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A B S T R A C T   

Background: Extensive studies have linked PM2.5 and PM10 with respiratory diseases (RD). However, few is 
known about causal association between PM1 and morbidity of RD. We aimed to assess the causal effects of PM1 
on cause-specific RD. 
Methods: Hospital admission data were obtained for RD during 2014 and 2019 in Beijing, China. Negative control 
exposure and extreme gradient boosting with SHapley Additive exPlanation was used to explore the causality 
and contribution between PM1 and RD. Stratified analysis by gender, age, and season was conducted. 
Results: A total of 1,183,591 admissions for RD were recorded. Per interquartile range (28 μg/m3) uptick in 
concentration of PM1 corresponded to a 3.08% [95% confidence interval (CI): 1.66%–4.52%] increment in 
morbidity of total RD. And that was 4.47% (95% CI: 2.46%–6.52%) and 0.15% (95% CI: 1.44%-1.78%), for 
COPD and asthma, respectively. Significantly positive causal associations were observed for PM1 with total RD 
and COPD. Females and the elderly had higher effects on total RD, COPD, and asthma only in the warm months 
(Z = 3.03, P = 0.002; Z = 4.01, P < 0.001; Z = 3.92, P < 0.001; Z = 2.11, P = 0.035; Z = 2.44, P = 0.015). 
Contribution of PM1 ranked first, second and second for total RD, COPD, and asthma among air pollutants. 
Conclusion: PM1 was causally associated with increased morbidity of total RD and COPD, but not causally 
associated with asthma. Females and the elderly were more vulnerable to PM1-associated effects on RD.   

1. Introduction 

Respiratory diseases (RD) are major public health issues, as well as 
the second cause of death, contributing to more than 9.5 million deaths 
worldwide (Collaborators, 2020a; Organization, 2019). By 2040, deaths 
attributable to RD were forecasted to be 11.6 million globally (Foreman 

et al., 2018). As one of the most common RD, chronic obstructive pul-
monary diseases (COPD) and asthma have affected around 3.9% and 
3.6% of people worldwide (Collaborators, 2020a; Collaborators, 
2020b). In China, approximately 8.6% and 4.2% of adults suffered from 
COPD and asthma, of which disability-adjusted life-years ranked third 
globally (Huang et al., 2019; Wang et al., 2018a; Zhou et al., 2019a). The 
prevalence of COPD was 15.7% in Beijing, which at the top within China 
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(Wang et al., 2020). Given the substantial disease burden, it is essential 
to identify risk factors of COPD and asthma, particularly in Beijing, 
China. 

Emerging evidence has indicated that particle matter (PM) is a risk 
factor for RD (Shin et al., 2022; So et al., 2022). Due to the adsorption 
capacity, PM becomes the carrier of toxic substances (Wang et al., 2022). 
PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and 
PM10 (particulate matter with an aerodynamic diameter ≤10 μm) may 
affect RD such as COPD and asthma when they are inhaled into the lungs 
(Bo et al., 2021; Odo et al., 2022; Wei et al., 2022b). Toxicology sug-
gested that the particle size were smaller, and the toxicity were greater, 
as well as the higher risk to health (Wang et al., 2021a). And epidemi-
ologic investigation reported that effect size of PM1 (particulate matter 
with an aerodynamic diameter ≤1 μm) may be larger than PM2.5 and 
PM10 (Yang et al., 2022). Whereas, exact contribution of PM1 for RD 
remains vague, and there are challenges in comparing synthesized effect 
estimates because of the interaction of all air pollutants. 

Recently, causal inference method has been applied in environ-
mental epidemiologic studies, such as instrumental variable, difference- 
in-difference, and regression discontinuity design (Knittel et al., 2016; 
Streeter et al., 2017; Williams et al., 2019). Negative control exposure 
can reduce residual confounding, which has been certified the ability of 
unbiased causal effect estimation (Li et al., 2022; Wei et al., 2022a). But 
less is recognized about causal associations between PM1 and morbidity 
of RD (Hu et al., 2022; Wang et al., 2021b). Furthermore, it is difficult to 
obtain an unbiased causal estimation due to the strict assumptions, but 
negative control exposure can exactly evaluate causal effects, which 
compares the impacts of post and pre-outcome exposures on outcome 
(Yu et al., 2021). 

