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Significance

 Short-term exposure to smoke 
pollutants from wildland fires, 
particularly fine-particulate 
matter (PM2.5 ), is associated with 
adverse health effects. Yet, the 
impacts of long-term exposure to 
wildland fire smoke PM2.5  on 
health, specifically mortality, 
remain unclear. In the contiguous 
United States, data from 2007 to 
2020 showed positive 
associations between long-term 
exposure to wildland smoke 
PM2.5  and nonaccidental, 
cardiovascular, ischemic heart 
disease, digestive, endocrine, 
diabetes, mental, and chronic 
kidney disease mortality rates. 
Based on these results, wildland 
smoke PM2.5  was estimated to 
contribute to 11,415 
nonaccidental deaths/y in the 
United States (95% CI: 6,754, 
16,075). These findings add to 
the growing evidence of 
detrimental effects of wildland 
fire smoke PM2.5  on health and 
suggest more effective public 
health actions are needed.
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Despite the substantial evidence on the health effects of short- term exposure to ambient 
fine particles (PM2.5), including increasing studies focusing on those from wildland fire 
smoke, the impacts of long- term wildland fire smoke PM2.5 exposure remain unclear. We 
investigated the association between long- term exposure to wildland fire smoke PM2.5 
and nonaccidental mortality and mortality from a wide range of specific causes in all 
3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke 
PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a 
nonlinear association between 12- mo moving average concentration of smoke PM2.5 and 
monthly nonaccidental mortality rate. Relative to a month with the long- term smoke 
PM2.5 exposure below 0.1 μg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 
2.11 deaths per 100,000 people per month when the 12- mo moving average of PM2.5 
concentration was of 0.1 to 5 and 5+ μg/m3, respectively. Cardiovascular, ischemic heart 
disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality 
were all found to be associated with long- term wildland fire smoke PM2.5 exposure. 
Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 
6,754, 16,075) in the contiguous United States. Higher smoke PM2.5- related increases 
in mortality rates were found for people aged 65 and above. Positive interaction effects 
with extreme heat were also observed. Our study identified the detrimental effects of 
long- term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, 
underscoring the need for public health actions and communications that span the health 
risks of both short-  and long- term exposure.

wildland fire | mortality | fine particulate matter | United States

 Wildland fire is a growing public health concern in the United States. As a result of the 
warming climate ( 1 ), a long history of fire suppression ( 2 ), and an increase in human-caused 
fire ignitions ( 3 ), the country has witnessed a marked increase in the area affected by 
wildland fires over the past few decades, with the burned area roughly quadrupling ( 4 ). 
In recent years, wildland fire contributed to up to 25% of total fine particulate matter 
(PM2.5 ) concentrations across the United States and up to half in some Western regions 
( 4 ). Under climate change, the prevalence, frequency, and intensity of wildland fire activ-
ities are expected to increase in the future ( 5 ).

 Wildland fire smoke is a complex mixture. Among the various air pollutants emitted 
by wildland fires, PM2.5  is widely used as an indicator of exposure because it is a major 
component of smoke, can deeply penetrate the respiratory system, and has demonstrated 
links to public health ( 6 ). Previous studies on the health effects of wildland fire smoke 
mostly focused on the western United States, where the majority of large fires occurred 
( 7   – 9 ). However, the pollutants from wildland fire smoke can travel long distances from 
the source, potentially affecting human health thousands of kilometers away outside the 
West ( 10 ).

 Previous studies on the health effects of wildland fire exposure predominantly focused 
on the effects of short-term exposure, typically examining exposure periods within 1 or 
2 wk. Most studies reported a positive relationship between short-term wildland fire smoke 
exposure and all-cause mortality ( 9 ,  11   – 13 ). A growing number of studies linked 
short-term exposure to wildland fire smoke to increased risks of respiratory mortality and 
presented mixed evidence regarding cardiovascular mortality ( 11     – 14 ). Recent studies have 
also documented worsened diabetic outcomes ( 15 ), higher mortality rates among patients 
with kidney failure ( 16 ), and impaired mental health ( 17 ,  18 ) associated with short-term 
wildland fire smoke exposure.

 However, given that climate change has contributed to an increase in wildland fire 
season length, increasing the duration of exposure, the health impacts of long-term D
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wildland fire smoke exposure should be a concern of growing 
importance ( 19   – 21 ). To date, little is known about the impacts 
of long-term exposure to wildland fire smoke on human health 
( 19 ,  21 ). Most previous studies focused on mental health, 
reporting associations between long-term wildland fire exposure 
and mental outcomes, such as anger problems ( 22 ), posttrau-
matic stress disorder ( 23 ), depression ( 24 ), and anxiety ( 25 ). 
However, these studies could not distinguish between the effects 
of smoke and the overall impacts of wildland fires. A few studies 
suggested that exposure to wildland fires was associated with 
child mortality, COVID-19 mortality, cardiovascular disease 
mortality, and respiratory disease morbidity ( 21 ), but most of 
them did not measure the uncertainties of estimates. Given that 
short-term exposure to wildland fire smoke has been linked to 
a wide range of mortality outcomes, exploring whether long- 
term wildland fire smoke exposure is associated with these 
health effects is worthwhile.

 Furthermore, the effects of wildland fire smoke PM2.5  can be 
heterogeneous among population subgroups due to physiological, 
behavioral, and socioeconomic factors ( 26 ). Previous studies indi-
cated that demographic factors such as sex, age, and race and 
ethnicity may modify the association between smoke PM2.5  and 
health outcomes ( 11 ,  26 ,  27 ). However, existing research mostly 
focused on the effects of short-term wildland fire smoke exposure 
and generated mixed findings ( 9 ). To better prepare communities 
for smoke and tackle environmental justice issues, a deeper under-
standing of susceptibility to wildland fire exposure, particularly 
long-term exposure, among specific subgroups is needed to help 
inform targeted public health outreach efforts.

 In the context of climate change, the co-occurrence of wild-
land fires and extreme heat events is expected to increase ( 28 ). 
In addition, both extreme heat and PM2.5  were associated with 
impaired cardiopulmonary functions ( 29 ,  30 ). Therefore, 
extreme heat may interact with wildland fire smoke and further 
aggravate health effects. A previous study suggested synergistic 
effects between short-term extreme heat and wildland fire smoke 
exposures on daily cardiorespiratory hospitalizations in 
California ( 31 ). However, little is known about the potential 
interaction between extreme heat and long-term smoke PM2.5  
exposure nationwide.

