
error, β̂, ρ̂, and ϑ̂ represent the estimate of the regression parameters β, ρ and ϑ. µ and X
are the matrices of µit and xj,i,t, respectively. λβ, λρ, and λϑ are the shrinkage parameters.
The Bayesian calculations of the BST-LASSO-RM inferences were implemented mainly by
the Python package, PyMC3.

2.4. A Spatiotemporal Propensity Score Matching (STPSM) Method

Similarly, to take into account the spatial endogenous and exogenous interaction
effects, a STPSM method was presented based on the PSM method [50] in this study. This
method can be adopted to recognise the causality between the PWGLO3 concentrations,
Y, and the spatial adjacent PWGLO3 concentrations, WY, the local and spatial adjacent
influencing factors, X and WX. Matched sets of treated and untreated groups that share a
similar value of the propensity score can be formed by the STPSM, and then the average
treatment effect for the treated, E[Y(1)−Y(0)|Z = 1] is allowed to be estimated. The
propensity score, Pr

(
Zi = 1

∣∣(Wiyi, xi,1, . . . , xi,k, Wixi,1, . . . , Wixi,k
))

, is the probability of
treatment assignment, Zi = 1, conditional on other observed covariates, Xi. The propensity
score of one factor can be obtained by logistic regression as follows:

Pr
(
Zi = 1

∣∣(Wiyi, xi,1, . . . , xi,k, Wixi,1, . . . , Wixi,k
))

=
1

1 + exp
(

ρWiyi + ∑K
k=1(−θTxi,k − ϑTWixi,k)

) (22)

Considering that all the variations in this study are continuous numeric variables, the
sample will be divided into treated and untreated groups according to whether the target
variate is greater than its median. STPSM is then employed to implement 1:1 matching,
in which pairs of treated and untreated groups are formed with similar values of the
propensity score.

2.5. A Spatiotemporal Causal Inference Method

This study proposed a method for recognizing spatiotemporal causality and cause–
effect, integrating STPSM and BST-LASSO-RM. As shown in Figure 2, this method consists
of three steps. First, the BST-LASSO-RM was employed to recognise the significant corre-
lated, Λ(1), or not significant correlated variables, Λ(0), with the outcome variable, Y, from
all independent variables, X, WY, and WX.

yit =
Yit −Ymean

Ystd
(23)

yit ∼ Normal
(

µit, σ2
Y

)
(24)

µit = ρWiµit + ∑K
j=1 β jxj,i,t + ∑K

j=1 ϑjWixj,i,t (25)

where Yi and yi are the observed value and Z standardized score, Ymean and Ystd are the
corresponding mean and standard deviation. Specifically, the representations of the Wiµit,
xj,i,t and Wixj,i,t are the same as the above. And the three type of variables can be identified
as the significant correlated variable if the posterior probability of the corresponding
regression coefficients, P(ρ > 0|Data) or P(ρ < 0|Data), P(βj > 0|Data) or P(βj|Data) < 0,
P(ϑj > 0|Data) or P(ϑj|Data) < 0, are greater than 1 − α, e.g., 0.95, and vice versa.
Second, the STPSM method was used to recognise the causality of the significant correlated
independent variables, Λ(1) including WY, X, and WX, to outcome variable, Y. Let us
suppose there are K(K ≤ k) significant correlated variables, Λ(1)

j (j = 1, 2, . . . , K), and then

follow the steps below to recognise the causality of each of the Λ
(1)
j (j = 1, 2, . . . , K):
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(i) Let Λ(1)
1,i,t = 1 if Λ(1)

1,i,t ≥ Mean
(

Λ
(1)
1,i,t

)
, Λ(1)

1 = 0 if Λ(1)
1,i,t < Mean

(
Λ

(1)
1,i,t

)
;

(ii) Then, the observed outcome, Yit, can be divided into two groups, they can be called

treatment and control group, according to the value of Λ
(1)
1,i,t, i.e., Λ

(1)
1,i,t = 1 and

Λ
(1)
1,i,t = 0;

(iii) Calculate propensity scores PS
Λ(1)

1,i,t=1
= f

(
Λ(1)

2,i,t, Λ(1)
3,i,t, . . . , Λ(1)

k−1,i,t, Λ(1)
k,i,t

)
;

(iv) Using STPSM to match the sample data between the treatment and control groups;
(v) Adopt t-test to identify the significant difference between the treatment and control

groups and consequently to recognise the causality of Λ
(1)
1 to Y;

(vi) Repeat the above five steps, (i)–(v), to recognise the causality of other significant

correlated independent variables, Λ
(1)
2 , . . . , Λ

(1)
M .

The identified causal and not causal variables were denoted as Λ
(11)
j (j = 1, 2, . . . , M ≤ K)

and Λ
(10)
l (l = 1, 2, . . . , K−M), it identifies that all significant correlated influencing factors

are causal factors to explained variable, Y, if K −M = 0. Through the above steps, possible
three types of causal effects, spatial endogenous causal effect from WY, spatial exogenous effect
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from WX, and local variational causal effect from X, can be identified. Third, again employing
the BST-LASSO-RM to estimate the quantitative cause-effects, δ

Λ
(11)
j

:

Y = ψ + ∑K
j δ

Λ
(11)
j

Λ
(11)
j + ε (26)

3. Results
3.1. Descriptive Statistics

Overall, Chinese ground-level O3 concentrations maintain a slight downward trend
from 2005 to 2014, but an increasing tendency arose after 2014. The median of ground-level
O3 annual concentrations decreased from 82.73 in 2005 to 81.57 µg/m3 in 2014, but increased
to 87.84 µg/m3 in 2019. The PWGLO3 annual concentrations maintained relatively steady
from 2005 (81.80 µg/m3) to 2014 (81.06 µg/m3), an increasing trend occurred from 2014 to
2019 (89.92 µg/m3). The heterogeneity of the PWGLO3 concentrations at the prefectural
level in China showed an overall rising trend. The corresponding coefficient of variation
(standard deviation divided by mean) increased from 14.16% in 2005 to 15.60% in 2014,
and to 17.48% in 2019. Figure S1 shows the temporal series of the spatial distribution
of PWGLO3 annual concentrations in mainland China from 2005 to 2019. This reveals
that the spatial pattern of the PWGLO3 annual concentrations in mainland China has
changed since 2014. The number of prefecture-level regions, with the annual PWGLO3
concentrations greater than 80 µg/m3, increased from 172 in 2014 to 244 in 2019. The
PWGLO3 concentrations in the North China Plain region have become even more serious
since 2014. In other words, different spatial structures of the PWGLO3 concentrations were
formed during 2005–2014 and 2015–2019.