In this study, a negative control exposure was used to evaluate the 
causal effect of PM1 concentrations on morbidity of cause-specific RD. In 
addition, PM1 contributions on cause-specific RD were identified by 
eXtreme Gradient Boosting (XGBoost) method with SHapley Additive 
exPlanation (SHAP). And subgroup analyses of gender, age, and season 
were taken, which explore the susceptible subpopulations or season. 

2. Materials and methods 

2.1. Study population 

In this study, daily counts of hospital admissions for RD were ob-
tained from Beijing Municipal Health Big Data and Policy Research 
Center (http://www.phic.org.cn/) between January 1, 2014 and 
December 31, 2019, which is a government agency that gathers and 
consolidates hospital information. The agency gathers approximately 
95% of permanent residents in Beijing, and thus can highly represent the 
overall population of Beijing (Li et al., 2018). The code of RD was in 
terms of the International Classification of Diseases, the 10th Revision, 
which total RD was code as J00-J99, COPD was code as J44, and asthma 
was code as J45-J46. And admissions for RD were subdivided by gender 
and age (≤60 and > 60 years). The study was approved by the Institu-
tional Review Board of Capital Medical University (No. IRB00009511). 
Informed consent was not required because we did not use personal 
data. 

2.2. Air pollutants and meteorological data 

The PM1 data were collected from the ChinaHighAirPollutants 
dataset (CHAP, https://weijing-rs.github.io/product.html), which was 
generated by machine learning algorithm, and was characterized by 
high-resolution and high-quality via cross-validation (Wei et al., 2019). 
We gathered PM2.5 and PM10 data from ChinaHighAirPollutants dataset 
as well (Wei et al., 2020, Wei et al., 2021a, Wei et al., 2021b). Daily 
mean concentrations of other air pollutants (SO2, NO2, O3, CO) were 
gained from Beijing Environmental Protection Bureau (http://www. 
bjepb.gov.cn/). Meteorological data were gained from China Meteoro-
logical Data Service Center (http://data.cma.cn/). 

2.3. Statistical analysis 

2.3.1. Generalized additive model 
A generalized additive model (GAM) was conducted to explore the 

effects of PM1 concentration on admissions for RD, which was with 
quasi-Poisson regression (Wang et al., 2018b). A penalized cubic spline 
was adopted to adjust potential long-term trend with 7 degrees of 
freedom (df) per year (Meng et al., 2021). The day of the week (DOW) 
was controlled by adding an indicator variable in the model accounting 
for possible variations in a week. The spline functions with 3 df for 
moving average temperature of 14 days and 3 df for current relative 
humidity were used to exclude lagged and nonlinear confounding effects 
(Rahman et al., 2022). The model is specified as: 

logE(Yt)=α+ βZt + s(time)+ s(Temp)+ s(RH)+ factor(DOWt)

+ factor(holiday)

Where: E(Yt) is the expectation of admissions on day t, α is the intercept; 
β is the coefficients calculated from the regression model; s() indicates 
the smoother based on the penalized cubic spline; time represents long- 
term trend; Temp and RH are moving average temperature of 14 days 
and current relative humidity on day t, respectively; DOW is the day of 
the week on day t and holiday is to avoid impact of public holidays. 

The effects of PM1 are usually not observed instantly but are delayed. 
Hence, to explore the delayed effects of PM1, we assessed the effects both 
in single-day lags and moving-day lags. For example, lag 0 represented 
that the PM1 concentration and the number of admissions were on the 
same day. And lag 01 represented that the exposure was mean of the 
previous and intraday concentration. Given that the study focused on 
the short-term effects, the maximum lag in this study was 7 days (Li 
et al., 2021c). Exposure-response (E-R) curves between PM1 and RD 
were estimated to inspect the linearity. If E-R curves showed that it was 
not right to treat PM1 as linear variable among all concentrations, a 
change point was chosen where the slope changed to gain the 

