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• A nationwide longitudinal study of Chi-
nese adults aged ≥45 years from 2011
to 2018

• We studied long-term effect of intermedi-
ate particulate matter (PM1–2.5) on
asthma.

• PM1–2.5 was positively associated with in-
cident asthma in middle-aged and elderly.

• Higher risk of asthma was observed in
smokers and those at low socioeconomic
level.

• Nonlinear exposure-response curve was
observed between PM1–2.5 and incident
asthma.
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Background: There is insufficient evidence about the long-term effects of intermediate particulate matter (PM1–2.5) on

asthma development in adults aged 45 years and above. This study aimed to investigate the relationship between long-
term exposure to PM1–2.5 and the incidence of asthma in adults aged 45 years and above.
Methods: A cohort study based on the China Health and Retirement Longitudinal Study (CHARLS) database was con-
ducted to investigate the long-term effects of PM1–2.5 on self-reported asthma incidence in adults aged 45 years and
above in China from 2011 to 2018. The PM concentrations were estimated using a high-resolution (1 km2) satellite-
based spatiotemporal model. A covariate-adjusted generalized linear mixed model was used to analyze the relation-
ship between long-term exposure to PM1–2.5 and the incidence of asthma. Effect modifications and sensitivity analysis
were conducted.
Results:After a 7-year follow-up, 103 (1.61%) of the 6400 participants developed asthma. Each 10 μg/m3 increment in
the 1-, 2-, 3-, and 4-year moving average concentrations of PM1–2.5 corresponded to a 1.82 [95 % confidence interval
(CI):1.11–2.98], 1.95 (95 % CI: 1.24–3.07), 1.95 (95 % CI: 1.26–3.03) and 1.88 (95 % CI: 1.26–2.81) fold risk for in-
cident asthma, respectively. A significant multiplicative interaction was observed between socioeconomic level and
long-term exposure to PM1–2.5. Stratified analysis showed that smokers and those with lower socioeconomic levels
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were at higher risk of incident asthma related to PM1–2.5. Restricted cubic splines showed an increasing trend in asthma
incidence with increasing PM1–2.5. Sensitivity analyses showed that our model was robust.
Conclusion: Long-term exposure to PM1–2.5 was positively associated with incident asthma in middle-aged and elderly
individuals. Participants with a history of smoking and lower socioeconomic levels had a higher risk. More studies are
warranted warrant to establish an accurate reference value of PM1–2.5 to mitigate the growing asthma burden.
1. Introduction

Chronic respiratory disease remains one of the leading causes of death
worldwide (Somayaji and Chalmers, 2022; Stern et al., 2020), among
which asthma affected an estimated 262 million people in 2019 and caused
455,000 deaths (Collaborators, 2020a). Meanwhile, asthma has become
one of the major public health problems in China (Brusselle and Ko, 2019).
To reduce the prevalence and disease burden of asthma, it is essential to iden-
tify modifiable factors of asthma to guide the development of preventative
programs.

Ambient air pollutants are modifiable risk factors for asthma. The Global
Burden of Disease Study found that the morbidity and mortality caused by
ambient particulate pollution have continued to increase (Collaborators,
2020b). Several studies have reported a positive association between short-
term or long-term exposure to PM2.5 (particles with aerodynamic diameters
≤2.5 μm) and asthma in adults (Fishe et al., 2022; Lam et al., 2021; Lee
et al., 2021a; Liu et al., 2021a; Liu et al., 2021b; Renzi et al., 2022).

Fine particulatematter causes oxidative stress through deposition in the
respiratory tract, which leads to an inflammatory airway response and im-
pairs lung function (Ding et al., 2021; Lee et al., 2021b; Manojkumar et al.,
2019;Wang et al., 2022b; Zhao et al., 2020a; Zheng et al., 2022). GellerMD
et al. found correlations between PM1 (particles with aerodynamic diame-
ters ≤1 μm) and intermodal PM (PM1–2.5) and found that PM1 may grow
into PM1–2.5 via complex processes, including stagnation of aerosols in
high relative humidity conditions followed by advection during daytime
hour (Geller et al., 2004). Additionally, PM1–2.5 has the same origin as
PM2.5–10 (particles with aerodynamic diameters between 2.5 μm and 10
μm) and its potential contribution to health effects should not be considered
part of PM2.5 (Geller et al., 2004).

Chemical compositions of PM1–2.5 mainly include nitrate, sulfate, or-
ganic carbon, and metals (Geller et al., 2004). According to previous
study, there were 41 % haze days in Shanghai from year 2008 to 2010
(Zhou et al., 2014). On clear days, ammonium was the most abundant in
PM1–2.5 while sulfate was the most abundant ion in PM1 among sulfate, ni-
trate and ammonium (Qiao et al., 2016). On serious haze days, the concen-
tration of nitrate caught up with and ultimately surpassed sulfate and
ammonium in PM1–2.5 (Qiao et al., 2016). Previously, we published a sys-
tematic review and meta-analysis, which showed that asthma was posi-
tively associated with long-term exposure to PM1 (Hu et al., 2022a).
However, it is unknown whether long-term exposure to intermediate par-
ticulate matter (PM1–2.5) affects asthma development in adults aged 45
years and above in China after adjusting for PM1.