3.2. The Spatial Pattern and Its Transformation of the PWGLO3

The spatiotemporal process can be generally divided into two phases called early
and late stages. The overall spatial distributions of the PWGLO3 concentrations in the
two phases can be identified by the BMSSTEHM (Figure 3). The results show that the
overall spatial pattern of the PWGLO3 concentrations transformed from the early to late
stage. Specifically, the spatial distribution of the PWGLO3 concentrations in the early stage
is disperser than that in the late stage. The high PWGLO3 polluted regions transferred
from the eastern and southern coastal areas in the early stage into the northern and North
China Plain regions, including Hebei, Shanxi, Shandong, Henan, Jiangsu, and Anhui, in
the late stage. The composition of the number of prefecture-level regions with the five
classifications of the PWGLO3 levels changed between the two stages. The numbers of the
high PWGLO3 polluted prefecture-level regions with spatial relative magnitude (SRM) of
1.05~1.20 and greater than 1.20 changed from 110 (32.5%) and 13 (3.8%) in the early stage to
94 (27.8%) and 68 (20.1%) in the late stage. The number of the medium PWGLO3 polluted
prefecture-level regions decreased from 96 (28.4%) in the early stage to 64 (18.9%) in the
late stage. The number of the lightly PWGLO3 polluted prefecture-level regions with SRM
of less than 0.95 remained stable during the study period, 2005–2019.

Furthermore, the SRM of PWGLO3 concentrations over the southeast coast areas of
China decreased from 1.05~1.20 in the early stage to less than 1.05 in the late stage, while
that over the North China Plain regions increased to greater than 1.20. The PWGLO3
concentrations SRM over the northern regions, such as Shanxi, Inner Mongolia, Gansu and
Ningxia, increased from less than 1.05 in the early stage to 1.05~1.20 and greater than 1.20
in the late stage.



Remote Sens. 2023, 15, 4871 10 of 21
Remote Sens. 2023, 15, x FOR PEER REVIEW  11  of  22 
 

 

 

Figure 3. The overall spatial pattern of the  𝑃𝑊𝐺𝐿𝑂ଷ  concentrations in the early stage (A) and late-

stage (B) and the transformation (C) of the composition of the five classes of  𝑃𝑊𝐺𝐿𝑂ଷ  levels be-

tween the two stages. 

3.3. The Local Trends of the 𝑃𝑊𝐺𝐿𝑂ଷ Concentrations at the Sub‐Provincial Level 

The annual change in the  𝑃𝑊𝐺𝐿𝑂ଷ  concentrations in the two stages at the prefecture 

level can also be estimated by the parameters,  𝑏ଵ  and  𝑏ଵ  𝑏ଶ, of the BMSSTEHM. Re-

search shows that the  𝐺𝐿𝑂ଷ  production is a photochemical oxidation process determined 

highly  by meteorological  conditions  and  precursors,  such  as  VOC  and  𝑁𝑂௫ .  Conse-

quently, variations in the annual mean  𝑃𝑊𝐺𝐿𝑂ଷ  concentrations could be modulated by 

many factors, especially climate factors, such as air temperature and sun radiation, which 

can elevate or lower annual mean  𝐺𝐿𝑂ଷ  concentrations. To validate the reliability of the 

annual temporal trends estimated by the BMSSTEHM, the scatters and BMSSTEHM fitted 

polylines of the annual  𝑃𝑊𝐺𝐿𝑂ଷ  concentrations in the example of 12 prefecture-level re-

gions illustrated in Figure 4. The 12 prefecture-level regions were randomly selected while 

ensuring coverage in all directions of China. The results show that the fitted polylines can 
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the two stages.

3.3. The Local Trends of the PWGLO3 Concentrations at the Sub-Provincial Level

The annual change in the PWGLO3 concentrations in the two stages at the prefecture
level can also be estimated by the parameters, b1i and b1i + b2i, of the BMSSTEHM. Research
shows that the GLO3 production is a photochemical oxidation process determined highly
by meteorological conditions and precursors, such as VOC and NOx. Consequently, varia-
tions in the annual mean PWGLO3 concentrations could be modulated by many factors,
especially climate factors, such as air temperature and sun radiation, which can elevate or
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lower annual mean GLO3 concentrations. To validate the reliability of the annual temporal
trends estimated by the BMSSTEHM, the scatters and BMSSTEHM fitted polylines of the
annual PWGLO3 concentrations in the example of 12 prefecture-level regions illustrated in
Figure 4. The 12 prefecture-level regions were randomly selected while ensuring coverage
in all directions of China. The results show that the fitted polylines can capture different
linear trends in the two stages, although the annual PWGLO3 concentrations in some years
were saltatory or abnormal, possibly due to unstable climate factors. It should also be noted
that the parameters of the BMSSTEHM, b1i and b1i + b2i, measured the average annual
change within the corresponding two stages; thus, the mutations in some years had little
influence on the two parameters.
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Figure 5 illustrates the local trends of the PWGLO3 concentrations in the early stages.
Generally, most prefecture-level regions (72.2%) experienced a decreased local trend of the
PWGLO3 concentrations in the early stages. The corresponding median, lower, and upper
quartiles of the annual change are −0.36, −0.53, and −0.19 µg/m3 per year. The other
27.8% of the prefecture-level regions are distributed dispersedly across China’s mainland.
The median, lower, and upper quartiles of the annual increasing changes are 0.20, 0.08, and
0.64 µg/m3 per year. Some sub-provincial regions located in Guangxi, Guangdong, and
Tibet possessed high PWGLO3 polluted levels and increased local trends concurrently in
the early stage.
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Figure 5. The local annual change of the PWGLO3 concentrations in China at the sub-provincial scale
in the early stage.