 Constrained by a lack of nationwide validated data on pollutant 
concentrations attributable to wildland fire smoke, many previous 
studies on the impact of wildland fire smoke on health outcomes 
have been focusing on episodes with high wildland fire smoke 
exposure (or smoke wave) using binary measures of smoke con-
centrations ( 32 ). Recently, a machine learning model was devel-
oped to estimate wildland fire smoke PM2.5  concentrations for the 
contiguous United States, using a combination of meteorological 
factors, fire variables, aerosol measurements, and land use and 
elevation data ( 33 ). This high-resolution wildland fire smoke 
PM2.5  dataset (10 × 10 km2 ) enabled us to further examine the 
impact of wildland fire smoke, ranging from the more common, 
low-level smoke concentrations to the increasingly frequent 
extremely high concentrations, and to explore its potentially non-
linear effects on mortality.

 Utilizing the nationwide monthly wildland fire smoke PM2.5  
and mortality data from 2007 to 2020, this study aimed to a) 
estimate the potentially nonlinear associations of long-term smoke 
PM2.5  exposure with county-level monthly nonaccidental and 
cause-specific mortality from a broad spectrum of diseases, b) 
calculate the attributable cause-specific mortality burden in each 
county, c) examine the associations in different sex, age, and racial 
and ethnic groups, and d) explore the interaction effect between 
smoke PM2.5  and extreme heat on mortality. 

Results

Description of Smoke PM2.5 Exposure and Monthly Mortality in 
the Contiguous United States. For months from January 2007 
to December 2020, we calculated the moving average of smoke 
PM2.5 concentration of the current and previous 11 mo for each 
county to represent the average exposure to smoke PM2.5 in the 
previous year. The average 12- mo moving average concentration 
of smoke PM2.5 across all county- months during the study period 
was 0.4 µg/m3, contributing to approximately 5% of all- source 
PM2.5 (SI Appendix, Table S1).

 From 2007 to 2020, all 3,108 counties in the contiguous 
United States experienced some amount of smoke PM2.5 , with the 
western, north central, and southeastern counties being exposed 
to higher long-term exposure (12-mo moving average concentra-
tion of smoke PM2.5 ) than other regions ( Fig. 1A  ). The temporal 
variability in this exposure was also higher in these regions com-
pared with other regions ( Fig. 1B  ). The overall temporal trend of 
the 12-mo moving average concentration of smoke PM2.5  for all 
US contiguous counties is displayed in SI Appendix, Fig. S1 .        

 To account for the potentially nonlinear health effects of smoke 
PM2.5 , we categorized the 12-mo moving average of smoke PM2.5  
concentrations into nine bins: 0 to 0.1 (reference), 0.1 to 0.2, 0.2 to 
0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.7, 0.7 to 1, 1 to 5, and 5+ μg/m3 ,  
corresponding to approximately 9.9%, 17.8%, 17.7%, 14.4%, 

Fig. 1.   Spatial distribution of 12- mo moving average of smoke PM2.5 concen-
tration in the contiguous United States, 2007 to 2020. (A) The distribution of 
the mean 12- mo moving average concentration of smoke PM2.5 in the contig-
uous US counties (µg/m3). (B) The distribution of the SD of the 12- mo moving 
average concentration of smoke PM2.5 in the contiguous US counties (µg/m3).D
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11.1%, 14.9%, 9.1%, 5.0%, and 0.1% of county-months in the 
study period (SI Appendix, Fig. S2 ). Only 15 county-months were 
not exposed to any smoke PM2.5  in the current and previous 11 mo.

 A total of 33,902,722 nonaccidental deaths were included in 
this study, including 11,514,374 deaths from cardiovascular dis-
eases, 3,584,654 from respiratory diseases, 1,624,915 from endo-
crine diseases, 939,531 from genitourinary diseases, 2,465,890 
from nervous diseases, 1,823,243 from mental and behavioral 
disorders (hereafter referred to as “mental disorders”), and 
1,406,184 from digestive diseases. From 2007 to 2020, the mean 
age-adjusted nonaccidental mortality rate was 61.9 (SD: 23.9) 
deaths per 100,000 people per month in all counties in the con-
tiguous United States. The descriptive statistics of the age-adjusted 
mortality rate for each population subgroup and each specific cause 
are listed in SI Appendix, Table S1 .  

Association between Long- Term Smoke PM2.5 Exposure and 
Cause- Specific Mortality Rate. Using a panel fixed effects model 
to control for air temperature, nonsmoke PM2.5, time- invariant 
spatial confounders, county- invariant temporal confounders, and 
regional long- term and seasonal trends, we found a nonlinear 
association between 12- mo moving average of smoke PM2.5 
concentration and monthly nonaccidental mortality rate (Fig. 2). 
Compared to a month in the same county with the long- term 
smoke PM2.5 exposure below 0.1 μg/m3, nonaccidental mortality 
increased by 0.16 (95% CI: 0.06, 0.26), 0.40 (95% CI: 0.26, 
0.54), 0.35 (95% CI: 0.21, 0.49), 0.34 (95% CI: 0.19, 0.50), 
0.49 (95% CI: 0.33, 0.65), 0.63 (95% CI: 0.44, 0.83), 0.36 
(95% CI: 0.11, 0.61), and 2.11 (95% CI: 1.24, 2.99) deaths per 
100,000 people per month when the 12- mo moving average of 
smoke PM2.5 concentration was in the range of 0.1 to 0.2, 0.2 to 
0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.7, 0.7 to 1, 1 to 5, and 5+ μg/
m3, respectively (Fig. 2).

 We also observed positive associations between 12-mo moving 
average of smoke PM2.5  concentrations and monthly mortality rates 
from cardiovascular diseases, ischemic heart diseases, digestive dis-
eases, endocrine diseases, diabetes, mental disorders, and chronic 
kidney diseases ( Fig. 2 ). Compared to a month with the long-term 
smoke PM2.5  exposure below 0.1 μg/m3 , cardiovascular mortality 
rates increased when the 12-mo moving average of smoke PM2.5  
concentration was from 0.5 to 1 μg/m3  and above 5 μg/m3 , and 
ischemic heart disease mortality rates increased when the concen-
tration was from 0.1 to 5 μg/m3 . A nearly linear association was 
observed for mortality rates from endocrine diseases, including 
diabetes: The central estimates were generally higher as the con-
centration bin increased. Digestive mortality was found sensitive 
to the 12-mo moving average of smoke PM2.5  when the concen-
tration was 0.5 to 0.7 and 5+ μg/m3 . Mortality from mental dis-
orders (such as dementia, schizophrenia, and posttraumatic stress 
disorder) increased in all concentration bins compared to a month 
with the 12-mo moving average concentration below 0.1 μg/m3 . 
In addition, mortality from chronic kidney diseases was found 
sensitive to long-term smoke PM2.5  exposure when the12-mo mov-
ing average concentration was 0.3 to 0.4 and 0.5 to 1 μg/m3 .