Abbreviations 

RD respiratory diseases 
COPD acute exacerbation of chronic obstructive pulmonary 

disease 
PM particulate matter 
PM2.5 particulate matter with an aerodynamic diameter ≤2.5 

μm 
PM10 particulate matter with an aerodynamic diameter ≤10 

μm 
PM1 particulate matter with an aerodynamic diameter ≤1 

μm 
XGBoost eXtreme Gradient Boosting 
SHAP SHapley Additive exPlanation 
GAM generalized additive model 
df degrees of freedom 
E-R exposure-response 
PC percentage change 
IQR interquartile range 
95% CI 95% confidence interval 
SO2 sulfur dioxide 
NO2 nitrogen dioxide 
CO carbon monoxide 
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appropriate concentrations assessing the effects of PM1 on RD (Barrio 
et al., 2013; Knight et al., 2020). 

2.3.2. Negative control exposure 
A negative control exposure may reduce unmarked confounding 

bias, which could be used in time-series studies as well (Lipsitch et al., 
2010; Yu et al., 2021). Negative control exposure is defined as a variable 
that is associated with an unobserved confounding factor but has no 
causal association with outcome (Tchetgen Tchetgen, 2014). Causal 
association between environmental exposure and disease was deter-
mined by comparing the effect of post-outcome exposure and 
pre-outcome exposures on outcome (Magen-Molho et al., 2021). We 
used the exposure before the outcome to calculate the causal effect of 
PM1 on RD and the exposure after the outcome on corresponding day 
was used as the negative control exposure, with the maximum lag of 7 
days. It should be noticed that lag 02 represented the average concen-
tration of the previous two days, which was different from the associa-
tion effect estimation. 

2.3.3. EXtreme gradient boosting model 
An XGBoost model with SHAP value was employed to calculate the 

magnitude of PM1 to admissions of RD compared with other air pol-
lutants. XGBoost based on decision trees was an optimized and enhanced 
ensemble model, which can provide better performance to deal with 
both continuous and categorical data. It avoids many drawbacks, which 
has been reported, such as over-fitting, handling missing values, and 
training efficiency (Zhou et al., 2019b). The SHAP method is preferred 
over other explain ability methods in the literature because it shows the 
impact of each feature and indicates how much a given feature altered 
the prediction (Štrumbelj et al., 2014). In our study, we put air pollut-
ants (PM1, PM2.5, PM10, SO2, NO2, O3, CO) and other confounding into 
the model at the same time. After calculating the SHAP value of each 
observation, the mean SHAP values were ranked to determine the 
magnitude of PM1 among air pollutants, which were averaged by ab-
solute value. 

2.3.4. Outcome indicator and sensitivity analyses 
The percentage change (PC) for RD per interquartile range (IQR) 

uptick in PM1 concentration was calculated as follows: 
percentage change = [exp (β ∗ IQR) − 1] ∗ 100, where β referred to the 
coefficient of PM1 from GAM, IQR was the per interquartile range uptick 
in PM1 concentration. The confidence intervals (CI) of were percentage 
change reported as well. The Z values and corresponding P values across 
subgroups were calculated to check for statistical differences (Altman 
and Bland, 2003). Stratification analyses were conducted to find 
potentially susceptible gender and age populations. The stratification of 
season was carried out: cold season (November to April) and warm 
season (May to October). 

Additionally, we developed two-pollutant model, which were 
modified by gaseous pollutants, to check the robustness. We also 
changed the df of meteorological (2–7 df) and time variables (5–10 df). 
Data were analyzed by R software (version 4.0.5) using the mgcv, 
NCETS, and xgboost packages. The statistical tests were two-sided, and P 
< 0.05 was considered statistically significant. 

3. Results 

3.1. Descriptive statistics 

A total of 1,183,591 admissions were recorded during the study 
period, corresponding to a daily average of 89 for total RD (Table 1). On 
average, there were 84 and 14 daily admissions for COPD and asthma. 
All admissions were more reported in the elderly than in younger pa-
tients, with the elderly constituting more than 62.54% of total cases. 
There were more admissions in the cold season (53.81%). 

