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Abstract: The spatially heterogeneous nature and geographical scale of surface urban heat island 
(SUHI) driving mechanisms remain largely unknown, as most previous studies have focused solely 
on their global performance and impact strength. This paper analyzes diurnal and nocturnal SUHIs 
in China based on the multiscale geographically weighted regression (MGWR) model for 2005, 2010, 
2015, and 2018. Compared to results obtained using the ordinary least square (OLS) model, the 
MGWR model has a lower corrected Akaike information criterion value and significantly improves 
the model’s coefficient of determination (OLS: 0.087–0.666, MGWR: 0.616–0.894). The normalized 
difference vegetation index (NDVI) and nighttime light (NTL) are the most critical drivers of day-
time and nighttime SUHIs, respectively. In terms of model bandwidth, population and Δfine par-
ticulate matter are typically global variables, while ΔNDVI, intercept (i.e., spatial context), and NTL 
are local variables. The nighttime coefficient of ΔNDVI is significantly negative in the more eco-
nomically developed southern coastal region, while it is significantly positive in northwestern 
China. Our study not only improves the understanding of the complex drivers of SUHIs from a 
multiscale perspective but also provides a basis for urban heat island mitigation by more precisely 
identifying the heterogeneity of drivers. 
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1. Introduction 
Urbanization is a significant phenomenon of human activity that alters land use and 

cover [1–3]. One of the most widespread human-induced environmental influences of ur-
banization is the emergence of urban heat islands, described as higher temperature urban 
areas compared to rural references [4,5]. Urban heat islands (UHIs) have been widely ob-
served worldwide in recent decades. Existing literature shows that temperature rise is 
closely related to energy consumption [6–8], air pollution [9,10], biodiversity [11,12], and 
the health of residents [13–15]. Therefore, the impacts of urban heat islands are a signifi-
cant concern in urban environmental research. 
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Urban heat islands can be classified as canopy (CUHI) and surface (SUHI) UHIs [16–
18]. Typically, CUHIs are quantified using observations from meteorological stations, 
while SUHIs are determined based on satellite remote sensing data [19]. Previous research 
has shown that the influence of local surface type on CUHIs obtained from stations cannot 
be ignored. This finding indicates that CUHIs are characterized by high spatial heteroge-
neity, thus reducing the reference value of point-based CUHIs to represent the thermal 
difference among urban and rural regions [20,21]. SUHIs are gradually attracting the at-
tention of an increasing number of researchers due to the continued development of sat-
ellite technology. 

The increasing accessibility of remote sensing data has dramatically enhanced satel-
lite-based research of SUHI controls [22–27]. Peng et al. [28] analyzed the drivers of SUHIs 
on a global scale for the first time and found that vegetation was significantly correlated 
with reduced diurnal and nocturnal SUHIs. Zhao et al. [29] analyzed the effect of aerody-
namic drag on SUHIs using 65 large cities in North America as the study area. A coarse-
grained model connecting population, background climate, and UHI intensity was re-
cently developed [30], indicating that the urban–rural differences in evapotranspiration 
and convection efficiency were the primary factors of warming. Priyankara et al. [31] an-
alyzed an SUHI in the Seoul metropolitan area from the perspective of spatial processes 
and verified the mechanism of urban greening on the SUHI. The above studies have pro-
vided comprehensive and in-depth attribution analyses of SUHIs from multiple perspec-
tives in different regions and at different times. However, two crucial issues have been 
ignored: the spatial heterogeneity and the scale of SUHI drivers. 

Scale is an essential geographic concept. The general agreement by scholars in cur-
rent research is that various processes can work at multiple spatial scales that are different 
from one another. Previous studies often distinguish between micro and macro processes 
and local and global processes [32,33]. For example, various processes operating at largely 
independent scales determine the weather and tides in a certain area [34]. SUHIs are also 
complex phenomena driven by multiple factors in the social economy and the ecological 
environment. Therefore, it is necessary to distinguish the spatial scales of the various driv-
ing factors in SUHI attribution analysis. 