In the late stage, the spatial pattern of the local trends of the PWGLO3 concentrations
formed a distinct spatial structure (Figure 6). The PWGLO3 concentrations in the most
sub-provincial areas (79.3%) showed an increased trend. In particular, some cities (dark red
coloured areas in Figure 6) of central China, such as Ningxia, Shanxi, Henan, Anhui, and
south Gansu, experienced a strong increased trend of greater than 4.00 µg/m3 per year.
The median, lower, and upper quartiles of all the prefecture-level regions with increasing
local trends are 2.82, 1.19, and 4.38 µg/m3 per year. The local trends of the areas located
in Tibet, Xinjiang, Guangxi, and Guangdong converted from upward in the early stage to
downward trend in the late stage.
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Figure 6. The local annual change in the PWGLO3 concentrations of China at a sub-provincial scale
in the late stage.

3.4. Drivers of the PWGLO3 Concentrations

First, the BST-LASSO-RM presented in this paper was employed to assess the signifi-
cance of the correlation between the PWGLO3 concentrations and the 19 local independent
variables (PD, GDPPC, TIP, REIPC, IECPC, ECRPC, TSECPC, BRPC, NTPC, NBPC, UGCR,
GAPC, UCAPC, RUCA, DSAT, APMC, ACDS, AAWS, and AARH) and 20 correspond-
ing spatial adjacent variables (W·PWGLO3 and the other 19 spatial adjacent variables,
e.g., W·PD, W·GDPPC, etc.) in the two stages, 2005–2014 and 2015–2019. According to
the results estimated by the BST-LASSO-RM, 13 local variables (GDPPC, TIP, ECRPC,
TSECPC, BRPC, NTPC, NBPC, GAPC, DSAT, APMC, ACDS, AAWS, and AARH) and
4 spatial adjacent variables (W·PWGLO3, W·GDPPC, W·TSECPC, and W·AAWS) were
significantly associated with the PWGLO3 concentrations in 2005–2014. In the period of
2015–2019, the significant influence pattern changed to 13 local variables (GDPPC, TIP,
ECRPC, TSECPC, BRPC, NTPC, NBPC, UGCR, DSAT, APMC, ACDS, AAWS, and AARH)
and 7 spatial adjacent variables (W·PWGLO3, W·GDPPC, W·TIP, W·ECRPC, W·TSECPC,
W·APMC, W·AAWS), which are significant.

Secondly, recognising the causality of the significant influence factors on the PWGLO3
concentrations. As mentioned in Section 2, the STPSM method was adopted to recognise
causality. Considering that all the variables are numeric types for each significant influence
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variable, the prefecture-level regions can be bounded by the median to be divided into the
treatment group and the control group. Then, the prefecture-level regions in the treatment
group and control group were matched by the STPSM. Subsequently, the relative risk (RR)
and risk difference (RD) of each selected significant influence variable on the explanatory
variable, the PWGLO3 concentrations, can be estimated (Table 1). Furthermore, the RR and
RD can be calculated by the ratio and difference of the average PWGLO3 concentrations
in the matched treatment group and control group. The results show that most of the
selected significant influence variables possessed statistically significant (p < 0.05) causality
with the PWGLO3 concentrations in 2005–2014 and 2015–2019. Precisely, W·PWGLO3,
GDPPC, W·GDPPC, TSECPC, W·TSECPC, GAPC, DSAT, APMC, ACDS, and W·AAWS
are risk factors, and BRPC, NTPC, NBPC, and ARRH are protective factors in 2005–2014.
To the late stage, 2015–2019, the risk factors increased from 10 to 16 for W·PWGLO3,
GDPPC, W·GDPPC, TIP, W·TIP, ECRPC, W·ECRPC, TSECPC, W·TSECPC, NTPC, UGCR,
DSAT, APMC, W·APMC, ACDS, AAWS, W·AAWS, and AARH, and the protective factors
decreased from 4 to 3, BRPC, AAWS, and AARH.

Table 1. The estimated relative risk (RR) and risk difference (RD) of the significant influence factors
in the two periods, 2005–2014 and 2015–2019, based on the STPSM eliminating confounding effects.

Variables
2005–2014 2015–2019

RR RD (µg/m3) p Value RR RD (µg/m3) p Value

W·PWGLO3 1.011 1.18 0.019 1.112 2.08 0.002
GDPPC 1.025 2.03 0.017 1.023 2.15 0.018

W·GDPPC 1.016 1.19 0.011 1.015 2.08 0.008
TIP 1.001 0.52 0.289 1.044 3.68 <0.001

W·TIP / / / 1.026 2.66 0.001
ECRPC 1.025 1.87 0.158 1.042 3.81 0.048

W·ECRPC / / / 1.021 2.78 <0.001
TSECPC 1.061 5.07 <0.001 1.106 8.96 <0.001

W·TSECPC 1.022 3.57 0.006 1.058 6.61 0.002
BRPC 0.973 −3.20 0.001 0.957 −4.97 <0.001
NTPC 0.962 −5.19 <0.001 1.048 4.30 <0.001
NBPC 0.958 −3.20 <0.001 1.002 0.49 0.281
UGCR / / / 1.044 3.68 <0.001
GAPC 1.036 2.75 0.009 / / /
DSAT 1.024 1.88 0.015 1.008 0.76 0.016
APMC 1.043 3.34 0.001 1.150 11.75 <0.001

