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• PM2.5-related deaths increased initially
and then decreased during 2000–2020.

• Populations of low socioeconomic status
suffer more from PM2.5-related deaths
harm.

• Population migration from PAs to devel-
oped cities contributed to premature
deaths.

• Population aging amplified the PM2.5

health burden.
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China suffers from severe PM2.5 pollution that has resulted in a huge health burden. Such PM2.5-related health burden
has long been suspected to differ between China's poverty-stricken areas (PAs) and non-poverty-stricken areas (NPAs).
Yet, evidence-based examination of this long-held belief, which is critical as a barrier of environmental injustice to ad-
vancing China's sustainability, is still missing. Here our study shows that the PM2.5 pollution is more serious in China's
NPAs than PAs—with their annual averages being respectively 54.83 μg/m3 and 43.63 μg/m3—causing higher prema-
turemortality in the NPAs. Compared to economic inequality, China's total PM2.5-related premature mortality was rel-
atively evenly distributed during 2000–2015 across regions of varying levels of gross domestic product (GDP) per
capita but increased slightly in 2015–2020 owing to the dramatic change in age structure. The elderly population in-
creased by 31 %. PM2.5-related premature deaths were more severe for populations of low socioeconomic status, and
such environmental health inequalities could be amplified by population aging. Additionally, population migration
from China's PAs to developed cities contributed to 638, 779, 303, 954, and 896 premature deaths in 2000, 2005,
2010, 2015, and 2020, respectively. Changes in the age structure (53 %) and PM2.5 concentration (28 %) had the
greatest impact on premature deaths, followed by changes in population (12 %) and baseline mortality (8 %). The
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contribution rate of changes in the age structure and PM2.5 concentrationwas higher in PAs than inNPAs. Ourfindings
provide insight into PM2.5-related premature death and environmental inequality, and may inform more equitable
clean air policies to achieve China's sustainable development goals.
1. Introduction

Fine particulate matter less than 2.5 μm in diameter (PM2.5) is now a
major environmental factor contributing to the global disease burden
(Southerland et al., 2022). An estimated global total of 4.1 million deaths,
7.3 % of global deaths in 2019, were attributed to PM2.5 exposure
(Murray et al., 2020). For China, particularly, its rapid urbanization and in-
dustrialization have resulted in even more severe PM2.5 pollution, leading
to significant impacts on human health (Geng et al., 2021; McDuffie
et al., 2021; Xue et al., 2022; Yue et al., 2020). In fact, China's ambient
air pollution is the fourth leading risk factor for its premature mortality
(Han et al., 2022), having caused >1 million premature deaths per year in
the recent years (Hong et al., 2019).

In developed countries, the poor and disadvantaged minorities are sys-
tematically exposed to high levels of environmental harms (Kopas et al.,
2020). Similar to the uneven exposure to pollution among minorities and
poor households in the United States, India's air pollution from coal-fired
power plants is heavily concentrated in poor and low-caste communities
(Kopas et al., 2020). In Italy, environmental justice issues are not perceived
in racial and ethnic terms, but in terms of social categories and the gender
composition of households (Germani et al., 2014). In China, a large gap in
the level of development exists between different regions, and relatedly, the
distribution of polluting enterprises is notably unbalanced across China
(Liu et al., 2021b; Ma, 2010b). To date, most studies about environmental
pollution and health have focused on the more developed large cities and
urban-rural gaps (Chan and Yao, 2008; Lin et al., 2021; Shan et al., 2020;
Zhao et al., 2018), but few have examined the environmental pollution
and health burden differences between the poverty and non-poverty areas
in China. The air pollution caused by China's uneven economic develop-
ment may have an unequal impact on the entire population (Liu et al.,
2021a). As a main environmental factor affecting health, pollution in-
creases the level of health inequality (Yang and Liu, 2018). However,
there are few studies analyzing China's environmental health from the per-
spective of environmental inequality, and it remains unknown how the
health effects of PM2.5 are distributed among different economic groups.

Population migration could cause changes in the environmental health
burden (Shen et al., 2018). Population migration from rural to urban areas
owing to urbanization has played a positive role in rural poverty reduction
(Pryce et al., 2021; Zhang et al., 2022). Over 290 million people have
moved to urban areas in the past three decades (Zhang et al., 2022). Previ-
ous studies have shown that 79–98 % of the increase in urban population
affected by PM2.5 was attributable to rural-urban migration (He et al.,
2016). Most of China's migration population prefers to live in modern Chi-
nese cities that are usually heavily polluted, thus suffers from more serious
PM2.5 health exposure (Schoolman andMa, 2012), and population aggrega-
tion will increase the health burden (Lin et al., 2021; Liu et al., 2021c).
Owing to a limited amount of data, research on the relationship between
PM2.5 pollution and migrant health in China is limited, and existing esti-
mates of migrant health focus on interprovincial migration (Lin et al.,
2021; Liu et al., 2021c; Shen et al., 2018). Few studies have examined the
health burden of migrants from poverty-stricken areas to developed cities.
In the above context, this study aims to examine the PM2.5-related health
burden caused by population migration from poverty-stricken areas to de-
veloped cities in China at the city and county levels.

Importantly, China's population aging, in addition to population migra-
tion, has also contributed significantly to its PM2.5-related health burden
and premature deaths (Geng et al., 2021; Yue et al., 2020). China's aging
population increases the number and proportion of at-risk population
groups exposed to PM2.5 (Xu et al., 2021). Populations are more vulnerable
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to air pollutionwhen they exceed a reduced age-standardized baselinemor-
tality rate (Geng et al., 2021). A robust and comprehensive understanding
of the spatiotemporal dynamics of premature deaths and the relative contri-
butions of drivers on a long-term scale is urgently needed to better mitigate
PM2.5-related health burden and to guide future air pollution policymaking
in China.