In this study, we aimed to gain insight into the long-term effect of PM1–

2.5 on incident asthma in middle-aged and elderly adults. A retrospective
longitudinal study was conducted to examine the relationship between
long-term exposure to ambient PM1–2.5 and asthma in middle-aged and el-
derly adults based on the China Health and Retirement Longitudinal Study.

2. Materials and methods

2.1. Study population

The China Health and Retirement Longitudinal Study (CHARLS) is a na-
tionally representative project of agingwith four stages of sampling, includ-
ing county (district), village (residence), household and individual levels.
PPS (probability proportional to size) samplingwas used at the county (dis-
trict)-village (residence) level. A corresponding number of samples were
randomly selected from each sample village/community, and one
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household member aged >45 years was randomly selected as the primary
respondent in each household. The baseline survey was conducted in
2011, with follow-up every 2–3 years, and currently has collected four
waves of data (2011, 2013, 2015 and 2018), covering 150 district-level
units and 450 village-level units (Zhao et al., 2020c).

This study used data from the baseline survey of 2011 toWaves 4 (2018)
of CHARLS (http://charls.pku.edu.cn/). A total of 19,816 participants were
examined in Wave 4 (2018), with a response rate of 83.84 %. We included
all respondents aged 45 years or older and excluded those with missing
data and participants who had been diagnosed with asthma in 2011. Finally,
we included 6400 participants in the final analysis (Fig. S1).

The CHARLS study was approved by The Biomedical Ethics Committee
of Peking University (IRB00001052–11015), and all participants provided
written informed consent.

2.2. Outcome assessment

The outcome of asthmawas defined by self-report in the CHARLS study.
Trained researchers administered questionnaires through face-to-face inter-
views, and new incident asthma was confirmed based on the following
question: “Have you been diagnosed with asthma by a doctor?”

2.3. Exposure assessment

In this study, annual average concentrations of air pollutants were calcu-
lated as long-term air pollutant exposure levels and assigned according to the
corresponding geocodes (longitude and latitude) of an individual's home ad-
dress. We used particulate matter data (PM1 and PM2.5), gaseous pollutant
data [nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO),
and ozone (O3)], and meteorological factor data (wind speed and solar
radiation). According to previous studies, the average PM1–2.5 1 to 4 years be-
fore 2018 was used as an exposure metric to assess the long-term effects of
PM1–2.5 due to data availability (Lee et al., 2021a; Liu et al., 2021b).

The data were obtained from the CHAP dataset (https://weijing-rs.
github.io/product.html). The space-time extremely randomized trees
(STET) model was used to estimate PM1 concentrations at a 1 km spatial
resolution across mainland China. Ground-level O3 concentrations were es-
timated from solar radiation intensity and surface temperature using ex-
tended ensemble learning of the STET model, combining ground-based
observations, remote sensing products, atmospheric reanalysis, and emis-
sion inventories (Wei et al., 2022). The concentrations of PM2.5, PM10,
NO2, SO2, and CO were generated from big data (e.g., ground-based mea-
surements, satellite remote sensing products, atmospheric reanalysis, and
model simulations) using artificial intelligence by considering the spatio-
temporal heterogeneity of air pollution (Wei et al., 2021).

PM1–2.5 concentrations were calculated by subtracting the concentra-
tions of PM1 from PM2.5. PM2.5–10 concentrations were calculated by
subtracting the concentrations of PM2.5 from PM10. Tenfold cross-
validation showed that the R2 (root-mean-square error) for annual
predictions of PM1, PM2.5, NO2, SO2, CO and O3 were 77 % (14.6 μg/m3),
88 % (16.52 μg/m3), 72 % (9.97 μg/m3), 84 % (10.07 μg/m3), 80 %
(0.29 μg/m3) and 87 % (17.10 μg/m3), respectively (Chen et al., 2018a;
Chen et al., 2018b; Chen et al., 2018c).

2.4. Covariates

Based on the previous literature (Ai et al., 2019; Beasley et al., 2015;
Chan et al., 2019; Hu et al., 2022b; Song et al., 2022), to estimate the

http://charls.pku.edu.cn/
https://weijing-rs.github.io/product.html
https://weijing-rs.github.io/product.html
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independent effect of PM1–2.5 on incident asthma, four kinds of covariates
were adjusted, including a) meteorological factors: wind speed (m/s) and
solar radiation (w/m2); b) lifestyle factors: body mass index (BMI:
<18.5 kg/m2, 18.5–23.9 kg/m2, 24–27.9 kg/m2, ≥28 kg/m2), alcohol
drinking status (never, ever or current drinker), smoking status (never,
ever or current smoker), residence (rural or urban), housing area (m2),
and socioeconomic level [average and better (very high/relatively high/
average), lower (relatively poor/poor)]; c) dietary habits: cooking fuel
(clean or solid), day sleeping (no nap or have a nap), and night sleeping
[sleep debt (<6 h) and adequate sleep (≥6 h)]; d) and demographic
characteristics: age (years), sex, marital status (singlehood/widowed/
divorced or married), and educational qualifications (primary school and
below, junior high school and higher).
2.5. Statistical analysis

Generalized linearmixedmodels (GLMMs)were used to assess the inde-
pendent effect of particulate matter on incident asthma (Yang et al., 2019).
Table 1
Baseline characteristics of participants included in the study (n = 6400).