W·APMC / / / 1.089 6.87 0.001
ACDS 1.006 1.88 0.011 1.076 2.88 <0.001
AAWS / / / 0.951 −2.06 0.047

W·AAWS 1.002 1.061 0.125 1.008 1.94 0.033
AARH 0.991 −0.85 0.038 0.950 −2.25 0.002

Figure 7 shows the normalised regression coefficients of the BST-LASSO-RM between
the PWGLO3 concentrations and the driving factors in the two stages. The results indicate
that the structure of the drivers of the PWGLO3 concentrations has changed from the early
stage to the late stage. Concretely, the eight factors, GDPPC, TSECPC, BRPC, NTPC, DSAT,
ACDS, ARRH, and three spatial adjacent factors, W·PWGLO3, W·GDPPC, W·TSECPC, had
driving effects in both stages. However, the driving direction of the NTPC factor changed
from negative to positive. This is possibly due to the fact that the use efficiency of taxis
was reduced from the early to the late stage due to the increase in private cars. Moreover,
GAPC and NBPC had driving effects in 2005–2014, excluding 2015–2019; however, TIP,
W·TIP, ECRPC, W·ECRPC, UGCR, W·APMC, AAWS, and W·AAWS were on the contrary.
A finding is that GAPC has a positive driving effect in only one stage. The reason for this
could be that GAPC decreased from the early stage to the late stage. The negative driving
effects in 2005–2014 for BRPC, NTPC, and NBPC, and 2015–2019 for BRPC, indicate that
the development of public transportation, especially bus ridership, can alleviate PWGLO3
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concentrations. Six local factors, BRPC, APMC, TSECPC, GDPPC, NBPC, and GAPC, were
the major drivers in 2005–2014, and the corresponding explanatory powers, the percentages
of the absolute value of the normalised regression coefficients, were 13.56%, 11.95%, 9.82%,
8.72%, 8.46%, and 8.27%. Five local factors and one spatial adjacent factor, APMC, ACDS,
TSECPC, BRPC, AARH, and W·APMC, were the major drivers with explanatory powers of
17.57%, 9.75%, 9.71%, 7.05%, 6.28%, and 8.94%, in 2015–2019.
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Figure 7. Normalised regression results of the Bayesian LASSO regression model between the
PWGLO3 concentrations and the significant driving factors in the two stages.

To estimate the causal effects of the driving factors on the PWGLO3 concentrations
across China in the two stages, the non-normalised regression results of the BST-LASSO-RM
were estimated (Table 2). The results indicate that the driving effects of the three spatial
adjacent drivers, W·PWGLO3, W·GDPPC, and W·TSECPC, increased from 0.76 (0.18, 1.17),
0.12 (0.05, 0.51), and 0.62 (0.22, 1.08), in 2005–2014 to 1.86 (2.55, 2.19), 0.33 (0.12, 0.56), and
1.94 (1.01, 2.30), in 2015–2019. The driving effects of GDPPC and BRPC decreased from
0.45 (0.23, 0.76) and −3.11 (−5.15, −0.99), in 2005–2014 to 0.19 (0.26, 0.39) and −0.96 (−1.31,
−0.58), in 2015–2019. The driving effects of TSECPC, DSAT, APMC, ACDS, and ARRH,
increased from 0.91 (0.42, 1.54), 0.08 (0.03, 0.12), 0.03 (0.01, 0.06), and −0.07 (−0.12, −0.03)
in 2005–2014 to 2.34 (1.67, 3.18), 0.16 (0.09, 0.21), 0.12 (0.06, 0.22), and −0.12 (−0.36, −0.10)
in 2015–2019. The driving effect of NTPC decreased, but the driving direction reversed.
The UGCR and AAWS have positive driving effects, 0.04 (0.01, 0.06) and 0.08 (0.04, 0.18),
on the PWGLO3 concentrations in 2015–2019, excluding 2005–2014.
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Table 2. Non-normalised regression results of the Bayesian LASSO regression model between the
PWGLO3 concentrations and the significant driving factors in the two stages.

Drivers
2005–2014 2015–2019

Mean (2.5%th, 97.5%th) Mean (2.5%th, 97.5%th)

W·PWGLO3
(
µg/m3 ) 0.76 (0.18, 1.17) 1.86 (0.55, 2.19)

GDPPC
(
103 China Yuan) 0.45 (0.23, 0.76) 0.19 (0.26, 0.39)

W·GDPPC
(
103 China Yuan) 0.12 (0.05, 0.51) 0.33 (0.12, 0.56)

TIP (% ) / 0.12 (0.07, 0.17)
W·TIP (%) / 0.08 (0.03, 0.14)

ECRPC (kWh ) / 0.81 (0.07, 2.21)
W·ECRPC (kWh ) / 0.62 (0.37, 0.99)

TSECPC
(
102 kWh ) 0.91 (0.42, 1.54) 2.34 (1.67, 3.18)

W·TSECPC
(
102 kWh ) 0.62 (0.22, 1.08) 1.94 (1.01, 2.30)

BRPC
(
102 Passengers) −3.11 (−5.15, −0.99) −0.96 (−1.31, −0.58)

NTPC (Vehicles) −0.13 (−0.30, −0.03) 0.08 (0.01, 0.16)
NBPC (Vehicles) −0.14 (−0.30, −0.02) /

UGCR (%) / 0.04 (0.01, 0.06)
GAPC

(
m2 ) 0.61 (0.15, 1.11) /

DSAT (°C ) 0.08 (0.03, 0.12) 0.16 (0.09, 0.21)
APMC

(
µg/m3 ) 0.31 (0.20, 0.44) 0.65 (0.55, 0.74)

W·APMC
(
µg/m3 ) / 0.29 (0.09, 0.80)

ACDS (10 Days ) 0.03 (0.01, 0.06) 0.12 (0.06, 0.22)
AAWS (m/s ) / 0.08 (0.04, 0.18)

W·AAWS (m/s ) / 0.04 (0.02, 0.07)
ARRH (% ) −0.07 (−0.12, −0.03) −0.21 (−0.36, −0.10)