Here with more accurate city-level population data and age structure
data, we conducted a long-term scale analysis of China's PM2.5-related
health burden from 2000 to 2020. To our best knowledge, this is the first
comparative analysis about the PM2.5-related health burden of PAs and
NPAs in China on a long-term scale. We quantified the corresponding
health disparities at the municipal level using a Gini coefficient based on
mortality from a health inequality perspective. We also quantified the im-
pact on PM2.5-related premature deaths from the perspective of population
aging and migration. Our research questions include: (1) How did the mor-
tality burden due to long-term PM2.5 exposure differ between China's
poverty-stricken areas (PAs) and non-poverty stricken areas (NPAs), and re-
latedly, how has the inequality evolved from 2000 to 2020 in China? (2) To
what extent has China's population migration from PAs to developed cities
contributed to PM2.5-related health burden? (3) How did changes in popu-
lation, age structure, baseline mortality, and PM2.5 variously contributed to
the premature deaths of PAs and NPAs?

2. Materials and methodology

2.1. Study area

In this study, we considered two types of poverty areas; absolute pov-
erty areas and relative poverty areas. In the first type, we included 832 pov-
erty counties identified by the State Council Leading Group Office of
Poverty Alleviation and Development, referred to in our study as PAs
[Fig. 1(a)]. This type covered 22 provinces and accounted for 44% ofmain-
land China. The second type was determined by the GDP per capita at the
municipal level and GDP per capita at the provincial level. When the GDP
per capita at the municipal level was always lower than the GDP per capita
at the provincial level in 2000–2020, the areas were referred to as relative
poverty areas (RPAs), including 177 cities [Fig. 1(b)]. This type accounted
for 51 % of mainland China. The study area included mainland China,
while excluding Taiwan, Hong Kong, and Macao.

2.2. Data sources

Data on the resident population and age structure at the municipal level
are from the National Institute of Statistics, for 2000, 2010, and 2020 are
from the provincial census data, and for 2005 and 2015 are from the 1 %
Population Sampling Survey Data (NBSC, 2022). Satellite-derived PM2.5

concentration data of 1 km2 grid cells were collected from the
ChinaHighAirPollutants (CHAP) database (Wei et al., 2020, 2021), which
can be downloaded from https://doi.org/10.5281/zenodo.3539349. The
county-to-county RMW migration data for 2010 were obtained from
Shen's research (Shen et al., 2018). Population data of 1 km2 grid cells
used the LandScan population datasets of 2000, 2005, 2010, 2015, and
2019, which are downloaded from https://landscan.ornl.gov/landscan-
datasets. The original disease-specific baseline mortality data in different
years were obtained from the Global Burden of Disease (GBD) database
(https://vizhub.healthdata.org/gbd-results/), and the mortality data in
2019 were used to replace the mortality data of 2020 due to data unavail-
ability. The data of GDP, per capita GDP, average salary of employees, in-
vestment in fixed assets, number of students in regular colleges and

https://doi.org/10.5281/zenodo.3539349
https://landscan.ornl.gov/landscan-datasets
https://landscan.ornl.gov/landscan-datasets
https://vizhub.healthdata.org/gbd-results/


Fig. 1. The research area of this study. (a) Poverty-stricken areas. (b) Relative poverty areas.
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universities, passenger traffic, regional area, and population density of each
city are obtained from the Chinese Statistic Yearbook (NBSC, 2022).

2.3. Research methods

2.3.1. Estimating deaths attributable to PM2.5 pollution
To quantify the environmental health burden of each city exposed to

PM2.5, we applied the integrated exposure response (IER) model to calcu-
late premature deaths due to PM2.5 (Burnett et al., 2014). Many previous
studies have used this method to estimate deaths attributable to PM2.5 pol-
lution (Lin et al., 2021; Liu et al., 2016; Liu et al., 2021c; Lu et al., 2019). In
this study, premature deaths was determined by four factors: population,
age structure, disease-specific death rates, and the attributable fraction
(AF). The premature deaths and premature mortality were calculated ac-
cording to a formula, as follows:

ΔMi;t ¼
X
i;a;d

Popi;t � AgePi;a;t � Ratei;a;d;t � AFi;d;t
� �

ð1Þ

ΔM
0
i;t ¼

ΔMi;t

Popi;t
� 100; 000 ð2Þ

where ΔMt and ΔMt
’ are premature deaths and premature mortality (/

100,000) for a specific disease attributable to PM2.5 exposure in year t,
Pop refers to the population after correcting for census data, AgeP refers
to the age group ratio, Rate refers to the baseline mortality, AF refers to
the attributable factor, i refers to the grid cell, a refers to the age group,
and d refers to the disease. The age structure is divided into three catego-
ries: 0–14 years old, 15–64 years old, and 65 years old and above. The
most common non-communicable diseases in China are associated with
PM2.5, including chronic obstructive pulmonary disease (COPD), ischemic
heart disease (IHD), lung cancer (LC), and stroke (Zhou et al., 2016).
Grids in the same city have shared age structures. TheRate andAFwere cal-
culated using the method described in Section S1 of the supplementary ma-
terial.