 We also examined the associations between 12-mo moving aver-
age of smoke PM2.5  concentrations and monthly mortality rates 
from other specific causes, including stroke, myocardial infarction, 
hypertensive diseases, hypertensive heart diseases, respiratory dis-
eases, chronic obstructive pulmonary disease (COPD), nervous 
diseases, Alzheimer’s disease and related dementias (ADRD), and 
genitourinary diseases (SI Appendix, Fig. S3 ). Although some of 
them were also found to be sensitive to long-term smoke PM2.5  
exposure, such as mortality from stroke, myocardial infarction, 
respiratory diseases, and ADRD, these specific causes were not 

presented in the main figures or included in further analysis 
because their estimates were either insignificant after the Bonferroni 
correction for multiple comparisons or inconsistent in direction 
across smoke PM2.5  concentration bins. Negative effect estimates 
were found for hypertensive heart disease, COPD, and nervous 
disease mortality in some concentration bins, but none of them 
remain statistically significant after Bonferroni correction. The 
detailed estimates for all examined specific causes are listed in 
 SI Appendix, Table S2 .  

Cause- Specific Mortality Burden Attributable to Long- Term 
Smoke PM2.5 Exposure. Assuming the homogeneity within each 
smoke PM2.5 bin and the causality of the estimated smoke PM2.5- 
mortality relationships, we further quantified the mortality burden 
attributable to long- term smoke PM2.5 exposure. As nonsmoke 
PM2.5 was adjusted for in the model, the estimated smoke PM2.5- 
attributable mortality burden is in addition to the well- recognized 
burden from nonsmoke PM2.5. On average, approximately 11,415 
nonaccidental deaths (95% CI: 6,754, 16,075) were attributable 
to smoke PM2.5 in the contiguous United States per year. The 
spatial distribution of this attributable burden was generally 
consistent with the distribution of smoke PM2.5 concentration 
(Fig.  3A). The estimated attributable nonaccidental mortality 
burden for each year is displayed in SI Appendix, Fig. S4.

 For mortality from other specific causes, each year, long-term 
smoke PM2.5  exposure contributed approximately 4,512 deaths 
(95% CI: 1,922, 7,102) from cardiovascular diseases, including 
3,753 (95% CI: 1,915, 5,592) ischemic heart disease deaths, 1,142 
deaths (95% CI: 285, 1,999) from endocrine diseases, including 
858 (95% CI: 149, 1,566) diabetes deaths, 2,083 deaths (95% CI: 
1,143, 3,022) from mental disorders, 537 deaths from digestive 
diseases (95% CI: −200, 1,273), and 320 deaths (95% CI: −72, 
713) from chronic kidney diseases. Among the total long-term 
smoke PM2.5 -attributable nonaccidental deaths, approximately 
72.5% were from cardiovascular diseases, mental disorders, endo-
crine diseases, and digestive diseases ( Fig. 3B   and SI Appendix, 
Table S3 ).  

Association between Long- Term Smoke PM2.5 and Monthly 
Mortality Rate by Subgroup. We examined the association 
between 12- mo moving average of smoke PM2.5 concentrations 
and monthly nonaccidental mortality rates across different sex, 
age, and race and ethnicity groups (Table  1). No significant 
difference in effect estimates was observed between males and 
females. Compared with people aged 0 to 64, greater increases 
in mortality rates were observed among people who aged 65 
and above across all smoke PM2.5 concentration bins. Among 
different racial and ethnic groups, compared with non- Hispanic 
White people, significantly higher associations were observed for 
non- Hispanic Black and Hispanic people when smoke PM2.5 
concentration was from 1 to 5 μg/m3. After considering multiple 
comparisons, the difference between racial and ethnic minorities 
and non- Hispanic White people became insignificant, but the 
significant differences between age groups remained.

 Subgroup analyses were also performed for major categories of 
mortality that showed consistent and significant sensitivity to 
long-term exposure to smoke PM2.5 : cardiovascular, endocrine, 
digestive, and mental mortality (SI Appendix, Table S4 ). In gen-
eral, no significant difference between sex or race and ethnicity 
groups was detected for these four outcomes after considering 
multiple comparisons. Consistent with the findings for nonacci-
dental mortality, greater smoke PM2.5 -related increases in mortal-
ity rates from cardiovascular diseases and mental disorders were 
observed among people who aged 65 and above.  D
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Interaction between Long- Term Smoke PM2.5 and Extreme Heat 
Days. Extreme heat commonly co- occurred with wildland fire 
smoke PM2.5 in the contiguous United States. Here, we examined 
the interaction effects of long- term smoke PM2.5 and current- 
month extreme heat days. For each county, we defined extreme 
heat days as days with daily mean air temperature higher than the 
county’s 90th percentile warm season air temperature (May to 
September, 2007 to 2020). From 2007 to 2020, a total of 657,402 
extreme heat days were identified in the counties studied, spanning 
126,237 county- months. We calculated the number of extreme 
heat days in each county for each month to represent monthly 

extreme heat exposure. Based on the spatial distribution of the 
12- mo moving average of smoke PM2.5 concentrations and the 
current- month number of extreme heat days (Fig. 4A), the North 
Central, South, Southeast, and West regions experienced higher 
coexposure to smoke PM2.5 and extreme heat than other regions.

 By including an interaction term for the current-month number 
of extreme heat days and 12-mo moving average of smoke PM2.5  
concentration bins in our model, we found a significantly positive 
interaction between extreme heat and smoke PM2.5  at levels rang-
ing from 0.1 to 5 μg/m3  ( Fig. 4B  ). The interaction results in general 
remained robust when we used alternative temperature thresholds 
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in the definition of extreme heat days (85th or 95th percentile of 
local warm-season temperature distribution). Among mortality of 
specific causes, positive interactions were found for cardiovascular 
and mental disorder mortality (SI Appendix, Fig. S5 ).  