During the study, mean everyday concentration of PM1 was 35.9 ±

26.2 μg/m3, ranging from 3.9 to 204.6 μg/m3 (Table 2). Daily 
PM1concentration was higher in the cold season (41.8 ± 30.7 μg/m3) 
than in the warm season (29.6 ± 18.3 μg/m3). Generally, PM1 was 
positively related with SO2, NO2, and CO, weakly related with relative 
humidity, and negatively related with temperature and O3 (Fig. S1). 

3.2. Association between PM1 and morbidity of RD 

Percentage changes (%) and 95% CI associated with per IQR increase 
in PM1 for RD were present in Fig. 1. As the relationships between PM1 
and RD as well as COPD were nonlinear, the concentrations of ≤60 μg/ 

Table 1 
Characteristics of respiratory diseases in Beijing, 2014–2019.   

N Mean 
± SD 

Min P25 P50 P75 Max IQR 

Total 1,183,591 540 ±
203 

174 330 574 687 1192 357 

Cause- 
specific         

COPD 184,533 84 ± 34 16 52 86 105 217 53 
Asthma 30,311 14 ± 7 0 8 14 18 56 10 
Gender         
Man 713,317 326 ±

121 
96 192 353 415 687 223 

Woman 470,266 215 ±
84 

59 139 219 274 542 135 

Age 
group         

≤60 years 442,140 202 ±
73 

57 138 205 253 494 115 

≥61 years 740,201 338 ±
134 

94 191 363 437 775 246 

Season         
Cold 

season 
636,941 586 ±

214 
184 365 629 746 1192 381 

Warm 
season 

546,650 495 ±
181 

174 293 537 642 961 349 

Note: N: total admission during the study period; SD: standard deviation; Min: 
minimum daily admission; P25: the 25th percentile; P50: the 50th percentile; P75: 
the 75th percentile; Max: maximum daily admission; IQR: interquartile range; 
COPD: chronic obstructive pulmonary disease; Cold season: November to April; 
Warm season: May to October. 

Table 2 
Summary distributions of air pollutants and meteorological factors.   

Mean ±
SD 

Min P25 P50 P75 Max IQR 

PM1, μg/m3 35.9 ±
26.2 

3.9 17.7 28.6 45.8 204.6 28.2 

PM2.5, μg/m3 54.8 ±
38.6 

7.4 28.2 44.5 69.4 276.6 41.2 

PM10, μg/m3 94.9 ±
53.5 

20.6 58.1 82.9 117.4 816.7 59.3 

SO2, μg/m3 9.2 ±
9.8 

2.0 3.2 5.8 10.9 78.1 7.7 

NO2, μg/m3 42.9 ±
19.8 

8.6 29.1 38.7 52.6 141.7 23.5 

CO, mg/m3 1.0 ±
0.8 

0.2 0.5 0.8 1.1 7.6 0.6 

O3, μg/m3 60.8 ±
37.0 

3.1 31.8 55.4 83.3 77.6 51.6 

Temperature, ◦C 12.5 ±
11.3 

− 16.9 1.3 13.9 22.8 31.4 21.5 

Relative 
humidity, % 

53.6 ±
19.0 

11.2 38.2 53.4 69.5 95.3 31.4 

Note: SD: standard deviation; Min: minimum daily admission; P25: the 25th 
percentile; P50: the 50th percentile; P75: the 75th percentile; Max: maximum 
daily admission; IQR: interquartile range; PM1: particulate matter with aero-
dynamic diameter ≤1 μm; PM2.5: particulate matter with aerodynamic diameter 
≤2.5 μm; PM10: particulate matter with aerodynamic diameter ≤10 μm; SO2: 
sulfur dioxide; NO2: nitrogen dioxide; CO: carbon monoxide; O3: ozone. 
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m3 were used to assess the effects of PM1 on total RD and COPD. Sig-
nificant associations were observed between PM1 with total RD and 
COPD. Per IQR (28 μg/m3) uptick of PM1 concentration corresponded to 
a 3.08% (95% CI: 1.66%–4.52%), 4.47% (95% CI: 2.46%–6.52%), and 
0.15% (95% CI: 1.44%-1.78%) increase in morbidity of total RD, COPD, 
and asthma, respectively, at lag 07 days, lag07 days, and lag2 days. The 
effects of PM1 increased when adjusting for SO2, NO2, and O3, and 
declined a bit when adjusting for CO, but all associations remained 
statistically significant (Fig. S2). 