2.3.2. Analyzing environmental inequality
In this study, we estimated environmental and economic inequalities to

assess environmental justice. The purpose of environmental justice is to ef-
fectively protect the environmental rights of people, which can often be un-
equal, and minimize the environmental impacts of unequal environmental
justice rights, thereby preserving the worth and dignity of people. Increas-
ing changes in the Chinese economy and resulting air pollution could have
unequal effects on the entire population. We used the Lorenz curve to
3

describe the distribution of GDP per capita. Owing to the lack of data on
per capita income at the municipal level, we chose per capita GDP as a
proxy indicator (Liu et al., 2021a; Zhao et al., 2019). All GDP per capita
data were counted in constant prices with the base year 2000 (Ma,
2010a; Rokicki and Hewings, 2016), the method was described in
Section S2 of the supplementary material. We graded the GDP per capita
of different cities according the GDP per capita of low-income, lower-
middle-income, low & middle income, middle-income, and upper-middle-
income countries as defined by the World Bank (https://data.worldbank.
org/) in 2020. And GDP per capita data were calculated in constant prices
with the base year 2000, namely, <2.5, 2.5–8, 8–15, 15–20, 20–30,
30–40, and >40 thousand RMB. This method was used to characterize the
distribution of premature mortality. Population and premature mortality
were ranked by GDP per capita and plotted with their cumulative shares;
the cumulative share of the population on the horizontal axis and prema-
ture mortality on the vertical axis. Lorenz curves were constructed at the
municipal level to evaluate the distribution of mortality between cities as
a measure of municipal inequality. As shown in Fig. S1, the Gini coefficient
G is equal to the area of A divided by the sum of the areas of A and B or the
area of A divided by 0.5. The Gini coefficient represents the degree of in-
equality, with higher values indicating higher levels of inequality. The
Gini coefficient G is calculated as:

G ¼ 1−
Xn
i¼1

xi−xi−1ð Þ yi þ yi−1ð Þ ð3Þ

where n represents the number of cities; xi refers to the cumulative percent-
age of the population in city i; yi refers to the cumulative percentage of the
PM2.5-attributable premature mortality.

2.3.3. Predicting migrating populations from PAs and estimating immigrant
health status

Owing to data limitations, we used a random forest model to predict
more granular city-to-city or county-to-countymigration data. Random for-
est (RF) models are an ensemble method of decision trees that can be used
for the classification of discrete outcome variables or the regression of con-
tinuous variables and are particularly powerful tools when there are strong
nonlinearities or interactions between variables in the data (Best et al.,
2022). Population migration is a complex process. Studies have demon-
strated that migration activities are often influenced by a combination of
political, social, economic, and environmental drivers (Cao et al., 2018;
Liu et al., 2015; Wang et al., 2021). Random forest models can assess vari-
able importance and account for complex nonlinear interactions between
variables, thereby achieving high prediction accuracy without overfitting.

https://data.worldbank.org/
https://data.worldbank.org/
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It is also possible to use a combination of categorical, ordinal, and
continuous-valued variables as inputs without dummy variables or scaled
data. Therefore, the random forest model was used to predict the migration
population.

Based on data availability, we used municipal data from 2010 to train
the model. The model was trained with the distance between origin and
destination, population, GDP, per capita GDP, average salary of employees,
investment in fixed assets, number of students in regular colleges and uni-
versities, passenger traffic, regional area, and population density as inde-
pendent variables x, and population migration as the target result
variable y. These variables were used to predict migration population.
This method was described in Section S3. 80 % of the data were randomly
selected as the training dataset, and the remaining 20 % were used to test
the accuracy of the model. There were two major hyperparameters affect
the prediction ability of the RF model: the number of regression decision
subtrees (n_estimators) and the number of features in the feature
(max_features) subset randomly selected. The optimal combination was
500 and 10. The NMB and R2 of the RF model in the test dataset were not
far more than those in the training dataset (Table S9), which implied that
the model was not overfitting, and has good generalization performance
to effectively predict the migration population. The trained model was
then used to predict the number of migrants in 2000–2020 and showed
that city-to-city population migration must be allocated. We assumed that
the migration ratios between counties within the same city to different re-
gions were the same. Using the resident population of the emigrated
counties as the distribution basis, the migration population of each city
was divided at the county level. In the 2000 and 2010 censuses, the age
range of 86.6 % and 85.5 % of the migrant population, respectively, was
15–64. Therefore, we assumed that the age of the migrated population
was 15–64 years old and calculated the number of premature deaths
using the baseline mortality data of 15–64 year-olds. Finally, we compared
premature mortality in the pre-migration and post-migration scenarios.

2.3.4. Decomposing the effects of individual factors
We dissected the contributions of population, PM2.5, age structure, and

the rate of deaths owing to diseases to the change in ΔM using the decom-
position method from GBD (GBD 2016 Risk Factors Collaborators, 2017)
and the study by Yue et al. (2020). The decomposition method estimates
the contribution of the factors by sequentially introducing each factor
into the ΔM equation. Based on the four factors in 2000, premature death
caused by each factor was estimated by introducing the population, age
structure, baseline mortality, and attributable factors in 2005, 2010,
2015, and 2020 into the calculation formula of attributable deaths. The for-
mula is as follows:

Mt0 ¼
X
i;a;d

Popi;t0 � AgePi;a;t0 � Ratei;a;d;t0 � AFi;d;t0
� �

ð4Þ

At ¼
X
i;a;d

Popi;t � AgePi;a;t0 � Ratei;a;d;t0 � AFi;d;t0
� �

ð5Þ

Bt ¼
X
i;a;d

Popi;t � AgePi;a;t � Ratei;a;d;t0 � AFi;d;t0
� �

ð6Þ

Ct ¼
X
i;a;d

Popi;t � AgePi;a;t � Ratei;a;d;t � 1−AFi;d;t
1−AFi;d;t0

� AFi;d;t0

� �
ð7Þ

Mt ¼
X
i;a;d

Popi;t � AgePi;a;t � Ratei;a;d;t � AFi;d;t
� �

ð8Þ

CAt ¼
At−Mt0 jj

At−Mt0 jj þ Bt−Atj þ Ct−Btj þ Mt−Ctjjjj ð9Þ

CBt ¼
Bt−Atjj

At−Mt0 jj þ Bt−Atj þ Ct−Btj þ Mt−Ctjjjj ð10Þ
4

CCt ¼
Ct−Btjj

At−Mt0 jj þ Bt−Atj þ Ct−Btj þ Mt−Ctjjjj ð11Þ

CDt ¼
Mt−Ctjj

At−Mt0 jj þ Bt−Atj þ Ct−Btj þ Mt−Ctjjjj ð12Þ

where t0 and t refer to the base year (2000 in this study) and target years
(2005, 2010, 2015, and 2020), respectively.Mt0 refers to the annual deaths
attributable to PM2.5 in the base year, which were calculated based on fac-
tors in the base year. At, Bt, and Ct are the intermediate variables that con-
sider the changes in population, age structure, and death rate incrementally
from the base year to the target year. Mt refers to the annual deaths attrib-
utable to PM2.5 in the target year, which considers all changes in the four
factors. CAt, CBt, CCt, and CDt are the contribution rates of population, age
structure, baseline mortality, and PM2.5, respectively, to changes in the
number of deaths (%). A more detailed description of each step showed
in the Section S4 of the supplementary material.