Sensitivity Analyses, Placebo Tests, and Stratification by Distance 
to Fire. Our results generally remained robust across various sensitivity 
analyses: when including different combinations of fixed effects, when 
additionally adjusting for dew point temperature, when excluding 
adjust for nonsmoke PM2.5 or current- month air temperature, when 
adjusting for 12- mo moving average of air temperature instead of 
current- month temperature, and when using alternative degrees of 
freedoms in the natural cubic spline of air temperature in the model 
(SI Appendix, Fig. S6). The estimated nonlinear pattern also remained 
consistent when we used a quasi- Poisson model and used finer bins 
or a natural cubic spline for smoke PM2.5 in the model (SI Appendix, 
Figs. S7–S9). The results of the spatial and temporal randomization 
tests indicated that the estimates in our study were unlikely driven 
by spatial or temporal dependence due to model misspecification 
(SI Appendix, Fig. S10). When the exposure period to smoke PM2.5 
was extended from 12 mo to 24 and 36 mo, the model coefficients 
decreased and eventually becoming null at a 36- mo exposure window 
in most bins (SI Appendix, Fig. S11).

 In a stratified analysis by distance to fire, we observed that the 
association between long-term smoke PM2.5  exposure and non-
accidental mortality was significantly higher in counties far away 
from the fire point (≥150 km) in the current and past 11 mo 
compared with those close to an active fire (<150 km) when the 
12-mo moving average of smoke PM2.5  concentrations was from 
0.2 to 0.4 μg/m3  and from 1 to 5 μg/m3  (SI Appendix, Fig. S12 ). 
However, when the smoke PM2.5  concentrations were above 5 μg/
m3 , the estimate was only significantly positive in counties close 
to fire. This result suggests that being close to a fire was unlikely 
to be a main driver of the estimated results in our study.   

Discussion

 This study comprehensively examines the associations between long-
term exposure to wildland fire smoke PM2.5  and mortality from a 
wide range of specific causes for all ages in the whole contiguous 

United States. We found that average exposure to wildland fire 
smoke PM2.5  in the past 1 y was associated with increases in nonac-
cidental, cardiovascular, ischemic heart disease, digestive, endocrine, 
diabetes, mental, and chronic kidney disease mortality. In addition 
to the well-documented mortality burden from nonsmoke PM2.5 , 
in total, we estimated that smoke PM2.5  contributed to over 10,000 
nonaccidental deaths in the contiguous United States each year. 
Higher smoke PM2.5 -related increases in mortality rates were found 
for people aged 65 and above. In addition, positive interaction effects 
between 12-mo moving average of smoke PM2.5  concentrations and 
current-month number of extreme heat days on nonaccidental, car-
diovascular, and mental disorder mortality were observed.

 The impacts of long-term wildland fire smoke exposures on 
mortality are understudied in existing literature. However, our 
results are in general consistent with a few previous findings that 
long-term exposure to wildland fire smoke is associated with 
increased premature mortality ( 21 ). For example, a study in Brazil 
observed a significant association between long-term exposure to 
forest fire PM2.5  (measured by percentage hours of PM2.5  concen-
trations > 25 μg/m3  divided by the total number of estimated 
hours of PM2.5  in 2005) and increases in cardiovascular disease 
mortality rates in older adults (≥65 y) ( 34 ). Controlling for 
non-fire-sourced PM2.5 , a case–control study in low-income and 
middle-income countries reported that each 1 μg/m3  increment 
of monthly mean fire-sourced PM2.5  concentration was associated 
with a 2.31% increased risk of child mortality, but this estimate 
became statistically insignificant after extending the exposure time 
window from 1 mo to 12 mo ( 35 ). However, given the differences 
in study population and location, exposures (e.g., the intensity, 
frequency, and duration of wildfire smoke), study design, and 
outcome measures, estimates are not directly comparable across 
studies. More studies investigating the long-term impacts of wild-
land fire smoke exposure on mortality from a comprehensive 
spectrum of specific causes and conditions are needed in the future.

 Although the health impacts of wildland fire smoke PM2.5  could 
be different from urban background PM2.5  due to differences in 
chemical composition and particle size, and the episodic nature of 
smoke ( 7 ,  36 ), the biological mechanisms are likely to align with 
those documented for all-source (i.e., total mass) PM2.5 . PM2.5  can 
travel into the respiratory tract and bloodstream and trigger oxidative 

Fig. 3.   Average annual nonaccidental mortality burden attributable to long- term smoke PM2.5 exposure. (A) The spatial distribution of average annual 
nonaccidental deaths (per 100,000 people) attributable to long- term smoke PM2.5 exposure (12- mo moving average). (B) Estimated average annual cause- specific 
deaths attributable to long- term smoke PM2.5 exposure.
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Table 1.   Associations between 12- mo moving average of smoke PM2.5 concentration bins and monthly nonacciden-
tal mortality rate (per 100,000 people) in population subgroups

Subgroup
Smoke PM2.5 concentration bin 

(µg/m3)
Associated change in monthly 

mortality rate (95% CI) P value*

 By sex

Male 0.1 to 0.2 0.11 (−0.05, 0.26) Reference
0.2 to 0.3 0.41 (0.22, 0.61) Reference
0.3 to 0.4 0.32 (0.11, 0.53) Reference
0.4 to 0.5 0.41 (0.18, 0.65) Reference
0.5 to 0.7 0.49 (0.25, 0.74) Reference
0.7 to 1 0.74 (0.45, 1.04) Reference

1 to 5 0.38 (0.02, 0.74) Reference
5+ 2.25 (1.09, 3.41) Reference

Female 0.1 to 0.2 0.19 (0.08, 0.31) 0.386
0.2 to 0.3 0.38 (0.24, 0.53) 0.795
0.3 to 0.4 0.35 (0.20, 0.50) 0.788
0.4 to 0.5 0.27 (0.09, 0.44) 0.311
0.5 to 0.7 0.45 (0.27, 0.63) 0.784
0.7 to 1 0.51 (0.29, 0.72) 0.203