Covariables Total

Age, years: Median (IQR) 57 (13)
Sex: n (%)

Male 3219 (50.30)
Female 3181 (49.70)

Marital status: n (%)
Single/widowed/divorced 592 (9.25)
Married 5808 (90.75)

BMI (kg/m2): n (%)
<18.5 303 (4.73)
18.5–23.9 2833 (44.27)
24–27.9 1533 (23.95)
≥28 552 (8.63)
NA 1179 (18.42)

Alcohol drinking status: n (%)
Never 4164 (65.06)
Ever or current drinker 2231 (34.86)
NA 5 (0.08)

Smoking status: n (%)
Never 3784 (59.13)
Ever or current smoker 2615 (40.86)
NA 1 (0.01)

Cooking fuel: n (%)
Clean 2954 (46.16)
Solid 3446 (53.84)

Residence: n (%)
Rural 5168 (80.75)
Urban 1230 (19.22)
NA 2 (0.03)

Housing area (m2): Median (IQR) 100 (68)
Socioeconomic level: n (%)

Very high 17 (0.27)
Relatively high 163 (2.55)
Average 3333 (52.08)
Relatively poor 1841 (28.77)
Poor 615 (9.61)
NA 431 (6.72)

Education qualifications: n (%)
Primary school and below 1569 (24.52)
Junior high school and higher 4824 (75.38)
NA 7 (0.10)

Day sleeping (min): n (%)
No nap 2716 (42.44)
Have a nap 3271 (51.11)
NA 413 (6.45)

Night sleeping (h): n (%)
Sleep debt <6 4010 (62.66)
Adequate sleep ≥ 6 1947 (30.42)
NA 443 (6.92)

Notes: Cooking fuel, fuel used in cooking as an indicator of indoor pollution; IQR, inter
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The detailed information on the GLMM is described in the supplementary
materials (Supplemental methods).

We calculated the average concentrations of PM1, PM1–2.5, and PM2.5

for 1 to 4 years prior to 2018 to explore the long-term effects. To avoidmul-
ticollinearity among variables, a variance inflation factor (VIFs<10) metric
was tested.With PM1–2.5 as the independent variable, Model 1was adjusted
for PM1; Model 2 was adjusted for PM1 and meteorological factors (wind
speed and solar radiation); Model 3 was adjusted for PM1, meteorological
factors (wind speed and solar radiation) and indoor air pollution (cooking
fuel); Model 4 was adjusted for PM1, meteorological factors (wind speed
and solar radiation), indoor air pollution (cooking fuel) and individual
characteristics (including age, sex, marital status, BMI, alcohol drinking sta-
tus, smoking status, residence, housing area, socioeconomic level, educa-
tional qualifications; day sleeping, night sleeping).

Restricted cubic splines at the 5th, 35th, 65th and 95th percentiles were
used to portray the relationship between the concentration of PM1–2.5 and
incident asthma, and the model fit better with knots of 4 (i.e., degrees of
freedom of 3) according to the value of the C-index (the larger, the better)
(Table S1), which was consistent with previous studies (Durrleman and
Incident asthma P

No Yes

57 (13) 59 (10) 0.012
0.635

3155 (50.10) 64 (62.14)
3142 (49.90) 39 (37.86)

<0.001
582 (9.24) 10 (9.71)
5715 (90.76) 93 (90.29)

<0.001
293 (4.65) 10 (9.71)
2784 (44.21) 49 (47.57)
1521 (24.15) 12 (11.65)
542 (8.61) 10 (9.71)
1157 (18.36) 22 (21.36)

<0.001
4105 (65.19) 59 (57.28)
2187 (34.73) 44 (42.72)
5 (0.08) –

<0.001
3737 (59.35) 47 (45.63)
2559 (40.64) 56 (54.37)
1 (0.01) –

<0.001
2902 (46.09) 52 (50.49)
3395 (53.91) 51 (49.51)

<0.001
5086 (80.77) 82 (79.61)
1209 (19.20) 21 (20.39)
2 (0.03) –
100 (68) 90 (70) 0.134

<0.001
16 (0.25) 1 (0.97)
161 (2.56) 2 (1.94)
3290 (52.25) 43 (41.75)
1807 (28.70) 34 (33.01)
600 (9.53) 15 (14.56)
423 (6.71) 8 (7.77)

<0.001
1540 (24.46) 29 (28.16)
4750 (75.43) 74 (71.84)
7 (0.11) –

0.540
2671 (42.42) 45 (43.69)
3220 (51.14) 51 (49.51)
406 (6.44) 7 (6.80)

0.005
3950 (62.73) 60 (58.25)
1914 (30.40) 33 (32.04)
433 (6.87) 10 (9.71)

quartile range; NA, not available. The bolded P value < 0.05.
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Simon, 1989; Lee et al., 2018; Malloy et al., 2009). Since there were no
specific limit values for PM1–2.5, we used the median values of PM1–2.5,
10 μg/m3 and 5 μg/m3 as reference values to plot the exposure-response
curves for PM1–2.5. The limiting values of 10 μg/m3 and 5 μg/m3 are de-
rived from theWorld Health Organization (WHO) in the Air Quality Guide-
lines (AQG) for the annual average PM2.5, with a target value of 10 μg/m3 in
2005 and revised to 5 μg/m3 in 2021 (Carvalho, 2021).