3. Results

3.1. Spatial distribution and the inequality of premature deaths attributable to
PM2.5

3.1.1. Spatial and temporal distribution of PM2.5-attributable premature deaths
The spatial distribution of premature deaths caused by PM2.5 in China is

shown in Fig. 2, and the changes of deaths is shown in Fig. 3. The number of
premature deaths from 2000 to 2020 initially increased and then decreased
[Fig. 4(a)]. The total numbers of premature deaths in 2000, 2005, 2010,
2015, and 2020 were 1.02, 1.41, 1.52,1.36, and 1.33 million, respectively.
For example, in 2015, our results were higher than those of Cohen et al.
(2017) and lower than those of Li et al. (2018), Lin et al. (2021), and
Song et al. (2017) (Table S2). Specifically, stroke and IHDwere the leading
causes of death, accounting for 51 % and 26 %, on average, of the total an-
nual deaths, respectively. The number of deaths owing to IHD increased an-
nually. The regions with high premature deaths mainly included Beijing-
Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD),
and Central China. And changes in premature deaths were more obvious
in these regions [Fig. 3]. From 2000 to 2010, owing to the sharply increase
of PM2.5 concentration (+13.17 %), premature deaths increased signifi-
cantly in NPAs in China. During 2010–2015, premature deaths in BTH
(−11,304), YRD (−23,713), and PRD (−10,925) decreased due to the re-
duction of PM2.5 concentration. However, after 2015, premature deaths
have increased in BTH (+3759), YRD (+3035), and PRD (+2899),mainly
because of the population growth and population aging.

The spatial distribution of premature mortality caused by PM2.5 in
China is shown in Fig. S2. The premature mortality from 2000 to 2020 ini-
tially increased and then decreased [Fig. 4(a)]. The regions with high pre-
mature mortality mainly included BTH, YRD, and the central and eastern
regions of China. Changes in the number of premature deaths andmortality
correlated not only with changes in PM2.5, but also with changes in age
structure, as described in Section 3.3. For example, the PM2.5 concentration
was lower in Nantong, Jiangsu Province than in most cities in China; how-
ever, this region had the highest proportion of the elderly population (age
≥ 65) in China (12.44–22.67 %). Nantong was among the top five Chinese
cities in terms of annual premature mortality.

3.1.2. Changes in premature mortality in poverty and non- poverty areas
China's poverty counties are mainly concentrated in the southwest and

northwest regions of the country, and developed cities are mainly in the
eastern coastal regions [Fig. 1(a)]. In general, the PM2.5, concentration,
and premature mortality in both regions initially increased and then de-
creased [Fig. 4(b)]. The PM2.5 concentration and premature mortality in
China were lower in PAs than in NPAs. This is because, in China, polluting
enterprises are mainly located in more developed cities and drive their eco-
nomic development and accelerated urbanization (Liu et al., 2021b; Ma,
2010b). Premature mortality increased faster in PAs (+44.76 %) than in
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Fig. 3. The spatial distribution of the changes in PM2.5-attributable premature deaths (the shaded areas in the figure are PAs).
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NPAs (+38.38 %) from 2000 to 2010 and decreased faster in PAs
(−23.75 %) than in NPAs (−15.85 %) from 2010 to 2020. From 2000
to 2010, the growth rate of premature mortality in most provinces was
higher in PAs than in NPAs owing to the faster aging population and
increasing PM2.5 pollution in PAs. From 2010 to 2020, the decline rate
of PM2.5 pollution was slower in PAs (−23.05 %) than in NPAs
(−50.26 %), but rapid population aging in NPAs (+56.44 %) slowed
the reduction in premature mortality.

The premature mortality in some provinces was higher in PAs than in
NPAs in the same province. For example, in 2010, in Jilin and Gansu Prov-
ince, premature mortality was higher in the PAs than in the NPAs of the
province [Table S6] owing to the difference in the proportion of the elderly
population between PAs and NPAs. Even though the PM2.5 concentration
was higher in NPAs than in PAs, the proportion of the elderly population
in PAs was larger, which resulted in higher premature mortality in PAs
than in NPAs. The difference in premature mortality between the two
areas within Sichuan province was the largest; the average annual prema-
ture mortality in NPAs of the province was 44.97/100,000 higher than
that in PAs. Owing to the much higher PM2.5 concentrations of NPAs and
the proportion of the elderly population compared to PAs, this difference
increased the gap in premature mortality between the two areas [Fig. 4].
From 2000 to 2010, the growth rate of premature mortality in the PAs in
Guangxi and Hainan provinces (+70.20 % and 68.94 %, respectively)
was the highest, and it was higher than that in NPAs (+52.35 % and
55.75 %, respectively). However, the growth rate of premature mortality
in NPAs of the Xinjiang and Qinghai provinces (+46.79 % and + 46.36
%, respectively) was higher than in PAs (+19.63% and+32.93%, respec-
tively) owing to the higher growth rate of the proportion of the elderly pop-
ulation in NPAs (PAs: +8.25 %, +25.72 %; NPAs: +47.28 %, 49.79 %).
From 2010 to 2020, the decline rate of premature mortality in PAs
(−23.05 %) was higher than this in NPAs (−15.85 %), because PAs had
6

a relatively low proportion of the elderly population, and the PM2.5 concen-
tration also decreased significantly (−47.92 %) in these years.