3.3. Causal effect estimation of PM1 on RD 

Fig. 2 showed the causal effect estimation and 95% CI for PM1 and 
RD using a negative control exposure. Significantly positive causal as-
sociations were observed for PM1 with total RD at lag6, lag 06, and 
lag07, corresponding to 0.55 (95%CI: 0.05–1.05), 1.03 (95%CI: 
0.15–1.91), and 1.08 (95%CI: 0.13–2.03) causal effect estimator. And 
that for COPD was at lag2, lag 3, lag6 and lag02 to lag07 with highest 
causal effect estimator of 0.20 (95%CI: 0.04–0.35). But PM1 had no 
significantly causal effect on asthma. 

3.4. Stratification analyses 

The effects of PM1 on RD were slightly larger for females and the 
elderly than males and younger individuals, but there was no statistical 
difference on total RD, COPD, or asthma (Fig. 3). 

We also stratified by gender and age during cold and warm season 
(Fig. 4). In the warm season, the PM1-related total RD increment in fe-
male was slightly higher than in male [4.12% (95% CI: 1.71%–6.58%) 
vs. 3.29% (95% CI: 0.36%–6.30%), Z = 3.03, P = 0.002]; and the PM1- 
related COPD increment in females was much higher than in males 
[7.47% (95% CI: 1.04%–14.31%) vs. 5.59% (95% CI:2.27%–9.03%), Z 
= 2.02, P = 0.044]; and the PM1-related asthma increments in females 
and the elderly were statistically significantly higher than in males and 
younger adults [4.41% (95% CI: 0.21%-9.25%) vs. 2.71% (95% CI: 
2.39%-8.07%), Z = 2.11, P = 0.035; 5.70% (95% CI: 2.53%-14.63%) vs. 
3.63% (95% CI: 1.30%-8.81%, Z = 2.44, P = 0.015). No statistics dif-
ference was found in the connections of PM1 and subgroups of partici-
pants with seasonal stratified analysis (Table S1). 

Fig. 1. Percentage changes (%) and 95% CI for respiratory diseases per IQR increment in PM1 concentration. Note: COPD: chronic obstructive pulmonary disease; CI: 
confidence intervals; IQR: interquartile range; PM1: particulate matter with aerodynamic diameter ≤1 μm. 

Fig. 2. The causal effect estimation for respiratory diseases with PM1. Note: COPD: chronic obstructive pulmonary disease; CI: confidence intervals; PM1: particulate 
matter with aerodynamic diameter ≤1 μm. 
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3.5. Rank of contribution of PM1 to RD 

Fig. 5 showed the contribution of PM1 in the XGBoost model which 
took all air pollutants into account. Taking the average absolute values 
of SHAP for every variable was to compare the contribution of each 
variable to RD. From this plot, it can be inferred that contribution of PM1 
ranked first for total RD with the SHAP value of 8.991, and second for 
COPD (2.132) and asthma (0.294), in which air pollutants was ordered 
by the mean SHAP values. Moreover, the effect of PM1 was much larger 
than PM2.5 and PM10, regardless of total RD, COPD, or asthma. 

3.6. Exposure-response curve 

The E-R curves between PM1 and RD were shown in Fig. 6. For total 
RD, the E-R curve increased slightly at low concentrations and then 

became plateauing. For COPD, the E-R curve was almost inverted U- 
shaped with an inflection point at 60 μg/m3. The E-R curve of asthma 
showed a generally linear increasing trend. Stratification analysis was 
also done for E-R curves (Fig. S3 and Fig. S4). The E-R curve for PM1 for 
total RD changed to an inverted U-shaped in subgroups. The E-R curve of 
younger adults (age ≤60 years) for asthma was generally linear with a 
descending trend. 