Previous empirical research models for SUHI driver analysis can generally be di-
vided into two main categories. The first type includes global-scale analysis methods, such 
as correlation coefficients [28,35,36], ordinary least square (OLS) [37–39], generalized ad-
ditive model (GAM) [40], and various models for machine learning [41–43]. The biggest 
problem with these methods is that they cannot adequately analyze the spatial variations 
of SUHI drivers, making them feasible for small regional studies but leading to obvious 
bias at large spatial scales, such as in China. The second category is the classical geograph-
ically weighted regression method (GWR), which has long been employed as a local re-
gression model to address the heterogeneity problems of spatial processes [44–46]. How-
ever, each spatial parameter in the GWR model is assumed to arise from the same spatial 
scale, likely resulting in an inaccurate evaluation of spatial scale. The multiscale geograph-
ically weighted regression (MGWR) provides a more appropriate identification of SUHI 
drivers by allowing different bandwidths (instead of a sole global bandwidth used in the 
GWR model to be assigned to each variable) [34]. MGWR is considered a major innovation 
in spatial analysis. It is currently the only analytical tool providing both the spatial scale 
information of how drivers influence the dependent variable and the quantification of 
contextual effects in the determination of SUHI [47].  

Studying the spatial heterogeneity and scales of SUHI drivers can help develop a 
basic theory of UHI effects and provide a valuable reference basis for urban planning and 
environmental policy formulation. China is an ideal location to explore the impact of an-
thropogenic mechanisms on the regional thermal environment for two predominant rea-
sons. Firstly, China encompasses a vast territory and has abundant resources, with signif-
icant variation in natural ecosystems and socioeconomics. Secondly, the majority of Chi-
nese cities have undergone rapid urbanization in the past decades, and a large number of 
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previous studies have reported that significant urban heat island phenomena are wide-
spread in China [48,49].  

This paper analyzes the SUHI drivers from a spatial multiscale perspective and cri-
tiques previous regression applications in SUHI modeling to facilitate more specific UHI 
mitigation policies. To carry out this work, we employ multisource satellite remote sens-
ing data, including a Moderate Resolution Imaging Spectroradiometer (MODIS), to calcu-
late the SUHI intensity of 281 cities in China. The multiple SUHI drivers are then analyzed 
based on the MGWR model to answer the following questions: (i) What are the critical 
drivers of daytime and nighttime SUHIs in China? (ii) What are the spatiotemporal heter-
ogeneity and spatial scale of the relationship between these drivers and SUHIs? (iii) What 
new insights can MGWR provide compared to ordinary least square (OLS) and classical 
GWR methods?  

The remaining paper is organized as follows. Section 2 introduces the study region 
and the data used. Section 3 briefly describes the SUHI calculation method and the prin-
ciples of MGWR. Section 4 presents the results of the OLS and MGWR models. Section 5 
discusses the performance of the MGWR model and further analyzes the pattern of vege-
tation and socioeconomic factors influencing SUHIs. Section 6 clarifies the conclusions of 
this paper and provides potential policy suggestions.  

2. Study Area and Data 
2.1. Study Area 

Given the missing data, 281 prefecture-level urban groups (containing the four mu-
nicipalities, Beijing, Shanghai, Tianjin, and Chongqing) are selected in this study (Figure 
1). These cities are widely distributed in various regions across China, including the 
Northwest (30 cities), North (33 cities), Northeast (34 cities), East (76 cities), South (78), 
and Southwest (30 cities). It can essentially be assumed that the entirety of mainland China is 
included in the study area because over 94% of the Chinese population resides in these cities. 

 
Figure 1. Geolocation of the selected 281 cities and six regions (Northwest, North, Northeast, East, 
South, and Southwest) of China in this study. The background information is annual precipitation 
across China. 
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2.2. Data 
2.2.1. CSUHI Dataset 

Niu et al. [50] developed the long-term clear sky China surface urban heat island 
(CSUHI) dataset, using the MODIS land surface temperature (LST) product and the Eu-
ropean Space Agency’s Climate Change Initiative (ESA CCI) land cover data, in which the 
quality control flags of LST and the influence of elevation, water, and permanent snow on 
the SUHI are all considered. The following data were used to develop the CSUHI dataset: 
1. The LST data from 2001 to 2018 were provided by the Terra/Aqua MODIS 8-day 1 

km LST/LSE products (MOD11A2 for Terra MODIS and MYD11A2 v006 for Aqua 
MODIS and the data of MYD11A2 are from 2003) [51]. 