Similar to PAs and NPAs, the PM2.5 concentration and premature mor-
tality in both RPAs and non-relative poverty areas (NRPAs) initially in-
creased and then decreased [Fig. 4(c)]. Both PM2.5 concentrations and
premature mortality were lower in the RPAs. RPAs account for 51 % of
mainland China, but the population in this region is less than that of
NRPAs, and its proportion is gradually decreasing. The population of
RPAs in 2020 accounted for only 43 % of the total population owing to
the population migration and concentration in developed cities. There
were more premature deaths in NRPAs between 2000 and 2020. As the
population was concentrated and PM2.5, pollution was serious in NRPAs,
the economy of regions such as BTH, YRD, and PRD, was relatively devel-
oped. Consequently, these contributed to a higher number of premature
deaths in the three regions. Premature mortality increased faster in RPAs
(+44.29 %) than in NRPAs (+38.93 %) from 2000 to 2010, but decreased
faster in NRPAs (−19.07 %) than in RPAs (−18.62 %) from 2010 to 2020.
When pollution increases, population aging accelerates the increase in pre-
mature mortality, and when pollution decreases, population aging slows
down the decline in premature mortality. Comparing the RPAs and
NRPAs within each province, we found that the difference between the
two regions in Guangdong Provincewas the largest [Table S7]. The propor-
tion of the elderly population in developed cities within Guangdong Prov-
ince was 4.53 % lower than that in relatively poor cities, and the
difference in concentration was not significant. Therefore, premature mor-
tality was lower in NRPAs than in RPAs within Guangdong Province, and
this difference was the largest compared with other provinces.

3.1.3. Environmental health equality during 2000–2020
With rapid urbanization and industrialization, the uneven distribution

of polluting enterprises among different socioeconomic groups has become



Fig. 4. Changes in premature death. (CPM refers to the PM2.5 concentration, ΔM’ refers to premature mortality, ΔM refers to premature deaths, and age (≥ 65) refers to the
elderly population percentage.)
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a prominent environmental and social problem in China during the transi-
tion period (Liu et al., 2021b). Additionally, the health burden caused by air
pollution is not evenly distributed in China and air pollution exposure has
different health effects on different socio-economic groups in China; these
differences result from environmental and health inequalities (Jiao et al.,
2018). In this study, we used city-level indicators to test whether poorer cit-
ies bear a disproportionate public health burden owing to PM2.5. Fig. 5
shows the Lorenz curves of municipal inequality for 2000, 2005, 2010,
2015, and 2020.

Premature deaths related to PM2.5 disproportionately harm populations
of low socioeconomic status [Fig. 5]. During the period 2000–2020, the
bottom 20 % of China's population (ordered by GDP per capita) earned
an average of only 10 % of the total GDP per capita, yet experienced an av-
erage of 22 % of premature deaths caused by PM2.5. In comparison, the
upper 20 % of China's population earned an average of 33 % of the total
GDP per capita and experienced 14 % premature deaths caused by PM2.5.
The municipal GDP Gini coefficient, G, gradually became more balanced
from approximately 0.31 in 2000 to 0.09 in 2020. Especially, Gini coeffi-
cient dropped dramatically from 0.18 in 2015 to 0.09 in 2020. The rapid
population aggregation of the medium- and high-GDP per capita cities,
7

and the slowing down of overall GDP per capita growth in these medium-
and high-GDP per capita cities led to an equalization of economic develop-
ment between cities. The equity in GDP per capita improved across Chinese
cities (Table S8). The population with a GDP per capita of <8000 decreased
from 67.3 % in 2000 to 0.07 % in 2020. This population experienced pre-
mature deaths, which decreased from 70.6 % in 2000 to 0.2 % in 2020.
The rate of decline was as high as 99.7 %.

Compared with economic inequality, PM2.5-related premature mortal-
ity was relatively evenly distributed across the GDPper capita in China's cit-
ies between 2000 and 2015. However, the equity of premature mortality
showed a downward trend among Chinese cities and its Gini coefficient
in 2020 exceeded that of GDP per capita. With the increasing severity of
air pollution (from 2000 to 2010), the health disparities between people
of different socioeconomic statuses will increase (Jiao et al., 2018). The
fairness in the distribution of premature mortality was highest in 2020.
There was a smaller gap in premature mortality between RPAs and
NRPAs in 2020 [Fig. 4(c)]. This means that lower economic levels of the
population bear the brunt of higher pollution exposure. The elderly popula-
tion who are most vulnerable to PM2.5, are more concentrated in economi-
cally underdeveloped areas [Fig. 4(c)]. Population aging may amplify



Fig. 5.Municipal Lorenz curves for PM2.5-attributable premature mortality and economic inequality. The diagonal is the line of perfect equality. The economic inequality
initially increased and then decreased from 2000 to 2020. The premature mortality was distributed fairly more equitably than the GDP per capita. The poor population
(GDP per capita <8000) experienced quickly decreasing premature deaths.
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inequalities in environmental health in the context of relatively balanced
economic development.

Similar to the mortality-based Gini coefficient, the Lorenz curve shows
that each disease has a disproportionate impact on cities with low GDP
8

per capita (Fig. S4). LC mortality was distributed relatively uniformly,
and IHD mortality was the most inhomogeneous. The bottom 40th percen-
tile of the Chinese population experienced premature deaths from IHD
caused by PM2.5, increasing from 43 % in 2000 to 50 % in 2020.
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3.2. Changes in the environmental health burden of migration from PAs

3.2.1. Changes in the characteristics of the migration process
The predictions of the random forest model were in good agreement

with the actual data, with very high data accuracy (0.94 in R2, 5.8 % in
NMB; Fig. S5). The distance between the origin and destination, population
of origin, and destination were the three most important variables, which
were determined by identifying the feature importance among the vari-
ables (Table S10). The proportions of these three variables in the final mi-
gration population were 42.82 %, 10.58 %, and 7.12 %, respectively.