In addition, to determine potential interactions, we examined the mul-
tiplicative interactions of PM1–2.5 with age, sex, alcohol drinking status,
smoking status, cooking fuel, residence, socioeconomic level, and educa-
tional qualifications. Effect modificationwas analyzedwith categorical var-
iables with the median as the basis for the classification of PM1–2.5 (Liu
et al., 2022).

Various sensitivity analyses were conducted to assess the robustness of
the associations between long-term exposures to PM1–2.5 and incident
asthma, including 1) Model 4 was additionally adjusted for SO2, CO, and
O3 separately; 2) Model 4 was additionally adjusted for chronic lung dis-
ease; 3) Participants were excluded who developed asthma from 2011 to
2013 to avoid potential reverse causality; 4) Model 9 was additionally ad-
justed for time-varying covariates using generalized estimating equations
(GEE) with a logit link; 5) We estimated the relative risk (RR) using
GLMM with a Poisson distribution in the longitudinal analysis; 6) Model
4 was additionally adjusted for temperature and relative humidity which
were potential risk factors for asthma; 7) we added a sensitivity analysis
Table 2
Characteristics of distribution of air pollutants and meteorological factors.

Lag years Pollutants Summary statistics

Mean SD Min

Lag 1 PM1 (μg/m3) 30.34 14.38 0.01
PM1–2.5 (μg/m3) 16.60 6.47 1.99
PM2.5 (μg/m3) 46.94 18.68 3.73
PM10 (μg/m3) 81.66 30.75 13.84
SRA (w/m2) 42.10 24.24 1.45
WIN (m/s) 1.04 0.28 0.55
SO2 (μg/m3) 23.45 18.62 17.58
CO (μg/m3) 8.99 23.65 1.04
NO2 (μg/m3) 31.35 15.78 29.53
O3 (μg/m3) 88.17 25.59 93.21

Lag 1–2 PM1 (μg/m3) 30.31 14.21 1.09
PM1–2.5 (μg/m3) 17.51 7.42 2.70
PM2.5 (μg/m3) 47.82 19.21 5.08
PM10 (μg/m3) 82.39 31.85 14.32
SRA (w/m2) 41.89 24.32 1.44
WIN (m/s) 1.03 0.27 0.56
SO2 (μg/m3) 25.52 18.57 19.76
CO (μg/m3) 9.03 23.63 1.06
NO2 (μg/m3) 31.03 15.89 29.71
O3 (μg/m3) 84.51 24.62 90.84

Lag 1–3 PM1 (μg/m3) 30.77 14.12 1.71
PM1–2.5 (μg/m3) 18.67 8.08 2.31
PM2.5 (μg/m3) 49.44 19.91 5.17
PM10 (μg/m3) 84.37 32.82 14.16
SRA (w/m2) 42.00 24.33 1.44
WIN (m/s) 1.11 0.27 0.64
SO2 (μg/m3) 27.38 18.38 21.66
CO (μg/m3) 9.06 23.61 1.09
NO2 (μg/m3) 30.78 15.93 29.35
O3 (μg/m3) 81.48 23.90 88.60

Lag 1–4 PM1 (μg/m3) 33.29 14.24 1.77
PM1–2.5 (μg/m3) 19.01 8.49 4.92
PM2.5 (μg/m3) 52.30 20.30 7.16
PM10 (μg/m3) 88.82 33.69 16.61
SRA (w/m2) 42.94 24.75 1.46
WIN (m/s) 1.08 0.28 0.55
SO2 (μg/m3) 30.11 18.16 24.48
CO (μg/m3) 9.08 23.59 1.14
NO2 (μg/m3) 31.35 15.80 28.58
O3 (μg/m3) 80.16 23.12 85.49

Notes: Min, minimum;Max,maximum; PM1, particulate matter with aerodynamic diame
μm; PM2.5, particleswith aerodynamic diameters≤2.5 μm; PM10, particleswith aerodyn
CO, carbon monoxide; NO2, nitrogen dioxide; O3, Ozone; SD, standard deviation; P25, 2
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using the minimally adjusted model, determined by a directed acyclic
graph (DAG).

All statistical analyses were performed using R (version 4.0.1) software
with the packages “lme4” and “gee”, and P < 0.05 was considered statisti-
cally significant. The long-term effect was presented as the odds ratio (OR)
and 95 % confidence interval (CI) for incident asthma per 10 μg/m3 incre-
ment in concentrations of PM1–2.5.

3. Results

3.1. Baseline characteristics

In our study, 6, 400 participants were included in the analyses (Supple-
mentary Fig. S1). After a follow-up of 7 years, 103 (1.61 %) individuals de-
veloped asthma (Table 1). The median age at baseline was 57 (IQR= 13).
Participants with asthma were more likely to be male, have a history of
smoking, and have lower educational qualifications than those without
asthma.