4. Discussion 

To the best of our knowledge, this is the first study to assess causal 
effects between PM1 and morbidity of cause-specific RD in Beijing. In 
our study, exposure to PM1 had causal impact on incident COPD. Female 
and the elderly were more vulnerable to PM1-associated effects. PM1 
contributed greater to RD, especially compared with other particulate 

Fig. 3. Percentage changes (%) for respiratory diseases stratified by sex and age associated with per IQR increment in PM1. Note: COPD: chronic obstructive 
pulmonary disease; CI: confidence intervals; IQR: interquartile range; PM1: particulate matter with aerodynamic diameter ≤1 μm. 

Fig. 4. Percentage changes for respiratory diseases stratified by sex and age during cold and warm seasons associated with per IQR increment in PM1. Note: CI: 
confidence intervals; IQR: interquartile range; PM1: particulate matter with an aerodynamic diameter ≤1 μm; PC: percentage change; RD: respiratory disease; COPD: 
chronic obstructive pulmonary disease. Pink indicated statistically significant effect estimates, and yellow indicated P < 0.05. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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matters. Non-linear exposure-response relationships were observed be-
tween PM1 with total RD and COPD. Our findings added evidence for 
PM1-induced adverse effects on RD in China. 

In our study, positive causal effects were observed between PM1 and 
total RD and COPD, but no significant effect was observed on asthma. 
Consistent with our findings, Yazdi et al. reported that there was caus-
ally effect between PM2.5 and increased admissions of RD using a 
difference-in-difference approach, another causal inference method 
(Yazdi et al., 2022). Most of previous studies reported non-causal asso-
ciations of PM with morbidity for RD (Lin et al., 2018; Zhang et al., 
2020). Several research stated that it was long-term, instead of 
short-term exposure to PM1, had a positive association with asthma, 
which was roughly corresponding to our result (Hu et al., 2022). Po-
tential mechanisms underlying the causal association may be biologi-
cally credible: PM could induce airway reactivity by triggering oxidative 
stress and inflammation, and then weakening immune defense and 
aggravating existing or ongoing RD (Jheng et al., 2021; Pan et al., 2021; 
Riggs et al., 2020; Yee et al., 2021). 

It is crucial to identify susceptible populations to public health. We 
found that females and the elderly were more susceptible to PM1 asso-
ciated COPD and asthma, and there was a much greater impact in warm 
season than cold season, which were in conformity to previous research 
(Peng et al., 2022; Priyankara et al., 2021; Wang et al., 2019). A 
two-year panel study in Shanghai, China showed that elderly female 

subjects were susceptible to PM1-associated COPD and asthma (Chen 
et al., 2021). The difference between sex groups may be related to so-
cioeconomic, behavioral, and psychological factors. Possibly, it is the 
smaller lungs and narrower airways in females that may aggravate 
airway reactivity and increase particle deposition (Bennett et al., 1996). 
The elderly are susceptible to PM1 partially because of their inability to 
regulate pro-inflammatory and anti-inflammatory mediators (Glencross 
et al., 2020). Compared to cold season, people have more chances to do 
outdoor activity in warm season. Meanwhile, there were more ultrafine 
particulate matters penetrating from outdoor to indoor in warm season, 
resulting in increased exposure (Zauli-Sajani et al., 2018). 

We found PM1 had a greater contribution to RD, particularly in 
particulate matters based on SHAP value of XGBoost model. Some 
studies have determined the smaller particles can lead to worse adverse 
health effects (Zhu et al., 2021). A study from 652 cities worldwide 
supported that impacts of PM2.5 was larger than PM10, regardless of 
country-specific or pooled estimates (Liu et al., 2019). Similarly, the 
effect of PM1 was slightly larger than that of PM2.5 on RD with a 1.91% 
increment in our study (Liu et al., 2021). The greater contribution of 
PM1 may be supported by ample evidence that smaller particles can 
carry more toxics and permeate deeper (Kim et al., 2015). The greater 
contribution of SO2 on COPD can be explained by the irritant and 
bronchoconstrictor characteristic (Li et al., 2021a). And the inhalation 
of O3 can increase more asthma admissions by impairing treatment 

Fig. 5. SHAP summary plot of PM1 ranked by global feature importance in XGBoost model: (a) for total respiratory diseases; (b) for COPD; (c) for asthma. Note: PM1: 
particulate matter with aerodynamic diameter ≤1 μm; 1 μm; SO2: sulfur dioxide: CO: carbon monoxide; PM2.5: particulate matter with aerodynamic diameter ≤2.5 
μm; NO2: nitrogen dioxide; O3: ozone; PM10: particulate matter with aerodynamic diameter ≤10 μm; SHAP: SHapley Additive exPlanation; XGBoost: eXtreme 
Gradient Boosting; COPD: chronic obstructive pulmonary disease. 