2. The European Space Agency’s Climate Change Initiative (ESA CCI) land cover data 
at 300 m resolution from 2001 to 2018 [52] were employed to delineate urban and 
rural areas. 

3. Shuttle Radar Topography Mission (SRTM) data at 90 m resolution from 2000 was 
employed to determine the elevation of urban and rural areas. 

4. The above 281 cities’ administrative areas were defined based on data from the Na-
tional Geomatics Center of China (NGCC). 
Due to the lack of data and the fact that the MGWR could only handle cross-sectional 

data, daytime and nighttime SUHI intensity data from the CSUHI dataset for 2005, 2010, 
2015, and 2018 were employed for long-term analysis. The daytime and nighttime SUHI 
intensities were consolidated values from the Terra and Aqua platforms. 

2.2.2. Variable Selection and Data Source 
A core objective of this study is to analyze the bias caused by spatial heterogeneity 

being neglected in studies on the driving factors of SUHIs. Therefore, the following two 
principles were employed for selecting variables: (i) They were mentioned frequently in 
the existing literature and were significant. (ii) They were as concise as possible. Both the 
ecology and socioeconomic level of a city can significantly influence SUHIs. Therefore, 
based on the conclusions of previous literature (see the last column of Table 1) on the drivers 
of SUHI, five indicators, including vegetation, precipitation, air pollution, economic devel-
opment, and population, were selected in this paper. The corresponding variables were the 
urban–rural differences of NDVI (ΔNDVI), urban–rural differences of precipitation (ΔPre), 
urban–rural differences of fine particulate matter (ΔPM2.5), urban nighttime light (NTL), and 
the population at the end of the year for each city (Pop), respectively.  

Values of these driving factors were determined by using the following data: 
1. ΔNDVI was derived from the 16-day 1 km MODIS NDVI products (MYD13A2 v006) 

in 2005, 2010, 2015, and 2018 [53]. 
2. ΔPre was derived from the monthly 1 km precipitation raster product (National Ti-

betan Plateau Data Center. Available online: http://data.tpdc.ac.cn (accessed on 1 No-
vember 2021)) in 2005, 2010, 2015, and 2018, which was spatially downscaled from 
the Climatic Research Unit (CRU) time-series dataset combined with the climatology 
dataset of WorldClim [54]. 

3. ΔPM2.5 was derived from the yearly 1 km ChinaHighAirPollutants (CHAP) dataset, 
which was constructed from the MODIS/Terra+Aqua multiangle implementation of at-
mospheric correction (MAIAC) aerosol optical depth products together with abundant 
natural and human factors using the Space–Time Extra-Trees (STET) model [55,56]. 

4. An integrated and consistent annual NTL product was employed from a harmonized 
global nighttime light dataset [57] for 2005, 2010, 2015, and 2018. This dataset em-
ployed Defense Meteorological Satellite Program (DMSP) data and simulated DMSP-
like NTL observations from Visible Infrared Imaging Radiometer Suite (VIIRS) data 
to harmonize the intercalibrated NTL observations and showed consistent temporal 
trends. This study only used pixels with more than seven digital number (DN) values 
to improve the data’s reliability. 
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5. Population data was extracted from the China Urban Statistical Yearbook for 2005, 
2010, 2015, and 2018. 
The statistical description and spatial distribution of the variables employed in the 

estimations are presented in Table 1 and Figure 2, respectively. 
 

   

   

 

Figure 2. Spatial distributions of the variables used in the present study (using 2015 as an example). Note: SUHI = surface 
urban heat island intensity; ΔNDVI = urban−rural differences of NDVI; ΔPM2.5 = urban−rural differences of fine particulate 
matter; ΔPre = urban−rural differences of precipitation; NTL = urban nighttime light; Pop = the population at the end of 
the year. 
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Table 1. Descriptive statistics for variables in this study. 