The number of people who moved from PAs to developed cities from
2000 to 2020 initially decreased and then increased [Fig. 6]. These num-
bers were 24, 19, 21, 32, and 42 million in 2000, 2005, 2010, 2015, and
2020, respectively. In terms of the choice of migration destination, the pop-
ulation that migrated across provinces wasmainly concentrated in the east-
ern coastal areas (annual average of 25.4 %), while the population moving
to the northeast areas was lower (annual average of 3.7 %). Northeast
China is an inactive immigrant area, while developed cities in the eastern
coastal area have multiple advantages, such as policy, location, industrial
agglomeration, historical foundation, and resource and environmental car-
rying capacity (Cheng et al., 2019).

It is worth noting that >20 % of large-scale migration flows of >10,000
people choose tomove to developed cities in the southwest every year. This
is mainly because there are nearly 32 % poor counties in Southwest China,
and the most important factor affecting migration is distance. The migra-
tion destination was selected based on the principle of proximity. The
super-large migration flows of >30,000 people were mainly intra-city and
intra-provincial migrations. The largest number of super-large migration
flows occurred in Chongqing, and the number of people who moved to
Chongqing from PAs annually (including intra-city migration) remained
in the top five (Table S11). Chongqing is not only located in the central en-
circlement of PAs but also has many poverty-stricken counties in the city.
Intra-city population flow and out-of-city immigration activities occur
more actively in Chongqing.

3.2.2. Changing trend of air pollution health effects accompanying population
migration

Before 2015, PM2.5 pollutionwas serious inmost developed cities. Thus,
72–95 % of the migration behavior was concentrated in moving from high
pollution areas to high pollution areas (Table S12). In 2020, the PM2.5 con-
centration was reduced to 30.92 μg/m3 nationwide, and 40 % of people
moved from light pollution areas to light pollution areas, while 29 %
moved from light pollution areas to high pollution areas. A comparison of
the places of origin and destination showed that 71 %, 74 %, 68 %, 68 %,
and 63 % of the migration occurred from less polluted areas to heavier pol-
luted areas in the years 2000, 2005, 2010, 2015, and 2020, respectively
(Table 1). Air pollution had little effect on people's willingness to move.

The total population moving from poor areas to developed cities ini-
tially decreased and then increased; the number of premature deaths exhib-
ited the same trend [Fig. 7(a)]. After the population of PAs moved to
developed cities, they became affected by the health burden of the city. In
2005, the premature mortality caused by PM2.5 was the highest at 37.19
Table 1
Numbers of migrants and the associated net health impacts.

Year Migration
population

Premature deaths Premature
mortality/(100,000)

The proportion
of migrants
moving from less
polluted areas to
heavily polluted
areas

Before
migration

After
migration

Before
migration

After
migration

2000 23,513,039 6468 7106 27.51 30.22 71 %
2005 18,784,295 6206 6986 33.04 37.19 74 %
2010 20,775,188 6626 6929 31.89 33.35 68 %
2015 31,663,433 8829 9783 27.89 30.90 68 %
2020 41,858,166 9133 10,029 21.82 23.96 63 %
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per hundred thousand people [Fig. 7(c)], owing to 74 % of the migrating
population moving from low pollution areas to high pollution areas, with
the highest average PM2.5 concentration of 65.83 μg/m3 in developed cit-
ies. After moving into developed cities, high concentrations of PM2.5 pollu-
tion were associated with higher premature mortality (Fig. S6). Developed
cities in central China had more serious PM2.5 pollution and higher prema-
ture mortality in the migrant population. Conversely, less polluted south-
western China had the lowest premature mortality rate.

The comparison before and after migration revealed that the number of
premature deaths and the mortality of people in PAs before moving out
were lower than those after moving out owing to the more serious PM2.5

pollution in developed cities. In 2005, the difference in PM2.5 concentration
between poor areas and developed cities was the largest, with a difference
of 13.52 μg/m3. This led to a large gap in premature mortality caused by
PM2.5, with a gap of 4.15/100 thousand people [Fig. 7(c)]. The overall pre-
maturemortality in 2020was lower than that in other years, but the prema-
ture mortality in impoverished areas in Xinjiang was higher than that in
previous years, which was different from the pattern in other regions
[Fig. 7(d)]. Because the PM2.5 concentration in Xinjiang in 2020was higher
than in previous years.

Migrating from high-pollution areas to low-pollution areas would re-
duce the premature deaths of the migrated population while migrating
from low-pollution areas to high-pollution areas would increase premature
deaths. Premature deaths increased by 638, 779, 303, 954, and 896 in
2000, 2005, 2010, 2015, and 2020, respectively, as>63–74%of themigra-
tion directionwas from lower pollution areas to higher pollution areas from
2000 to 2020.

3.3. Driving factors of the PM2.5-related premature deaths

The results obtained from the preliminary analysis of contribution rates
are shown in Fig. 8. Changes in age structure contributed most to the num-
ber of deaths, followed by changes in PM2.5 concentration, population, and
baseline mortality. Aging in the Chinese population resulted in increasing
annual premature deaths among the elderly population caused by PM2.5

pollution. The proportion of China's population aged 65 years and over in-
creased from 7.0% in 2000 to 13.5% in 2020. Changes in the age structure
of the population caused an increase of 782 thousand premature deaths in
2020 compared to 2000 [Fig. 8(a)]. Changes in the age structure contrib-
uted the most to the number of deaths. And compared to 2000, the changes
in age structure in 2015 contributed the most to the change in premature
deaths (65.26 %) [Fig. 8(b)]. Compared with 2000, changes in PM2.5 con-
centration resulted in approximately 111 thousand premature deaths in
2010 and 668 thousand in 2020 [Fig. 8(a)]. The population of mainland
China increased from 1.27 billion in 2000 to 1.41 billion in 2020, an in-
crease of approximately 11 %. As the population increased, so did the an-
nual premature deaths. Compared with 2000, the population increase
resulted in an increase of 148 thousand premature deaths in 2020.