3.5. Implications of the Results

The results of the transitions of the overall spatial pattern and local trends of the
annual PWGLO3 concentrations can clarify the spatiotemporal evolution mechanism of
the PWGLO3 concentrations in China. This indicates that the emphatically concerned
regions should focus on the areas with higher levels and increasing trends of PWGLO3
concentrations (i.e., the red and dark red areas in Figures 3B and 5). The identification
of the potential drivers regarding the prefecture level of the PWGLO3 concentrations in
China can help policy-makers design more effective policies to control PWGLO3 concentra-
tions. The annual PWGLO3 concentrations can be reduced by decreasing the factors with
positive driving effects and increasing the factors with negative driving effects. Specifi-
cally, although local and spatial adjacent social economic factors (GDPPC, W·GDPPC, TIP,
W·TIP, ECRPC, W·ECRPC, TSECPC, and W·TSECPC) have positive effects, these factors
cannot be easily decreased due to the development of the economy. Nevertheless, the
annual PWGLO3 concentrations can be lowered by decreasing NTPC and increasing BRPC
simultaneously. The increase in UGCR can result in the growth of the annual PWGLO3
concentrations, and green coverage may provide many human health benefits. This finding
suggests that the vegetation, with more VOC emissions as precursors of ozone, should
be cut down in the urban area. The results estimated by the spatiotemporal causal in-
ference method show that the spatial adjacent PWGLO3, i.e., W·PWGLO3, has positive
driving effects in the two stages, 2005–2014 and 2015–2019, this states that the PWGLO3
concentrations have a significant spatial causal spillover effect. Namely, the local PWGLO3
concentrations in a prefecture-level region may also be aggravated by its spatial adjacent
PWGLO3 concentrations. Meanwhile, considering that the AMPC and W·APMPC have
positive driving effects, this indicates that surface ozone pollution may be synergistically
controlled with local and circumjacent PM2.5 pollution, i.e., synergistic governance. The
climate drivers, such as temperature, sunshine, wind speed, and relative humidity, can
also not be changed; however, the related results may help us understand the variation of
PWGLO3 concentrations in the background of global climate change.
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4. Discussion

This paper focused on the problem of population exposure to surface ozone concentra-
tions, measured by the annual PWGLO3 concentrations, at a prefecture-level scale across
China mainland during 2005–2019. In this study, an advanced method called BMSSTEHM
was used to carefully detect the space–time trends of the annual PWGLO3 concentrations.
Furthermore, to explore the drivers of the PWGLO3 concentrations, this study transcended
the constraints of traditional correlation analyses by presenting a spatiotemporal causal
inference method that discerns causality relationship and estimates the cause—effect. This
method combines STPSM and BST-LASSO-RM, both of which are also proposed in this
paper. The methods in this paper provide a methodological reference for other similar
studies. And the spatiotemporal causal inference method can be applied potentially in
analysing remote sensing data. Furthermore, the results of the paper can help in the creation
of diverse regional policies to reduce population exposure to GLO3 concentrations.

The spatial distribution of PWGLO3 concentrations in mainland China has shifted
since 2015. It is important to carry out in-depth research on why the spatial pattern of
PWGLO3 concentrations on China’s mainland has changed. The spatial structure of the
local trends of the annual PWGLO3 concentrations at prefecture-level in China’s mainland
showed differences in the two stages. The results indicated that the annual PWGLO3
concentrations in the early stage maintained a steady state, i.e., most prefecture-level regions
experienced a low local trend. But in the later period, the regions with high PWGLO3
concentrations level experienced simultaneously high local trends. This means that the
PWGLO3 concentrations of the hot spot regions will become more severe. Additionally, the
areas with high levels of PWGLO3 concentrations have the tendency to expand outwards.

The transformation reasons for the static spatial pattern and local trends of the annual
PWGLO3 concentrations are very intricate. Generally, the reasons can be classified as
anthropogenic and meteorological influences. Some researchers [51–53] have concluded
that meteorological factors were not negligible but anthropogenic factors were dominant.
This study argues that the economic development and remaining higher PM2.5 concen-
trations jointly lead to the transformation of spatiotemporal trends of Chinese PWGLO3
concentrations. According to Wei et al.’s newest study [54], the PM2.5 concentrations across
China decreased significantly from 2015–2020, but those in North China still remained at
a higher level; in contrast, those in South China reached a lower level. In particular, the
Pearl River Delta region of China has carried out pioneering pollution control measures
since 2014 (https://www.mee.gov.cn/ywgz/xcjy/shxc/201909/t20190909_733028.shtml
(accessed on 6 January 2023)), been “withdrawn” from the three key regions of air pollution
prevention and control in China. The results of this study indicated that the PM2.5 as a
precursor of ozone has a maximal driving effect on PWGLO3 in the late stage. More-
over, the rapid economic development of North China in the late stage may be also
another reason.

The formation mechanism of the PWGLO3 concentrations is very complex. Our
study has preliminarily explored the drivers of the annual PWGLO3 concentrations at
the prefecture-level scale. The driving pattern of the annual PWGLO3 concentrations in
China’s mainland showed different features in the two phases. The four local and spatial
adjacent economic factors, GDPPC, W·GDPPC, TIP, W·TIP, ECRPC, W·ECRPC, TSECPC,
and W·TSECPC, all exhibited positive driving effects on the PWGLO3 concentrations in
the late stage. This indicates that the PM2.5 concentrations were reduced by the shrinkage
of the secondary industry due to environmental regulations; however, the development
of the tertiary industry led to increasing GLO3 concentrations. Moreover, not only the
local economic factor can drive the PWGLO3 concentrations, but also of the corresponding
surrounding areas also can. This implies that the process of adjusting the policies aimed to
alleviating surface ozone pollution must consider regional coordination.

In terms of traffic development factors, increasing bus ridership can promote the
reduction in the PWGLO3 concentrations in the two stages, and the driving effects of
the BRPC in the early and later stages came close. It is interesting that the increase in

https://www.mee.gov.cn/ywgz/xcjy/shxc/201909/t20190909_733028.shtml
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NTPC and NBPC can lower the PWGLO3 concentrations in the early stage; however, in
the later stage, NBPC had no significant driving effect and the NTPC’s driving direction
changed from negative to positive. The reason for the above phenomenon might be that
travel demand within the city has increased rapidly due to the development of the tertiary
industry. But the transport efficiency of the taxi is analogous to that of the private car,
and less than of the bus. The low transport efficiency of the taxi may lead to high per
capita exhaust gas emission, a precursor of ozone pollution. This suggests that public traffic
should be energetically developed to improve public transport volumes and then reduce the
GLO3 concentrations.

This study found that GAPC and UGCR had positive driving effects in the early and
later stages, respectively. This result is consistent with the conclusion of related environmen-
tal chemistry research [55]. Furthermore, the GLO3 is mainly generated by photochemical
reactions of NOx and VOCs that were released from anthropogenic activities [56], while
the VOCs are an emission from vegetation [55]. Hence, green areas or green covers become
risk factors for the GLO3 concentrations. Our study quantified the relationship between
the annual PWGLO3 concentrations and GAPC and UGCR. Eucalyptus, Populus, Cunning-
hamia, etc., are plants with high VOC emissions; however, thickets and grasslands have
low VOC emissions [57]. This result suggests that plants with high VOC emissions should
be decreased in the urban green coverage.