1 to 5 0.28 (0.03, 0.54) 0.652
5+ 1.90 (0.91, 2.90) 0.657

 By age

0 to 64 0.1 to 0.2 0.05 (−0.01, 0.10) Reference
0.2 to 0.3 0.10 (0.04, 0.17) Reference
0.3 to 0.4 0.13 (0.06, 0.20) Reference
0.4 to 0.5 0.10 (0.02, 0.18) Reference
0.5 to 0.7 0.22 (0.14, 0.31) Reference
0.7 to 1 0.30 (0.20, 0.40) Reference

1 to 5 0.07 (−0.05, 0.19) Reference
5+ 0.55 (0.05, 1.05) Reference

65+ 0.1 to 0.2 0.67 (0.00, 1.35) 0.069
0.2 to 0.3 2.20 (1.27, 3.13) < 0.001
0.3 to 0.4 1.33 (0.41, 2.26) 0.011
0.4 to 0.5 0.77 (−0.25, 1.80) 0.198
0.5 to 0.7 1.18 (0.13, 2.24) 0.076
0.7 to 1 2.34 (1.06, 3.61) 0.002

1 to 5 1.36 (−0.23, 2.96) 0.112
5+ 7.08 (2.22, 11.93) 0.009

 By race and ethnicity

Non- hispanic white 0.1 to 0.2 0.11 (−0.00, 0.22) Reference
0.2 to 0.3 0.27 (0.14, 0.39) Reference
0.3 to 0.4 0.23 (0.09, 0.38) Reference
0.4 to 0.5 0.27 (0.11, 0.42) Reference
0.5 to 0.7 0.36 (0.19, 0.53) Reference
0.7 to 1 0.50 (0.30, 0.70) Reference

1 to 5 0.01 (−0.23, 0.24) Reference
5+ 1.36 (0.51, 2.21) Reference

Non- hispanic black 0.1 to 0.2 0.20 (−0.15, 0.54) 0.631
0.2 to 0.3 0.49 (0.06, 0.92) 0.327
0.3 to 0.4 0.45 (−0.01, 0.91) 0.377
0.4 to 0.5 0.29 (−0.22, 0.81) 0.922
0.5 to 0.7 0.74 (0.20, 1.28) 0.190
0.7 to 1 0.72 (0.05, 1.40) 0.536

1 to 5 0.93 (0.11, 1.75) 0.035
5+ 3.91 (−0.31, 8.13) 0.245
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stress and inflammation, leading to impaired lung and vascular func-
tion ( 37 ). PM2.5  may deposit in the kidney, contributing to the 
development of kidney diseases ( 38 ). PM2.5  can also enter the gas-
trointestinal tract, causing imbalances in the intestinal microecology 
( 39 ). In addition, PM2.5  exposure has been associated with insulin 
resistance, which may progress to diabetes and other endocrine dis-
eases ( 40 ). Furthermore, the oxidative stress, systemic and neuroin-
flammation, and hypothalamic–pituitary–adrenal axis dysregulation 
triggered by PM2.5  have been linked to psychological diseases ( 41 ). 
The aggravation of physical health conditions could also worsen 
mental health ( 42 ). A multilevel conceptual framework has also been 
proposed for understanding the pathways connecting wildland fire 
smoke with mental health and well-being, which involves loss of 
nature, reduced access to livelihoods, reduced outdoor activities, 
and many other social and behavioral factors ( 17 ). More research is 
needed in the future to better understand the underlying mecha-
nisms of the health impacts of wildland fire smoke.

 In our study, higher effect estimates were found for older adults 
compared with people aged 0 to 64, which is consistent with the 
literature of all-source PM2.5 . The greater increases in mortality 
rates associated with smoke PM2.5  among older adults reflect both 
higher baseline mortality rates and higher susceptibility to air pol-
lution in the older population as found in previous studies due to 
decreased physiological, metabolic, and compensatory processes 
and a higher prevalence of comorbidities ( 43 ). In addition, we 
found higher effect estimates in counties far away from the fire 
point compared with those close to an active fire when the 12-mo 
moving average of smoke PM2.5  concentrations was below 5 μg/
m3 . This finding suggests a substantial public health burden from 
smoke, given that the population residing near the fires is likely 
much smaller compared to the larger number of people affected 
downwind due to smoke transport.

 Furthermore, we observed a positive interaction effect between 
long-term exposure to wildland fire smoke PM2.5  and current- 
month extreme heat. To date, although research has highlighted 
the synergistic health impacts of heat and air pollution ( 44 ), only 
a limited number of studies have specifically examined the inter-
action with PM2.5  from wildland fire smoke. A recent study in 
California found evidence of synergistic effects between extreme 
heat and wildland fire smoke ( 31 ); however, since this study 
focused on short-term smoke PM2.5  exposure, its results are not 
directly comparable to those of our study. The positive interaction 
between wildland fire smoke PM2.5  and extreme heat indicates an 
increasing mortality burden for US populations in the future given 
that the coexposure to both hazards is expected to increase under 
the changing climate ( 28 ). Further studies on the compounding 
effects of wildland fires and other climate-related events, such as 
heatwaves and droughts, are warranted.

 Our study estimated that over 10,000 nonaccidental deaths per 
year resulted from wildland fire smoke PM2.5  in the contiguous 
United States, which is over 1,000 times higher than the recorded 
wildfire deaths in the US Billion-dollar Weather and Climate 
Disasters report by the National Oceanic and Atmospheric 
Administration’s National Centers for Environmental Information 
(10 deaths/y due to the fire itself ) ( 45 ). This indicates a great 
number of deaths brought by wildland fires that could not be 
captured by official tolls. According to the Global Burden of 
Disease Study, ambient PM2.5  pollution contributed to an average 
of approximately 67,800 deaths annually in the contiguous United 
States from 2007 to 2020 ( 46 ,  47 ). Using this number as a refer-
ence, our results indicate that smoke PM2.5 -related deaths account 
for about 16.8% of the deaths associated with all-source PM2.5 . 
In addition, the US Billion-dollar Weather and Climate Disasters 
report estimated that wildfire events cost about 3.1 billion dollars 
per year in the United States ( 45 ), but this estimate does not take 
into account the health care–related losses or values associated 
with loss of life due to the fire itself or smoke ( 48 ). A recent study 
reported that the economic value of the health impacts of wildland 
fire smoke could be in the tens to hundreds of billions of US 
dollars, but the exposure-response function for the PM2.5 -mortality 
relationship they used was for all-source PM2.5 , not wildland 
fire-specific PM2.5  ( 49 ). Our study suggests a tremendous wildland 
fire smoke-related mortality burden, and our effect estimates for 
the relationship between wildland fire PM2.5  and mortality could 
be applied in future estimates of the costs of wildland fires to more 
fully account for the fire and smoke impacts.