Table 2 shows the distribution of the average concentration levels of air
pollutants and meteorological factors in different lag years. Overall, the an-
nual average concentrations of PM2.5 were above theWorld Health Organi-
zation (WHO) regulations throughout the study period. PM1, PM1–2.5,
PM2.5, PM10, NO2, SO2 and O3 showed moderate to high correlations
with each other. Their spearman correlation coefficients were distributed
P25 Median P75 P95 Max

23.91 30.03 38.60 48.22 104.04
11.66 15.86 21.64 25.98 27.66
35.15 43.51 61.40 71.78 119.65
59.50 77.96 109.37 126.74 133.64
22.00 42.54 56.89 86.59 131.31
0.84 1.02 1.18 1.56 2.11
0.19 14.55 17.58 26.30 45.49
0.59 0.88 1.04 1.35 52.45
3.01 22.11 29.53 37.63 42.42
1.11 82.81 93.21 107.47 110.92

24.73 29.82 37.60 48.56 104.45
11.79 17.19 24.38 28.33 30.22
34.66 44.71 63.39 76.36 119.15
58.91 79.14 111.64 132.87 140.41
21.85 42.02 56.31 86.99 131.86
0.86 1.00 1.15 1.53 2.16
0.18 15.83 19.76 30.26 49.50
0.67 0.92 1.06 1.48 52.42
3.52 21.64 29.71 36.56 43.17
3.36 79.87 90.84 99.81 106.52

25.30 30.88 38.26 50.07 103.82
11.77 18.40 26.07 31.40 35.39
36.19 47.94 64.22 78.77 118.50
61.73 80.93 113.35 136.49 146.14
21.95 42.16 56.73 86.80 131.73
0.92 1.10 1.21 1.58 2.33
0.95 17.07 21.66 34.42 50.45
0.69 0.92 1.09 1.53 52.40
3.50 21.64 29.35 36.63 43.15
3.94 77.94 88.60 95.70 101.49

27.65 33.05 41.57 52.32 101.05
11.93 17.84 26.71 32.60 36.99
39.12 50.99 66.00 82.40 116.74
66.20 85.98 115.13 137.68 151.79
22.44 43.33 57.60 87.81 134.00
0.89 1.08 1.20 1.67 2.35
4.64 19.47 24.48 39.17 54.32
0.78 0.97 1.14 1.57 52.36
3.69 22.35 28.58 37.34 43.35
3.50 78.65 85.49 93.36 100.40

ters≤1 μm; PM1–2.5, particles with aerodynamic diameters between 1.0 μmand 2.5
amic diameters≤10 μm; SRA, solar radiation;WIN,wind speed; SO2, sulfur dioxide;
5th percentile; P75, 75th percentile.



Table 3
Spearman correlation coefficients for air pollutants and meteorological factors.

PM1 PM1–2.5 PM2.5 PM10 SO2 CO NO2 O3 WIN SRA

PM1 1.000
PM1–2.5 0.502 1.000
PM2.5 0.919 0.783 1.000
PM10 0.883 0.740 0.946 1.000
SO2 0.613 0.461 0.626 0.617 1.000
CO 0.147 0.218 0.192 0.189 0.547 1.000
NO2 0.812 0.632 0.841 0.798 0.666 0.244 1.000
O3 0.442 0.381 0.470 0.487 0.127 −0.203 0.488 1.000
WIN 0.095 0.005 0.072 0.110 0.252 0.235 0.084 −0.059 1.000
SRA 0.254 0.135 0.210 0.216 0.357 0.281 0.288 0.089 0.405 1.000

Note: PM1, particulate matter with an aerodynamic diameter≤ 1.0 μm; PM1–2.5, particles with aerodynamic diameters between 1 μm and 2.5 μm; PM2.5, particulate matter
with an aerodynamic diameter≤ 2.5 μm; PM10, particulate matter with an aerodynamic diameter≤ 10 μm; SO2, sulfur dioxide; CO, carbon monoxide; NO2, nitrogen diox-
ide; O3, Ozone; WIN, wind speed; SRA, solar radiation; The bolded P value <0.05.
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from 0.40 to 0.95, and O3 was negatively correlated with CO and wind
speed (Table 3).

3.2. The association between PM1–2.5 and incident asthma

The associations with different lag years between long term exposure to
PM1–2.5 and incident asthma are shown in Fig. 1. In Model 1, incident
asthma was not significantly associated with each 10 μg/m3 increase in
the 1-, 2-, 3-, and 4-year moving average concentrations of PM1–2.5. In
Model 2 and Model 3, the association was still not statistically significant,
with a maximum effect size of 1.40 (95 % CI: 1.00–1.98) at 4 years of
Fig. 1. OR (95 % CI) of asthma incidence associated with per 10 μg/m3 increase in
PM1–2.5 concentrations using different lag years in multivariable models.
Abbreviations: OR, odds ratio; CI, confidence interval; Model 1, adjusted for PM1;
Model 2 was adjusted for PM1, meteorological factors (wind speed and solar
radiation); Model 3 was adjusted for PM1, meteorological factors (wind speed and
solar radiation) and indoor air pollution (cooking fuel); Model 4 was adjusted for
PM1, meteorological factors (wind speed and solar radiation), indoor air pollution
(cooking fuel) and individual characteristics (including age, sex, marital status,
BMI, alcohol drinking status, smoking status, residence, housing area,
socioeconomic level, educational qualifications; day sleeping, night sleeping).
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PM2.5 exposure. In Model 4, incident asthma was positively and
significantly associated with PM1–2.5 exposure [lag 1-year: OR = 1.82
(95 % CI: 1.11–2.98), lag 1_2 year: OR = 1.95 (95 % CI: 1.24–3.07), lag
1_3 year: OR = 1.95 (95 % CI: 1.26–3.03) and lag 1_4 year: 1.88 (95 %
CI: 1.26–2.81)].
3.3. Exposure-response curve between PM1–2.5 exposure and incident asthma