The impacts of various factors on China's PAs and NPAs are different.
Compared to 2000, the change in age structure caused an increase in pre-
mature deaths in 2005–2020 [Fig. 8(a)]. The largest increase was in
2020, with changes in age structure resulting by 145 and 637 thousand pre-
mature deaths in PAs and NPAs, respectively. It is worth noting that the
change in the population of PAs in 2020 compared to that in 2000 resulted
in 6321 fewer deaths. However, its contribution to NPAs was high and
added 154 thousand deaths. Compared with 2000, the PM2.5 concentration
in NPAs in 2020 decreased by 26.27 μg/m3 and the number of deaths de-
creased by 572 thousand. The four factors had different degrees of influ-
ence on PAs and NPAs, among which the difference in the impact of
population changeswas the largest [Fig. 8(c)]. The contribution rate of pop-
ulation changewas smaller in PAs than inNPAs, but the contribution rate of
changes in age structure and PM2.5 concentration was higher in PAs than in
NPAs.

Therefore, the changes in age structure and PM2.5 concentration con-
tributed significantly to the change in the number of premature deaths in
China from 2000 to 2020 [Fig. 8(b)]. Older people are more susceptible



Fig. 7.Change in themigration characteristics. (a) The total populationmigrated fromPAs to developed cities and the premature deaths of themigrated population caused by
PM2.5 (ΔMbefore and ΔMafter indicate premature deaths before and after migration, respectively) (b) Premature mortality of migrating populations caused by PM2.5 and the
proportion of migrants moving from low-pollution areas to high-pollution areas. (ΔM’before and ΔM’after indicate premature mortality before and after migration,
respectively). (c) and (d), the premature mortality caused by PM2.5 before and after migration, respectively (the part enclosed by the black dashed frame is the Xinjiang
region).
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to PM2.5 exposure. Furthermore, as the population ages, the prevalence of
chronic diseases associated with PM2.5, such as cardiovascular diseases,
will be higher (Xu et al., 2021). The overall mortality level of a region or
population is not only determined by the mortality rate of each age group
but also by the age composition of the local population. For the same region
or population, even if the mortality rate in each age group remains un-
changed, the overall mortality rate may increase owing to an increase in
the proportion of the elderly. Although China's PM2.5 concentration has de-
creased under the constraints of policy, as the population continues to
grow, the contribution of China's population to the number of deaths can-
not be ignored. The results of the driver decomposition analysis suggest
that the health benefits of improved air quality may be offset by population
change. The decline in PM2.5 concentrations was not enough to offset the
effect of population age changes on PM2.5-related deaths. The aging Chi-
nese population is expected to increase the estimated number of premature
deaths.

The influence of each factor on themigrating population is illustrated in
Fig. S7. The increase in the migrating population resulted in an increasing
number of deaths among the population. The number of deaths in 2020 in-
creased by 5501 compared with 2000. Before 2010, increasing PM2.5
11
concentrations increased premature deaths; after 2010, decreasing PM2.5

concentrations reduced premature deaths. Compared with 2000, the de-
creasing PM2.5 concentrations resulted in 4959 fewer premature deaths
among migrants in 2020. Changes in the number of migrants had the
most significant contribution to premature deaths in 2015 (62.09 %)
[Fig. S7(b)]. The size of the migrant population is constantly increasing,
which has become the main factor affecting the change in premature
deaths. Declines in PM2.5 concentrations were not enough to offset the im-
pact of growing migratory populations on premature deaths.

4. Discussion

This study aimed to evaluate the mortality burden related to long-term
exposure to PM2.5, in China's PAs and NPAs, and identify environmental
justice from 2000 to 2020.We also considered the impact of populationmi-
gration on premature mortality owing to exposure to PM2.5 pollution. Com-
pared with other studies, in this study, we used more accurate and granular
municipal census data to increase the accuracy of our findings.

The change in premature deaths from 2000 to 2020 initially exhibited
an increasing trend and then a decreasing one; additionally, premature



Fig. 8. Contributions of different factors to changes in deaths attributable to PM2.5 pollution in China. (a) Changes in the number of premature deaths caused by different
factors at the national level, PAs and NPAs. (b) The contribution of different factors to the change in the number of premature deaths, %. (c) Comparison of the contribution
of different factors to the change in the number of premature deaths in PAs and NPAs, %.
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deaths decreased by 12.19% from 2010 to 2020. In general, the PM2.5 con-
centration and premature mortality were lower in PAs than in NPAs in
China. Polluting enterprises are located in relatively developed areas in
China, thereby not only driving economic development but also causing seri-
ous pollution. However, the changes in pollution and health burdenwere not
the same in poor and non-poor areas. China has prioritized urban develop-
ment at the expense of the rural economy, therebywidening the gap between
urban and rural areas for a long time (Yuan et al., 2018). From 2000 to 2010,
the rapidly aging population in PAs accelerated the increase in premature
mortality, and the migration of the working-age population to developed cit-
ies and the elderly population in rural areas in eastern and central China
caused a rapid increase in premature mortality in the RPAs (Cheng et al.,
2019). Premature mortality in poorer areas is more susceptible to changes
in the PM2.5 concentration and the proportion of the elderly population.
The proportion of the elderly population has the greatest impact. Regional
differences hinder the establishment of harmony and equality in China, and
population aging increases the vulnerability of PAs (Zang et al., 2020). Air
pollution exposure in China is affected differently by different socioeconomic
groups. Increased air pollutionwidens health disparities among people of dif-
ferent economic statuses, and population aging increases inequalities in
12
environmental health. Compared to other countries, China's cities appear to
be moving toward greater economic equality. While premature mortality as-
sociated with PM2.5, showed an increasingly unequal trend from 2000 to
2020, it was relatively evenly distributed across GDP per capita before
2015. Premature deaths related to PM2.5 harm more seriously populations
of low socioeconomic status. In economically underdeveloped cities, aging
populations can exacerbate premature deaths caused by PM2.5.