 The findings of our study have several key implications. First, 
wildland fire smoke is a national concern in the United States. Its 
health effects extend beyond the western regions where wildland 
fires mostly occur, impacting the entire country. Second, the 
health impacts of wildland fire smoke are not limited to those in 
response to short-term (daily) exposures. Long-term exposure to 
smoke PM2.5  contributed to substantial mortality burden in the 
United States and will become increasingly important in the 
future due to the prolonged wildland fire seasons under climate 
change. Third, the health impacts of wildland fire smoke cover a 
wide spectrum of causes of death ranging from cardiovascular and 
endocrine diseases to mental disorders and digestive diseases. 
Furthermore, in addition to the well-recognized detrimental 
effects of extremely high concentrations of smoke PM2.5 , even 
relatively low levels can be harmful. Finally, the relationship 
between wildland fire smoke and mortality appears to be nonlin-
ear, underscoring the necessity for further research into the mod-
ifying factors of this association and highlighting the importance 
of utilizing concentration-specific exposure-response functions 
in future health impact assessments.

Table 1. (Continued)

Subgroup
Smoke PM2.5 concentration bin 

(µg/m3)
Associated change in monthly 

mortality rate (95% CI) P value*

Hispanic 0.1 to 0.2 0.26 (−0.01, 0.52) 0.304
0.2 to 0.3 0.60 (0.27, 0.93) 0.062
0.3 to 0.4 0.39 (0.03, 0.75) 0.431
0.4 to 0.5 0.36 (−0.06, 0.77) 0.682
0.5 to 0.7 0.38 (−0.05, 0.81) 0.945
0.7 to 1 0.35 (−0.20, 0.90) 0.617

1 to 5 0.96 (0.33, 1.59) 0.005
5+ 2.12 (−0.42, 4.66) 0.578

*The P value indicates the statistical significance of between- group difference, with males, people aged 0 to 64, and non- Hispanic White people as the reference group. We added an 
interaction term of the subgroup variable and smoke PM2.5 variable into the main model and reported the P value of this interaction term.
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 Some limitations of this study should be noted. First, the wild-
land fire smoke PM2.5  concentrations were modeled and subject 
to uncertainty. Because direct measurements of the smoke contri-
bution to PM2.5  pollution are not available, the smoke PM2.5  
prediction was based on PM2.5  anomalies at monitoring stations, 
which may be an imprecise estimate of the concentrations of 
smoke ( 33 ). PM2.5  from prescribed fire smoke is underrepresented 
in the model output; therefore, the exposure data we used do not 
fully capture the total smoke exposure people experience from 
wildland fires (i.e., both wildfire and prescribed fire). Additionally, 
wildland fire smoke has a unique spatiotemporal pattern, and 
measuring long-term smoke PM2.5  exposure using average con-
centrations may overlook its episodic nature. Average smoke PM2.5  
concentrations primarily reflect intensity but do not adequately 
capture the frequency and duration aspects of long-term smoke 

PM2.5  exposure ( 50 ). Future studies using different exposure met-
rics that better reflect various aspects of long-term smoke PM2.5  
exposure are warranted. Furthermore, we assumed that the non-
smoke PM2.5  was the difference between the all-source PM2.5  and 
the smoke PM2.5  concentrations, but they were generated using 
different methods and may introduce measurement errors.

 Second, lacking detailed location information, this county-level 
ecological study is susceptible to ecological fallacy. We were unable 
to capture the within-county heterogeneity of smoke PM2.5  expo-
sure among different subgroups or analyze the influence of wildfire 
evacuation in this study. Besides, the estimates of smoke PM2.5  in 
our study may partially capture the health effects of other pollut-
ants within the smoke mixture. Due to the absence of publicly 
available, full-spatial coverage data updated to 2020, we were 
unable to adjust for other wildland fire-related air pollutants, such 

Fig. 4.   Interaction effects between extreme heat and smoke PM2.5 on nonaccidental mortality rate. (A) This bivariate choropleth map shows the spatial distribution 
of the 12- mo moving average of smoke PM2.5 concentrations and the average number of current- month extreme heat days in each county, 2007 to 2020. Darker 
blue indicates higher average smoke PM2.5 concentrations; darker red indicates more average extreme heat days; and darker purple indicates higher values 
of both variables. (B) The interaction effects between the number of current- month extreme heat days (a continuous variable) and 12- mo moving average of 
smoke PM2.5 concentration bins (a categorial variable). The error bars indicate 95% CI. Extreme heat days were defined as days with daily mean air temperature 
higher than the county’s 90th (main analysis), 85th, or 95th (sensitivity analyses) percentile warm season air temperature (May to September, 2007 to 2020).
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as nitrogen dioxide, ozone, carbon monoxide, and polycyclic aro-
matic hydrocarbons. In addition, we used the smoke PM2.5  con-
centration range of 0 to 0.1 μg/m3  as the reference due to the 
limited number of county-months with 0 μg/m3  long-term expo-
sure. This choice of reference could result in an underestimation 
of both the smoke PM2.5 -related mortality changes and the attrib-
utable mortality burden. Furthermore, although we examined mor-
tality from a wide range of plausible specific causes, we did not cover 
all possible causes of death (e.g., infectious diseases and cancer were 
excluded). Future studies are warranted to explore the association 
between wildland fire smoke and these diseases. Finally, the calcu-
lation of attributable mortality burden was based on the assump-
tions of homogeneity and causality of the estimated smoke 
PM2.5 -mortality relationships (see details in Materials and Methods ). 
Violation of these assumptions may bias the results.

 In conclusion, our study identified the detrimental effects of 
long-term wildland fire smoke PM2.5  exposure on a wide range of 
mortality outcomes in the United States. With wildland fire inten-
sity and frequency anticipated to increase in the future driven by 
climate change ( 5 ), more effective public health actions and com-
munications that span the health risks of short- and long-term 
exposure are urgently needed both in and outside the areas where 
the wildland fires occur.  