Restricted cubic splines with 4 knots were used to portray the exposure-
response curve between PM1–2.5 exposure and incident asthma for different
time window moving averages (Fig. 2). As shown in Fig. 2, the nonlinear
exposure-response relationship tended to be stronger as the moving lag
years increased. Compared with the AQG 2005 standard of the WHO, the
exposure-response relationship curve under the AQG 2021 standard
showed an upward shift. Evidence was found for the long-term effects of
PM1–2.5 on the incidence of asthma.
3.4. Interaction analysis and stratified analyses

Table 3 shows the multiplicative interaction effect of the association be-
tween the asthma incidence and the 1-, 2-, 3-, and 4-year moving average
concentrations of PM1–2.5. Significant interactions were observed between
the socioeconomic level and long-term exposure to PM1–2.5 with different
lag years (Plag1-y = 0.013, Plag1_2y = 0.022, Plag1_3y = 0.022, Plag1_4y =
0.019), and the socioeconomic level significantly alleviated the effect of
PM1–2.5 on the development of asthma (Table 4). Table 5 shows the results
of the effectmodification for socioeconomic level.With low PM, high socio-
economic level as a reference, low socioeconomic level and high PM expo-
sure showed high risk (OR=2.70, 95%CI: 1.26, 5.78). Fig. S2 presents the
statistical significance of the stratified analysis for the association between
asthma incidence and each 10 μg/m3 increase in the 1-, 2-, 3-, and 4-year
moving average concentrations of PM1–2.5. Compared to participants with
higher socioeconomic levels, the impact of PM1–2.5 on asthma was greater
for those with lower socioeconomic levels [(OR = 3.65, 95 % CI:
2.04–6.52) vs. (OR = 1.10, 95 % CI: 0.62–1.95), Z = −2.882, P =
0.004] in lag 1_4 year stratified analyses. Overall, with the increase in the
lag time, the results gradually become significant.

In addition, although the P of interaction terms was not statistically sig-
nificant, we found that participants with a history of smoking had a higher
risk than those who never smoked [1.95 (95 % CI: 1.26–3.03) vs. 1.88
(95 % CI: 1.26–2.81), Z = -2.442, P = 0.015]; men had a slightly higher
risk than women [(OR = 2.12, 95 % CI: 1.3–3.44) vs. (OR = 1.65, 95 %
CI: 0.95–2.87), Z = 0.672, P = 0.502]; participants who used solid fuels
had a higher risk than those who used clean fuels [(OR = 2.64, 95 % CI:
1.49–4.66) vs. (OR = 1.57, 95 % CI: 0.89–2.75), Z = −1.274, P =
0.203]; and participants with lower educational qualifications had slightly
higher risk [(OR = 2.30, 95 % CI: 1.01–5.24) vs. (OR = 1.81, 95 % CI:
1.20–2.74), Z = 0.504, P = 0.614].



Fig. 2. Restricted natural cubic splines with 4 knots of the association between different moving averages of PM1–2.5 and asthma incidence. Notes: (a) showed lag 1,
(b) showed lag 1_2, (c) showed lag 1_3, (d) showed lag 1_4; PM1–2.5, particulate matters with aerodynamic diameters between 1.0 μm and 2.5 μm. The median of PM1–2.5

in lag 1,−2,−3,−4 years respectively were 15.86 μg/m3, 17.19 μg/m3, 18.40 μg/m3, and 17.84 μg/m3.

Table 4
The interaction effect of the association between asthma incidence and 1-, 2-, 3-,
and 4-year moving average concentrations of PM1–2.5 based on GLMM.

Effect modifier Lag 1 Lag 1_2 Lag 1_3 Lag 1_4

Age
Estimate 0.0013 0.0010 0.0005 0.0002
P interact 0.633 0.716 0.834 0.934

Sex
Estimate 0.0266 0.0088 0.0119 0.0142
P interact 0.472 0.786 0.684 0.604

Alcohol drinking status
Estimate −0.0236 −0.0214 −0.0192 −0.0281
P interact 0.228 0.202 0.229 0.058

Smoking status
Estimate −0.0146 −0.0038 −0.0024 −0.0032
P interact 0.459 0.822 0.877 0.830

Cooking fuel
Estimate 0.0348 0.0446 0.0358 0.0256
P interact 0.356 0.183 0.240 0.367

Residence
Estimate −0.0374 −0.0286 −0.0308 −0.0388
P interact 0.513 0.608 0.630 0.336

Socioeconomic level
Estimate 0.0624 0.0516 0.0436 0.0179
P interact 0.013 0.022 0.022 0.019

Educational qualifications
Estimate −0.0197 −0.0241 −0.0106 −0.0177
P interact 0.640 0.510 0.742 0.558