For the factors of traffic development and green cover, the corresponding driving
effects only occurred in the local area. That is, the factors of traffic development and green
cover in the spatial adjacent areas have not driving effects on the local area’s PWGLO3
concentrations. This finding provided important evidence or reference to control surface
ozone pollution by changing the local factors of the traffic development and green cover.

From the view of ecological studies, this paper also demonstrated the conclusion that
temperature and PM2.5 are important drivers on the GLO3 concentrations. We evaluated
the quantitative driving effects of the local DSAT and APMC, and spatial adjacent PM2.5,
W·APMC, on annual PWGLO3 concentrations at the prefectural scale, which is different
from an environmental chemistry study. This can provide valuable evidence for policy-
making for mitigating PWGLO3 concentrations in China and other global regions.

This paper contributes by providing not only the concrete statistical results of the
spatiotemporal trends of the PWGLO3 concentrations at a sub-provincial scale, but also a
frame for recognising causality and estimating causal effects for the situation with multi-
factors, and investigating the drivers of the PWGLO3 concentrations in mainland China.
However, this study also has some limitations. First, the study period was not compre-
hensive enough, and the statistical results would be more robust if the study period was
long enough. Second, the spatial scale was adopted with sub-province, but this can still be
refined, such as the county scale. The above limitations will be emphatically focused on.

5. Conclusions

First, this study proposed a spatiotemporal causal inference method combining STPSM
and BST-LASSO-RM, both of which are also proposed in this paper, and this method
can be applied potentially in analyzing remote sensing spatiotemporal data. Second,
the spatial distribution of PWGLO3 concentrations in mainland China has shifted since
2015. Third, while early-stage annual PWGLO3 concentrations remained stable across
most prefecture-level regions in China’s mainland, the later stage the regions with high
PWGLO3 concentrations also exhibited high local trends. Fourth, a shift in the drivers
of PWGLO3 concentrations occurred from the early to late stages, the factors like NTPC
changing their driving direction. Notably, the development of public transportation,
especially bus ridership, can mitigate PWGLO3 concentrations, with six local factors being
the primary drivers in 2005–2014 and five local factors, along with one spatial adjacent
factor, dominating in 2015–2019. Fifth, the annual PWGLO3 concentrations can be lowered
by decreasing NTPC and increasing BRPC simultaneously. Synergistic governance with
local and adjacent PM2.5 pollution can help control surface ozone pollution in the context
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of global climate change, while economic factors and climate drivers are challenging
to modify.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15194871/s1, Figure S1: Temporal series of spatial distribution of
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Author Contributions: Conceptualization, J.L. and Z.R.; Methodology, J.L.; Software, J.L., Y.Y.
(Yiming Yu), H.A., X.Y. and Y.Y. (Yixue Yang); Validation, J.X.; Formal analysis, J.L. and J.X.; Investi-
gation, J.X.; Resources, J.W.; Data curation, Z.R., Y.Y. (Yiming Yu), H.A., X.Y. and Y.Y. (Yixue Yang);
Writing—original draft, J.L.; Writing—review & editing, J.W. and Z.R.; Supervision, J.W. and Z.R.;
Project administration, J.L.; Funding acquisition, J.L. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This paper is supported by Basic Research Program of Shanxi Province (free exploration)
(202203021211332).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Our deepest gratitude is expressed to our anonymous reviewers and editors for
their careful work and constructive suggestions that have helped improve our paper substantially. We
thank the support from the Save 2050 Programme jointly sponsored by Swarma Club and X-Order.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agathokleous, E.; Feng, Z.; Oksanen, E.; Sicard, P.; Wang, Q.; Saitanis, C.J.; Araminiene, V.; Blande, J.D.; Hayes, F.; Calatayud, V.

Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 2020, 6,
eabc1176. [CrossRef] [PubMed]

2. Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E. Tropospheric
ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr.
2018, 6, 27.

3. Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission
and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196.

4. Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014.

5. Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226.
6. Feng, L.; Liao, W. Legislation, plans, and policies for prevention and control of air pollution in China: Achievements, challenges,

and improvements. J. Clean. Prod. 2016, 112, 1549–1558.
7. Xue, W.; Wang, L.; Yang, Z.; Xiong, Z.; Li, X.; Xu, Q.; Cai, Z. Can clean heating effectively alleviate air pollution: An empirical

study based on the plan for cleaner winter heating in northern China. Appl. Energy 2023, 351, 121923. [CrossRef]
8. Wang, Z.; Lv, J.; Tan, Y.; Guo, M.; Gu, Y.; Xu, S.; Zhou, Y. Temporospatial variations and Spearman correlation analysis of ozone

concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmos. Pollut.
Res. 2019, 10, 1203–1210. [CrossRef]

9. Cheng, L.; Wang, S.; Gong, Z.; Li, H.; Yang, Q.; Wang, Y. Regionalization based on spatial and seasonal variation in ground-level
ozone concentrations across China. J. Environ. Sci. 2018, 67, 179–190. [CrossRef]

10. Lyu, Y.; Wu, Z.; Wu, H.; Pang, X.; Qin, K.; Wang, B.; Ding, S.; Chen, D.; Chen, J. Tracking long-term population exposure risks to
PM2.5 and ozone in urban agglomerations of China 2015–2021. Sci. Total Environ. 2023, 854, 158599. [CrossRef]

11. An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal variations of O3 and NOx in the urban background atmosphere of Nanjing, East China.
Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [CrossRef]

12. Wang, W.-N.; Cheng, T.-H.; Gu, X.-F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.-W.; Shi, S.-Y.; Xu, B.-R.; Zuo, X. Assessing spatial and
temporal patterns of observed ground-level ozone in China. Sci. Rep. 2017, 7, 3651. [CrossRef]

13. Zhang, A.; Lin, J.; Chen, W.; Lin, M.; Lei, C. Spatial-Temporal Distribution Variation of Ground-Level Ozone in China’s Pearl
River Delta Metropolitan Region. Int. J. Environ. Res. Public. Health 2021, 18, 872. [CrossRef] [PubMed]

14. Tang, G.; Wang, Y.; Li, X.; Ji, D.; Gao, X. Spatial-temporal variations of surface ozone and ozone control strategy for Northern
China. Atmos. Chem. Phys. Discuss. 2011, 11, 26057–26109.