Materials and Methods

Mortality and Population Data. We obtained mortality data for all 3,108 counties 
or county equivalents in the contiguous United States from 2007 to 2020 from the 
National Center for Health Statistics (51). The mortality dataset includes the year and 
month of death, the primary cause of death (International Statistical Classification of 
Diseases and Related Health Problems, 10th Revision [ICD- 10] codes), and the sex, 
age, race, and ethnicity of each deceased person. This study covered nonaccidental 
mortality (ICD- 10 code: A00- R99) and cause- specific mortality from major categories: 
cardiovascular diseases (I00- I99), respiratory diseases (J00- J99), endocrine diseases 
(E00- E90), genitourinary diseases (N00- N99), nervous diseases (G00- G99), mental 
and behavioral disorders (F00- F99), and digestive diseases (K00- K93). Deaths from 
more specific causes, including ischemic heart disease (I20- I25), myocardial infarc-
tion (I20- I23), stroke (I60- I69), hypertensive disease (I10- I15), hypertensive heart 
disease (I11), COPD (J41- J44), diabetes (E10- E14), chronic kidney disease (N18), 
and ADRD (F00- F03, G30) were also examined in this study.

County- level population data were collected from the Surveillance, 
Epidemiology, and End Results Program, National Cancer Institute (52). The total 
population and population estimate by sex, age, race, and Hispanic origin were 
extracted for each county, 2007 to 2020. We calculated the monthly county- level 
cause- specific mortality rates for different sex (male and female), age (0 to 64, 65, 
and above), and race and ethnicity (non- Hispanic White, non- Hispanic Black, and 
Hispanic) groups. All mortality rates, except those specific to age groups, were age 
adjusted by direct standardization using the 2000 US Census population as the 
standard population. Using anonymized monthly county- level mortality data, this 
study was determined as a Not Human Subject research by the Yale Institutional 
Review Boards (protocol ID: 2000026808).

Wildland Fire Smoke PM2.5 and Nonsmoke PM2.5. Ambient wildland fire smoke 
PM2.5 estimates for the contiguous United States were provided by a recent study 
by Childs et al. (33). In brief, smoke days were identified as days when smoke was 
overhead based on satellite imagery, and station- based ground smoke PM2.5 on 
those days was calculated as anomalies above the median on nonsmoke days. Then, 
a model was trained to predict the station- based smoke PM2.5 using meteorological 
factors, fire variables, aerosol measurements, and land use and elevation data. 
Finally, the trained model was applied to produce daily estimates of smoke PM2.5 
over the contiguous United States at a resolution of 10 × 10 km2 (33). This model 
performed well over the entire range of observed smoke PM2.5 (R2 = 0.67), but the 
model performance was lower on days with station- based smoke PM2.5 concen-
trations above 50 µg/m3 compared to days with concentrations below 50 µg/m3 
(33). We additionally validated this model against a recently published wildland 
fire- specific PM2.5 model in California, which applied an ensemble- based statistical 

approach to isolate wildland fire- specific PM2.5 from other sources of emissions 
(53). This external validation showed a great consistency between the monthly 
county- level predictions from these two models in California, 2006 to 2020, with an 
R- squared (R2) value of 0.92 and a rms error of 1.14 µg/m3 (SI Appendix, Fig. S13). 
The daily smoke PM2.5 concentrations were aggregated into monthly county- level 
average using population- weighted averaging to match with the mortality data. For 
months from January 2007 to December 2020, we calculated the 12- mo moving 
average of smoke PM2.5 concentration for each county to represent the average 
exposure to smoke PM2.5 in the previous year. To account for the potentially non-
linear effects, we divided the 12- mo moving average smoke PM2.5 concentrations 
into 9 bins: 0 to 0.1 (reference), 0.1 to 0.2, 0.2 to 0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 
0.7, 0.7 to 1, 1 to 5, and 5+ μg/m3. The distribution of samples across the bins is 
shown in SI Appendix, Fig. S2.

Data of daily total all- source PM2.5 concentrations at 1 × 1 km2 resolution were 
obtained from the USHighAirPollutants dataset (54). These daily surface PM2.5 con-
centration data were derived via a deep learning model that integrated big data 
from satellites, models, and surface observations (54). Similar to smoke PM2.5, we 
averaged the daily all- source PM2.5 concentrations into monthly county- level data. 
Nonsmoke PM2.5 concentrations were then calculated by subtracting the smoke 
PM2.5 from the all- source PM2.5 concentrations. For negative values produced by 
this subtraction (0.07% of the total observations), the nonsmoke PM2.5 concen-
trations were recoded as 0. We calculated the moving average nonsmoke PM2.5 
concentrations of the current and previous 11 mo for months from January 2007 to 
December 2020. The cartographic boundary for counties in the contiguous United 
States was downloaded from the US Census Bureau’s TIGER/Line geodatabase (55).

Meteorological Factors. Daily mean air temperature and mean dew point 
temperature data at 4 × 4 km2 were obtained from the Parameter- elevation 
Regressions on Independent Slopes Model Climate Group (56). Similar to the 
air pollution data, we generated monthly averages for these two variables for 
each county.

We also utilized the daily mean air temperature data from the PRISM Climate 
Group to detect extreme heat days (56). In each county, extreme heat was defined 
as days with daily mean air temperature higher than the county’s 90th percentile 
warm season air temperature (May to September, 2007 to 2020). The monthly 
number of extreme heat days in each county were calculated. In sensitivity analy-
sis, temperature thresholds of 85th and 95th percentiles were used as alternative 
definitions of extreme heat.

Distance to Fire. Daily active fire location data from 2006 to 2020 were obtained 
from the Hazard Mapping System. This system combines near real- time satellite 
observations into a common framework in which trained satellite analysts perform 
quality control of automated fire detections (57). For each county, we calculated 
the distance from its population centroid to the nearest active fire point each day 
and aggregated the daily data to monthly level using the median value. Then, we 
calculated the 12- mo moving average of this distance for each county to represent 
the average distance to active fires in the previous year. We classified the distance 
to fire into two categories: close (<150 km) and far (≥150 km).