Internal population mobility, especially from rural to urban areas, has
resulted in huge economic growth and severe socioeconomic inequality in
China (Pryce et al., 2021). The migration of workers may lead to increased
health burdens inmegacities (Shen et al., 2018). In this study, themigration
of people from PAs to developed cities was affected by PM2.5 exposure in
the city. Comparing the origin and destination of migration, an average of
69 % of the migration activities occurred from lower-to higher-pollution
areas. At the same time, worker migration to developed cities also affects
local air pollution levels (Pryce et al., 2021; Schoolman and Ma, 2012).
This added 638, 779, 303, 954, and 896 premature deaths in 2000, 2005,
2010, 2015, and 2020, respectively.

After analyzing the impact of various factors on the number of prema-
ture deaths by driving factor decomposition, compared with 2000, we
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found that the change in the age structure contributed the most to the
change in premature deaths in 2005–2020, with an average contribution
rate of 52.65 %. These results are similar to those reported by Yin (2022)
and Xu et al. (2021). The vulnerability of China's aging population will fur-
ther increase the estimated premature deaths caused by PM2.5 (Hong et al.,
2019). China's population is aging gradually, with the elderly population
increasing from 7.0 % in 2000 to 13.5 % in 2020; this has resulted in the
addition of 782 thousand premature deaths. China launched its Air Pollu-
tion Prevention and Control Action Plan in late 2013. The PM2.5 concentra-
tion dropped rapidly and caused premature deaths to decrease by 121 and
689 thousand in 2000 and 2020, respectively, compared with 2000. The
contribution rate of changes in age structure and the PM2.5 concentration
was higher in PAs than in NPAs. Additionally, economic development and
population migration caused the larger population changes within NPAs
and contributed to greater changes in premature deaths in PAs. The gap
in the contribution rate between the two regions is the largest.

The age structure of the population is the main driver of PM2.5-related
premature deaths in China after 2005. Due to the aggravation of population
aging, the significantly decreased PM2.5 concentration cannot be sufficient
to decrease PM2.5-related premature mortality. Population growth and
aging might not be effectively intervened by policies in the short term.
Therefore, China needs to focus on reducing pollutant emissions to decrease
PM2.5-related premature deaths. In addition, stroke and IHDwere the lead-
ing PM2.5-related premature deaths in China, and they showed an increas-
ing trend. In the future, health resources and policies should target the
elderly population and those at a high risk of stroke and IHD. Lastly, the
population growth caused by urbanization and the expansion of population
migration from PAs to NPAs have increased PM2.5-related premature
deaths, because most migrants in China prefer to migrate to heavily pol-
luted cities, such as Shanghai, Chengdu, and Chongqing. The key to achiev-
ing the Sustainable Development Goals is to achieve a win-win situation for
health and the economy by effectively reducing the environmental health
burden of the migrant population. So relevant policies could be formulated
to improve the attractiveness of lower-pollution cities, for example, provid-
ing migration subsidies, developing diversified industries, raising wages,
reasonably allocating education and medical resources, etc. It can also pro-
vide migrants for migration guidance to meet the health and economic
needs on the premise of respecting their will.

However, this study still has several limitations. First, there are regional
differences in the distribution of population susceptibility and medical
level, which may impact health outcomes. However, the effect of these dif-
ferences on the overall results is very small (Lin et al., 2021; Liu et al.,
2021c), thus would not affect the comparative findings. In addition, due
to the lack of mortality data in 2020, we used the mortality data in 2019
to replace it. It should be note that the mortality data used in this study is
not related to COVID-19, because this study only focused on premature
mortality of stroke, IHD, COPD and LC attributable to ambient PM2.5 expo-
sure (Hao et al., 2021; Lin et al., 2021; Yue et al., 2020). Second, owing to
the limited city-to-city migration data, we used a random forest model for
prediction and obtained good results, but the allocation work will lead to
certain errors. However, compared to other studies (Lin et al., 2021; Liu
et al., 2021c; Shen et al., 2018), we considered a relatively more minor
level of migration. Lastly, owing to the COVID-19 epidemic, the implemen-
tation of lockdown and control policies across the country will have a huge
impact on population migration in 2020. However, owing to data limita-
tions, in this study we did not consider the influence of this factor.

5. Conclusions

In recent decades China's economy has developed rapidly, with the con-
sequent air pollution posing huge health risks. The results of this study
showed that China's NPAs were more polluted than PAs and that these
NPAs had higher rates of premature deaths owing to population aggrega-
tion. China's GDP per capita has been gradually moving toward greater
equality, while China's environmental health was comparatively more
equally distributed. However, environmental inequalities were amplified
13
by factors such as the long-term trend of population aging in China. Besides,
population migration from PAs to developed cities also contributed to
higher incidences of premature death and higher premature mortality.
The results of the driver factorization analysis indicated that the health ben-
efits of improved air quality may be offset by population change, and that
the decrease in the PM2.5 concentrations is not sufficient to offset the effect
of population age change on PM2.5-related deaths. Taken together, ourfind-
ings suggest that China's policymakers of air pollution need to take into ac-
count the scale of populationmigration and increasingly serious population
aging for advancing urban environmental sustainability and justice. In this
regard, particularly needed are to adopt strictermanagement measures and
set more ambitious emission control targets.
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