Note: Bolded P-Value <0.05. PM1–2.5, particles with aerodynamic diameters be-
tween 1.0 μm and 2.5 μm.
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3.5. Sensitivity analysis

Similar results of the sensitivity analysis are shown in Table S4 for OR
(95 % CI) in incident asthma per 10 μg/m3 increment in PM1–2.5 exposure.
After additional adjustments for gaseous pollutants (SO2, CO, O3) and the
history of chronic lung diseases, the results remained robust. The associa-
tions between risk factors and asthma did not change substantially when
we excluded participants who developed asthma from 2011 to 2013
(Table S5). PM1–2.5 still behaved as a risk factor after using the GEE
model adjusted for time-varying covariates (Table S6). The results of the
RR values calculated using the Poisson-linked GLMM model are similar to
the results of the main model (Table S7). The effect size of PM1–2.5 was
much larger after including temperature and humidity as risk factors for
Table 5
Association between 4-year moving average of PM1–2.5 (per 10 μg/m3 increase) on
incident asthma based on GLMM.

Socioeconomic level PM1–2.5 OR (95 % CI)

Average and better <17.84 μg/m3 Ref.
≥17.84 μg/m3 0.93 (0.37, 2.34)

Lower <17.84 μg/m3 1.61 (0.36, 7.25)
≥17.84 μg/m3 2.70 (1.26, 5.78)

Note. The bolded estimates correspond to P-value <0.05. PM1–2.5, particulate mat-
ters with aerodynamic diameters between 1.0 μm and 2.5 μm; OR, odds ratio; CI,
confidence interval; Covariates included PM1, meteorological factors (wind speed
and solar radiation), indoor air pollution (cooking fuel), and individual characteris-
tics (including age, sex, marital status, BMI, alcohol drinking status, smoking status,
cooking fuel, residence, housing area, educational qualifications, day sleep, and
night sleep).
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asthma (Table S8). The results of the sensitivity analysis remain consistent
with our main findings based on the minimally adjusted model using a di-
rected acyclic graph (Table S9). The minimally adjusted model was ad-
justed for PM1, wind speed, solar radiation, age, sex, marital status,
residence, socioeconomic level, and educational qualifications, selected
by the directed acyclic graph (Fig. S3).

4. Discussion

This study investigated the association between long-term exposure to
PM1–2.5 and incident asthma in middle-aged and elderly individuals based
on a national cohort study. We observed an increased risk of incident
asthma in middle-aged and elderly adults associated with long-term expo-
sure to PM1–2.5 with different lag structures. Of these, three-year average
PM1–2.5 concentrations had the largest effect on the risk of incident asthma,
and participants with a history of smoking and lower socioeconomic levels
were at higher risk. Sensitivity analyses showed that our results were
robust.

The 7-year incidence of asthma was 1.61% in our study, which is lower
than the annual incidence of 0.5 % (approximately 3.5 % for 7 years)
among adults in Sweden (Rönmark et al., 1997), or the prevalence of
4.2 % reported among Chinese adults aged 20 years or older in a national
cross-sectional survey (Huang et al., 2019). The difference may be due to
the differences study design and the distributions of age, sex, and race. In
addition, the outcome of asthma was based on self-reports in CHARLS,
which may lead to underestimates of asthma incidence.

In this study, we found that PM1–2.5 showed a significant positive asso-
ciation with asthma incidence among middle-aged and elderly adults,
which could be related to the distribution of pollutant particle size in the
human body and its chemical composition. Manojkumar and collegues re-
ported that the deposition fraction of PM2.5 and PM1 is same in the tracheo-
bronchial region but differs in the head and pulmonary regions, indicating
that the deposition of PM1–2.5 may differ from PM1 in the head and pulmo-
nary regions (Manojkumar et al., 2019).

Airway inflammation and oxidative stress had been found to play a role
in the association between PM2.5 and asthma (Ghozikali et al., 2022; Havet
et al., 2019). Exposure to organic aerosols in PM1–2.5 and PM1 had a signif-
icant effect on the granulocyte macrophage colony-stimulating factor re-
lease (Lakhdar et al., 2022). On the chemical components, PM1–2.5 is to
some extent a mixture of anthropogenic activities and natural aerosols.
Compared with PM1, PM1–2.5 has more organic matter, nitrate, dust, and
sea salt, and less carbon (Ramgolam et al., 2009). In China, Qiao et al.
found that PM2.5 was dominated by PM1 on clean days, and the contribu-
tion of PM1–2.5 to PM2.5 increased on haze days (account for 40% of all nat-
ural days) (Qiao et al., 2016). When haze pollution happened, organic
carbon, elemental carbon, and primary organic carbon accumulated faster
in PM1–2.5 than in PM1 (Qiao et al., 2016).

There are other pathogenic mechanisms of PM2.5. A Canadian
population-based cohort study of 800,000 adults in Toronto found that
chronic exposure to iron and copper in PM2.5 was positively associated
with respiratory diseases including asthma (Zhang et al., 2021). PM2.5

and O3 also have an effect on the composition of oropharyngeal microbes
(Zhao et al., 2020b), suggesting that oropharyngeal microbesmay also con-
tribute to asthma status. CO and PM2.5 have been associated with asthma
hospitalization (Ma et al., 2020). The cytotoxicity of fine particulate matter
may increase the contractility of sensitive human bronchial smooth muscle
cells (Zheng et al., 2021).