Statistical Analysis. To estimate the association between long- term exposure 
to wildland fire smoke PM2.5 and monthly mortality rates, we applied a panel 
fixed effects model which exploits local temporal variation in both exposure and 
outcome. Panel fixed effects models have been increasingly applied in environ-
mental epidemiology in recent years (58, 59). In our study, the main model can 
be expressed as

Mortality Ratec,y,m

=�c +�y,m+�s,y +�c,m

+
∑B

b=1

(

�bSmoke PM2.5 Bins
b
c,y,m

)

+�NonSmoke PM2.5 c,y,m

+ns
(

Temperaturec,y,m, df =5
)

+�c,y,m

where Mortality Ratec,y,m  represents the nonaccidental or other cause- specific age- 
adjusted mortality rates in county c, year y, and month m. Smoke PM2.5 Binsb

c,y,m
  

is a dummy for whether the moving average of smoke PM2.5 concentration of 
the current and previous 11 mo in county c, year y, and month m falls into the D
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concentration range of bin b. �c  refers to time- invariant county effects, and �y,m  
refers to time- varying effects that are common in all counties. By introducing the 
indicators for each county and each year- month, this model can potentially control 
for all spatial confounders that only vary across counties (e.g., urbanicity) and all 
temporal confounders that only vary by time (e.g., seasonality), either measured 
or unmeasured (60). Fixed effects at the state by year level ( �s,y  ) and at the county 
by month of year level ( �c,m  ) account for regional long- term trend and seasonality 
in exposure and outcomes. NonSmoke PM2.5c,y,m  is the 12- mo moving average of 
nonsmoke PM2.5 concentrations in county c, year y, and month m. Current- month 
air temperature was controlled by a flexible natural cubic spline with five degrees of 
freedom (df). �c,y,m is the error term. We weighted models using the population size 
in each county to improve the precision of our estimates (61). Heteroskedasticity- 
robust SE were used to compute 95% CI. Associations were considered statistically 
significant at α of 0.05 with a Bonferroni correction given as �∕m , where m is the 
number of examined specific causes of death (17 specific causes). Only specific 
causes with estimates consistent in direction across smoke PM2.5 concentration 
bins and statistically significant after Bonferroni correction were included in further 
analysis.

In subgroup analyses, to estimate the association between long- term smoke 
PM2.5 exposure and monthly mortality rates by sex, age, and race and ethnicity, 
we used an expanded dataset nesting the subgroups, interacted the subgroup 
variable with all terms in the model, and reported the statistical significance of 
the interaction term between the subgroup variable and smoke PM2.5. To account 
for multiple comparison, Bonferroni correction was also performed in subgroup 
analyses ( m = 3 subgroups × 5 major causes of mortality ). Furthermore, we 
explored the interaction between extreme heat and smoke PM2.5 by interacting 
the current- month number of extreme heat days and bins of 12- mo moving 
average concentration of smoke PM2.5 in the model. In addition, we also con-
ducted stratified analysis by distance to fire (close, far) to investigate its potential 
modification effect. We tested the lag pattern in the effects of smoke PM2.5 by 
extending the 12- mo moving average of smoke PM2.5 concentration to 24 and 
36, representing longer- term smoke PM2.5 in the past up to 3 y.

Based on the estimated coefficients of smoke PM2.5 bins ( �b  ) for each 
cause, which can be interpreted as the changes in mortality rate associated 
with being in those bins of smoke PM2.5 concentration compared to the ref-
erence bin (0 to 0.1 μg/m3), we calculated the number of deaths attributable 
to smoke PM2.5 (attributable number, AN) in each county in each month by 
ANc,m = �b × Populationc,m  , where �b  is the estimated coefficient of the cor-
responding smoke PM2.5 bin (b) in that month and Populationc,m  is the total 
population in county c, month m. This calculation relied on two key assumptions. 
First, this approach assumes homogeneity within each smoke PM2.5 bin, disre-
garding the variation within the bin. In this study, the 12- mo moving average 
concentrations of smoke PM2.5 were divided into nine narrowly defined bins, 
each with a relatively small concentration range. Therefore, the estimate of each 
bin is likely to well represent the average effects of smoke PM2.5 within that 
specific concentration range. This assumption was further tested by using finer 
bins and a nonlinear curve to smoke PM2.5 in sensitivity analyses (see below; 
SI Appendix, Figs. S8 and S9). In addition, by using the regression coefficients to 
estimate attributable deaths, we assume a causal relationship between smoke 
PM2.5 concentration and mortality rates. Traditionally, health impact assessments 
for long- term exposure use exposure- response functions estimated from cohort 
studies. However, to the best of our knowledge, no published cohort studies have 
reported the association between long- term wildland fire smoke PM2.5 exposure 
and cause- specific mortality for the total population across the entire contiguous 
United States. Similar to a previous study (62), we applied the estimates from a 
panel fixed effects model to the calculation of attributable mortality burden. Our 
statistical model accounted for unmeasured temporal and spatial confounders 

by the year- month and county fixed effects and unmeasured confounders that 
vary both over time and space by the space–time interaction terms. Therefore, 
the observed association is unlikely to be primarily driven by unmeasured con-
founding factors. Spatial and temporal randomization tests were performed to 
test this assumption (see below; SI Appendix, Fig. S10). In addition, unlike cohort 
studies that commonly focus on people identified by specific characteristics 
(e.g., older adults), our study design allows us to cover the entire population 
across all age groups. This makes our estimates more suitable for health impact 
assessments of the general population.

Several sensitivity analyses were performed to test the robustness of our 
results: a) we used different choices of fixed effects in the model; b) we addition-
ally adjusted for dew point temperature in the model; c) we removed nonsmoke 
PM2.5 or current- month air temperature from the model; d) an alternative four 
or six dfs was used in the natural cubic spline of air temperature; e) we adjusted 
for 12- mo moving average of air temperature instead of current- month air tem-
perature; f) we used mortality count as the outcome variable and performed a 
quasi- Poisson model; g) we used finer bins of smoke PM2.5 concentration; and 
h) we used a natural cubic spline with knots at 0, 0.1, 0.3, 0.5, 1, and 5 µg/m3 to 
model wildland fire smoke PM2.5 concentration.

In addition, to assess the likelihood of model misspecification influencing our 
main results, we performed a spatial randomization test and a temporal random-
ization test. In the spatial randomization test, we randomized the smoke PM2.5 
exposure for 2,000 times across county while keeping their de facto year- month; 
in the temporal randomization test, we randomized the exposure variable for 
2,000 times across year- month while keeping the corresponding counties. Such 
placebo tests are commonly used to detect spatial and temporal dependence due 
to model misspecification in panel models (63, 64).

Data, Materials, and Software Availability. Some study data are available. 
All environmental data, including wildfire smoke, air pollution, and weather, are 
publicly accessible. Mortality data can be accessed through applications at the 
National Center for Health Statistics (https://www.cdc.gov/nchs/nvss/index.htm) 
(51).
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