15. Gao, C.; Xiu, A.; Zhang, X.; Chen, W.; Liu, Y.; Zhao, H.; Zhang, S. Spatiotemporal characteristics of ozone pollution and policy
implications in Northeast China. Atmos. Pollut. Res. 2020, 11, 357–369. [CrossRef]

16. Liu, H.; Liu, J.; Liu, Y.; Yi, K.; Yang, H.; Xiang, S.; Ma, J.; Tao, S. Spatiotemporal variability and driving factors of ground-level
summertime ozone pollution over eastern China. Atmos. Environ. 2021, 265, 118686. [CrossRef]

https://www.mdpi.com/article/10.3390/rs15194871/s1
https://www.mdpi.com/article/10.3390/rs15194871/s1
https://doi.org/10.1126/sciadv.abc1176
https://www.ncbi.nlm.nih.gov/pubmed/32851188
https://doi.org/10.1016/j.apenergy.2023.121923
https://doi.org/10.1016/j.apr.2019.02.003
https://doi.org/10.1016/j.jes.2017.08.011
https://doi.org/10.1016/j.scitotenv.2022.158599
https://doi.org/10.1007/s00244-016-0290-8
https://doi.org/10.1038/s41598-017-03929-w
https://doi.org/10.3390/ijerph18030872
https://www.ncbi.nlm.nih.gov/pubmed/33498400
https://doi.org/10.1016/j.apr.2019.11.008
https://doi.org/10.1016/j.atmosenv.2021.118686


Remote Sens. 2023, 15, 4871 20 of 21

17. Lyu, Y.; Ju, Q.; Lv, F.; Feng, J.; Pang, X.; Li, X. Spatiotemporal variations of air pollutants and ozone prediction using machine
learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [CrossRef] [PubMed]

18. Yang, G.; Liu, Y.; Li, X. Spatiotemporal distribution of ground-level ozone in China at a city level. Sci. Rep. 2020, 10, 7229.
[CrossRef] [PubMed]

19. Xue, T.; Zheng, Y.; Geng, G.; Xiao, Q.; Meng, X.; Wang, M.; Li, X.; Wu, N.; Zhang, Q.; Zhu, T. Estimating spatiotemporal variation
in ambient ozone exposure during 2013–2017 using a data-fusion model. Environ. Sci. Technol. 2020, 54, 14877–14888. [CrossRef]

20. Li, Y.; Shi, G.; Chen, Z. Spatial and temporal distribution characteristics of ground-level nitrogen dioxide and ozone across China
during 2015–2020. Environ. Res. Lett. 2021, 16, 124031. [CrossRef]

21. Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A
machine learning approach. Environ. Int. 2020, 142, 105823. [CrossRef]

22. Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and
spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2021,
270, 112775.

23. Chang, C.-Y.; Faust, E.; Hou, X.; Lee, P.; Kim, H.C.; Hedquist, B.C.; Liao, K.-J. Investigating ambient ozone formation regimes in
neighboring cities of shale plays in the Northeast United States using photochemical modeling and satellite retrievals. Atmos.
Environ. 2016, 142, 152–170. [CrossRef]

24. Choi, Y.; Kim, H.; Tong, D.; Lee, P. Summertime weekly cycles of observed and modeled NOx and O3 concentrations as a function
of satellite-derived ozone production sensitivity and land use types over the Continental United States. Atmos. Chem. Phys. 2012,
12, 6291–6307. [CrossRef]

25. Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.
Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ.
2010, 44, 2213–2223. [CrossRef]

26. Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.D.; Valin, L. Inferring Changes in Summertime Surface Ozone–NOx–VOC Chemistry
over US Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529.
[CrossRef]

27. Pusede, S.; Cohen, R. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California
1995–present. Atmos. Chem. Phys. 2012, 12, 8323–8339.

28. Chi, X.; Liu, C.; Xie, Z.; Fan, G.; Wang, Y.; He, P.; Fan, S.; Hong, Q.; Wang, Z.; Yu, X. Observations of ozone vertical profiles and
corresponding precursors in the low troposphere in Beijing, China. Atmos. Res. 2018, 213, 224–235. [CrossRef]

29. Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation
in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [CrossRef]

30. Wei, W.; Lv, Z.F.; Li, Y.; Wang, L.T.; Cheng, S.; Liu, H. A WRF-Chem model study of the impact of VOCs emission of a huge
petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmos. Environ. 2018, 175, 44–53. [CrossRef]

31. An, J.; Zou, J.; Wang, J.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its
suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2015, 22, 19607–19617. [CrossRef]

32. Geng, F.; Tie, X.; Xu, J.; Zhou, G.; Peng, L.; Gao, W.; Tang, X.; Zhao, C. Characterizations of ozone, NOx, and VOCs measured in
Shanghai, China. Atmos. Environ. 2008, 42, 6873–6883. [CrossRef]

33. Lu, H.; Lyu, X.; Cheng, H.; Ling, Z.; Guo, H. Overview on the spatial-temporal characteristics of the ozone formation regime in
China. Environ. Sci. Process. Impacts 2019, 21, 916–929. [PubMed]

34. Li, M.; Song, Y.; Mao, Z.; Liu, M.; Huang, X. Impacts of thermal circulations induced by urbanization on ozone formation in the
Pearl River Delta region, China. Atmos. Environ. 2016, 127, 382–392. [CrossRef]

35. Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors
on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [CrossRef] [PubMed]

36. Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe surface ozone
pollution in China: A global perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [CrossRef]

37. Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 surface ozone
pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 8339–8361.

38. Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations,
meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596.

39. Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone
in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [CrossRef]

40. Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and
population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [CrossRef]

41. Li, G.; Haining, R.; Richardson, S.; Best, N. Space-time variability in burglary risk: A Bayesian spatio-temporal modelling
approach. Spat. Stat. 2014, 9, 180–191. [CrossRef]

42. Malash, G.F.; El-Khaiary, M.I. Piecewise linear regression: A statistical method for the analysis of experimental adsorption data
by the intraparticle-diffusion models. Chem. Eng. J. 2010, 163, 256–263. [CrossRef]

43. Besag, J.; York, J.; Mollié, A.; Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics.
Ann. Inst. Stat. Math. 1991, 43, 1–20. [CrossRef]

https://doi.org/10.1016/j.envpol.2022.119420
https://www.ncbi.nlm.nih.gov/pubmed/35526642
https://doi.org/10.1038/s41598-020-64111-3
https://www.ncbi.nlm.nih.gov/pubmed/32350319
https://doi.org/10.1021/acs.est.0c03098
https://doi.org/10.1088/1748-9326/ac3794
https://doi.org/10.1016/j.envint.2020.105823
https://doi.org/10.1016/j.atmosenv.2016.06.058
https://doi.org/10.5194/acp-12-6291-2012
https://doi.org/10.1016/j.atmosenv.2010.03.010
https://doi.org/10.1021/acs.est.9b07785
https://doi.org/10.1016/j.atmosres.2018.06.012
https://doi.org/10.1016/j.atmosenv.2015.05.021
https://doi.org/10.1016/j.atmosenv.2017.11.058
https://doi.org/10.1007/s11356-015-5177-0
https://doi.org/10.1016/j.atmosenv.2008.05.045
https://www.ncbi.nlm.nih.gov/pubmed/31089656
https://doi.org/10.1016/j.atmosenv.2015.10.075
https://doi.org/10.1016/j.envpol.2020.114366
https://www.ncbi.nlm.nih.gov/pubmed/32443214
https://doi.org/10.1021/acs.estlett.8b00366
https://doi.org/10.1073/pnas.1812168116
https://doi.org/10.1016/j.envint.2019.04.026
https://doi.org/10.1016/j.spasta.2014.03.006
https://doi.org/10.1016/j.cej.2010.07.059
https://doi.org/10.1007/BF00116466


Remote Sens. 2023, 15, 4871 21 of 21

44. Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and
extensibility. Stat. Comput. 2000, 10, 325–337. [CrossRef]

45. Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin, Germany, 1988.
46. Brueckner, J.K. Strategic interaction among governments: An overview of empirical studies. Int. Reg. Sci. Rev. 2003, 26, 175–188.

[CrossRef]
47. Elhorst, P.; Piras, G.; Arbia, G. Growth and Convergence in a Multiregional Model with Space-Time Dynamics. Geogr. Anal. 2010,

42, 338–355. [CrossRef]
48. Hans, C. Bayesian lasso regression. Biometrika 2009, 96, 835–845. [CrossRef]
49. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
50. Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983,

70, 41–55. [CrossRef]
51. Ding, D.; Xing, J.; Wang, S.; Chang, X.; Hao, J. Impacts of emissions and meteorological changes on China’s ozone pollution in the

warm seasons of 2013 and 2017. Front. Environ. Sci. Eng. 2019, 13, 1–9.
52. Liu, J.; Wang, L.; Li, M.; Liao, Z.; Sun, Y.; Song, T.; Gao, W.; Wang, Y.; Li, Y.; Ji, D. Quantifying the impact of synoptic circulation

patterns on ozone variability in northern China from April to October 2013–2017. Atmos. Chem. Phys. 2019, 19, 14477–14492.
[CrossRef]

53. Yu, Y.; Wang, Z.; He, T.; Meng, X.; Xie, S.; Yu, H. Driving factors of the significant increase in surface ozone in the Yangtze River
Delta, China, during 2013–2017. Atmos. Pollut. Res. 2019, 10, 1357–1364. [CrossRef]

54. Wei, J.; Li, Z.; Chen, X.; Li, C.; Sun, Y.; Wang, J.; Lyapustin, A.; Brasseur, G.; Jiang, M.; Sun, L.; et al. Separating daily 1 km PM2.5
inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data. Environ. Sci.
Technol. 2023. [CrossRef] [PubMed]

55. Churkina, G.; Kuik, F.; Bonn, B.; Lauer, A.; Grote, R.d.; Tomiak, K.; Butler, T.M. Effect of VOC emissions from vegetation on air
quality in Berlin during a heatwave. Environ. Sci. Technol. 2017, 51, 6120–6130. [CrossRef] [PubMed]

56. Haagen-Smit, A.J. Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [CrossRef]
57. Ma, M.; Gao, Y.; Ding, A.; Su, H.; Liao, H.; Wang, S.; Wang, X.; Zhao, B.; Zhang, S.; Fu, P. Development and assessment of a

high-resolution biogenic emission inventory from urban green spaces in China. Environ. Sci. Technol. 2021, 56, 175–184. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1177/0160017602250974
https://doi.org/10.1111/j.1538-4632.2010.00796.x
https://doi.org/10.1093/biomet/asp047
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.5194/acp-19-14477-2019
https://doi.org/10.1016/j.apr.2019.03.010
https://doi.org/10.1021/acs.est.3c00272
https://www.ncbi.nlm.nih.gov/pubmed/37114869
https://doi.org/10.1021/acs.est.6b06514
https://www.ncbi.nlm.nih.gov/pubmed/28513175
https://doi.org/10.1021/ie50510a045
https://doi.org/10.1021/acs.est.1c06170

	Introduction 
	Methods 
	Variable and Data 
	Population Exposure to GLO3  
	Influencing Factors 

	Bayesian Multi-Stage Spatiotemporal Evolution Hierarchy Model (BMSSTEHM) 
	Bayesian Spatiotemporal LASSO Regression Model (BST-LASSO-RM) 
	A Spatiotemporal Propensity Score Matching (STPSM) Method 
	A Spatiotemporal Causal Inference Method 

	Results 
	Descriptive Statistics 
	The Spatial Pattern and Its Transformation of the PWGLO3  
	The Local Trends of the PWGLO3  Concentrations at the Sub-Provincial Level 
	Drivers of the PWGLO3  Concentrations 
	Implications of the Results 

	Discussion 
	Conclusions 
	References