We observed an increased risk of incident asthma in elderly adults asso-
ciatedwith long-term exposure to PM1–2.5. However, no the associationwas
found for the short-term exposure(Zhang et al., 2020; Zhu et al., 2021).
There is a lack of studies on PM1–2.5 exposure and asthma, so we discussed
them with studies related to PM2.5. In the field of epidemiological studies,
there is no conclusive evidence on how PM2.5 exposure affects asthma. Sim-
ilarly, Lee et al. found that long-term PM2.5 exposure was associated with
asthma incidence in middle-aged and elderly individuals (Lee et al.,
2021a). Another multicountry study concluded that long-term exposure
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to PM2.5 may be a significant risk factor for asthma (Ai et al., 2019). Re-
cently, Keirsbulck. et al. reported that PM2.5 exposure was a trigger for ex-
acerbations of asthma (Keirsbulck et al., 2022). However, the findings of
studies in Canada and New Zealand did not support a positive association
between PM2.5 exposure and asthma incidence (Hales et al., 2021; Shin
et al., 2021), which may be related to the low level of both their population
density and their air pollution.

Stratified analysis showed that individuals with a history of smoking
were more susceptible to PM2.5 related asthma than nonsmokers, which is
consistent with a previous study (Huang et al., 2019). As markers of dam-
age reflecting systemic oxidative stress, plasma fluorescent oxidation prod-
uct levels are much lower in never smokers than in smokers (Havet et al.,
2019; Huang et al., 2019). Evidence for the effect of socioeconomic level
on asthma has been inconclusive. Consistent with previous findings, we
concluded that a low socioeconomic level is a risk factor for asthma (Guo
et al., 2021; Renzi et al., 2022; Safiri et al., 2022). However, several studies
have shown that the risk of asthma is higher in urban cities than in rural
areas (Wang et al., 2021).Wang DY et al. indicated that people with low so-
cioeconomic status were more likely to be physically inactive and to smoke
regularly (Wang et al., 2022a). The effect of socioeconomic level on asthma
may occur through the level of exposure to air pollution. Jbaily et al. found
that a low-income population was consistently exposed to higher PM2.5

levels than a higher-income population, and the gap in exposure between
them increased over time (Jbaily et al., 2022). However, in China, exposure
levels are higher in urban areas than in rural areas (Lee et al., 2021b), so
further studies are warranted to analyze this issue. In addition, we found
that men and solid fuel users and those with low educational qualifications
were more susceptible; however, no statistically significant difference was
observed among the subgroups in this study.

Several studies have reported a linear relationship exposure response
curve relationship between asthma incidence and PM2.5 (Lee et al.,
2021a; Liu et al., 2021b); however, to the best of our knowledge, there is
no such report on PM1–2.5. In this study, we found an S-shaped nonlinear re-
lationship at lag1 and lag1–2 years and a J-shaped relationship at lag1–3
and lag1–4 between PM1–2.5 and asthma. The OR of asthma morbidity
tended to increase with increasing concentrations of PM1–2.5 regardless of
the reference value (median value of PM1–2.5, 10 μg/m3 or 5 μg/m3).
Additional studies are warrant to establish an accurate reference value of
PM1–2.5 to mitigate the increasing incidence of asthma, not limited to
PM2.5 and PM1.

Our study has several strengths. First, we used a longitudinal study de-
sign with a nationwide representative sample of middle-aged and elderly
people. Second, indoor air pollution has recently attracted much attention
due to the expansion of modern lifestyles characterized by intensive urban-
ization and more time spent indoors (Chatkin et al., 2022; Paterson et al.,
2021). We adjusted the model using the fuel used for cooking as an indica-
tor of indoor air pollution to control for the effect of indoor air pollution ex-
posure on the model. Third, we conducted a dual-pollutant model analysis
of PM1 and PM1–2.5 to explore the effect of PM1–2.5 in PM2.5 on asthma
onset. A multipollutant model sensitivity analysis was also performed to
confirm the robustness of the model.

Our study also has some limitations. First, despite the high resolution
(1 km2), individual exposure to air pollutionmay be biased due to unevenly
distributed emission sources, dilution, and physicochemical transforma-
tions. Second, information on physical activity and occupational exposure
were not included, and further study is warranted. Third, the incidence of
asthma in CHARLS was based on questionnaires that were self-reported,
which may lead to misclassification. Four, average PM1–2.5 prior 1 to
4 years before 2018 was calculated as exposure metrics based on the data
availability, and PM data were not available before 2013.

5. Conclusion

Long-term exposure to PM1–2.5 was positively associated with incident
asthma in middle-aged and elderly individuals. Participants with a history
of smoking and lower socioeconomic levels had a higher risk. Additional
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studies are warrant to establish an accurate reference value of PM1–2.5, not
limited to PM2.5 and PM1, to mitigate the increasing incidence of asthma.
More studies are warranted warrant to establish an accurate reference
value of PM1–2.5 to mitigate the growing asthma burden.
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95 % CI 95 % confidence interval
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CO carbon monoxide
O3 ozone
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