Fig. 6. Exposure-response relationships between PM1 and respiratory diseases. Note: PM1: particulate matter with aerodynamic diameter ≤1 μm; COPD: chronic 
obstructive pulmonary disease. 
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responsiveness in asthmatic patients and eliciting more severe symp-
toms (Flayer et al., 2020). 

The E-R curves were seemed to flatten at high daily mean PM1 
concentrations for total RD, curvilinear for COPD and approximately 
linear for asthma in our study, which were partially in line with previous 
studies (Dong et al., 2021). The threshold can be explained that people 
living in cities, which are at high levels of PM1 such as Beijing, are 
possibly adaptive to PM1 (Liu et al., 2019). However, a study from five 
typical Chinese cities reported different city-specific trends between 
particles and RD (Li et al., 2021b). The heterogeneity in the E-R curves 
could be roughly explained by the varying population susceptibility, 
data quality, and unique source and chemical composition of PM1 in 
different cities, which could affect its toxicity immensely (Niu et al., 
2022; Tao et al., 2021). Organic aerosol from primary sources was the 
major component of PM1, particularly traffic organic aerosol and coal 
combustion organic aerosol, which indicated that traffic distribution 
and the composition of coal could alter the health effect of PM1 (Niu 
et al., 2021). As a major chemical composition of PM1, polycyclic aro-
matic hydrocarbons especially carcinogenic polycyclic aromatic hy-
drocarbons had respective effects on RD (Agudelo-Castañeda et al., 
2017; Insian et al., 2022). 

There are several strengths that should be encompassed. First, this 
was the first study to estimate causal effects of PM1 and cause-specific 
RD, including COPD and asthma. The implications of our findings 
extend to causal inference through a negative control exposure, which 
has been verified that it could reduce residual confounding and obtain 
unbiased estimates by using post-outcome exposures as negative control 
exposures. Second, SHAP value derived from XGBoost was implemented 
to rank the contribution of PM1 among air pollutants on RD. XGBoost 
has been identified better performance than other machine learning 
methods, which does a second-order Taylor expansion and then is more 
accurate in handing segmentation point and missing data (Nam et al., 
2022). And SHAP value is an intuitive and theoretically reliable way to 
determine the contribution in machine learning, which shows how 
estimation changes after each variable is removed (Scavuzzo et al., 
2022). Third, the air pollutant in this study was focused on PM1 of which 
adverse effect was higher than PM2.5 and PM10. Smaller particles may 
absorb more toxic components and filter deeper into the lungs. Fourth, 
the study was conducted for a relatively long time from 2014 to 2019, 
and the data had been proven to be highly reliable. Therefore, the results 
in our study could reflect the authentic impacts of PM1 on RD in Beijing. 

Some limitations also should be acknowledged. First, exposure 
misclassification may be inevitable due to the exposure estimates are 
based on site rather than personal monitoring. Second, as a single-city 
study, we were unable to extrapolate our findings to other cities or re-
gions. Third, the effects may be underestimated, because the standard of 
hospital admission is stricter due to the heavy medical burden in pros-
perous areas. Fourth, due to data issue, we cannot identify the impacts of 
each composition of PM1, which warranted further study. Fifth, it may 
be inaccurate for the E-R curves in high concentration due to the limited 
data, which was adjusted in the model to evaluate effects. 

5. Conclusion 

Exposure to PM1 was causally associated with incident COPD. Fe-
males and the elderly were identified as susceptible, particularly in the 
warm season. PM1 contributed greater to RD among air pollutants, 
especially in particulates. Our findings added to evidence of COPD 
attributable to PM1 pollution. 
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