Variable 
Number of  

Observations 
Mean STD 

1st 
Quartile 

2nd 
Quartile 

3rd 
Quartile 

Reference 

SUHI (°C) 
Daytime 281 0.856 1.125 0.470 1.033 1.465 

- 
Nighttime 281 0.703 0.571 0.439 0.702 0.966 

ΔNDVI (1/103) 281 −2.218 1.171 −3.027 −2.377 −1.502 [58,59] 
ΔPM2.5 (μg/m3) 281 0.303 2.108 −0.757 0.241 1.319 [60,61] 

ΔPre (mm) 281 4.939 24.033 −5.315 5.218 15.210 [30,62] 
NTL (DN value) 281 20.70 5.607 17.502 19.255 21.968 [28,63] 
Pop (104 Person) 281 4.328 3.073 2.382 3.664 5.675 [4,40] 

Note: SUHI = surface urban heat island intensity; ΔNDVI = urban–rural differences of NDVI; ΔPM2.5 = urban–rural differ-
ences of fine particulate matter; ΔPre = urban–rural differences of precipitation; NTL = urban nighttime light; Pop = the 
population at the end of the year. 

3. Methods 
Figure 3 shows the overall framework used in this paper. The first step is SUHI cal-

culation based on multisource remote sensing data, the second step is the construction of 
the driving factor index system, and the last step is driving factor analysis based on the 
MGWR model. 

 
Figure 3. The overall framework of the study. Note: SUHI = surface urban heat island intensity; 
NDVI = normalized difference vegetation index; MODIS LST = Moderate Resolution Imaging Spec-
troradiometer land surface temperature; ESA CCI = European Space Agency’s Climate Change Ini-
tiative; SRTM DEM = Shuttle Radar Topography Mission Digital Elevation Model; MGWR = the 
population at the end of the year. 

3.1. SUHI Intensity Calculation 
A large amount of uncertainty in selecting rural references in the SUHI intensity cal-

culations makes it challenging to compare the conclusions of related literature [38,64]. In 
contrast, taking administrative boundaries (AB) as a rural reference is considered an ap-
propriate SUHI standardized calculation scheme and has been widely used in SUHI studies 
around the world, including China and the United States [19,65]. The AB method avoids the 
difference in SUHI intensity due to rural reference buffer delineation and keeps both re-
motely sensed and socioeconomic data at the same aggregation level. The above two aspects 
of the AB method illustrate its clear advantages in the analysis of SUHI drivers.  

In this study, we delineated urban and rural areas using the ESA CCI land cover data. 
We first removed certain types of pixels within each city’s administrative borders: the 
pixels classified as snow and ice and the pixels in extraordinarily high or low positions 
(pixels with elevations higher or lower than 50 m of the built-up pixel average). Removing 
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such pixels was necessary to eliminate the possible effects of temperature from water bod-
ies and extreme positions. Pixels classified as built-up among the remaining pixels were 
then flagged as urban areas for each city with its administrative borders. Accordingly, the 
remaining pixels were referred to as rural areas. After the above processing, we used 
Equation (1) to calculate the SUHI intensity as follows: 

SUHI LST LSTU R= −  (1) 

where SUHI represents the city’s surface urban heat island intensity, ULST is the average 
land surface temperature in the urban area, and RLST is the average temperature of the 
pixels in the rural area. We also processed the three variables NDVI, precipitation, and 
PM2.5 in the same way to investigate how their differences between urban and rural areas 
affect SUHIs. 

3.2. Ordinary Least Square Model 
Typically, linear regression is relatively suitable for describing how a dependent var-

iable is related to several explanatory variables. The equation given below can thus be 
used to describe an ordinary linear regression model: 

i 0 =1
= + + , 1,...,p

k ik ik
Y X i n     (2) 

where the dependent variable Y is described by a linear combination of Xk, k = 1, …, p; Ɛi 
indicates independent error terms, following a zero-mean normal distribution. The OLS 
is adopted to evaluate the global regression parameters and the multicollinearity of the 
dataset. The estimated parameters are constant over space during the OLS model calibra-
tion process: 

1' ( )T TX X X Y   (3) 

The MGWR model is then employed for the removal of this constraint. 

3.3. Multiscale Geographically Weighted Regression Model  
The spatial autocorrelation observed in previous research may be caused by the fol-

lowing: (i) the highly significant regional heterogeneities in China, mainly for coastal and 
interior areas [66]; (ii) in neighboring regions, the difference between urban climate and 
environment may be highly significant due to their unique planning pattern and nature. 
Thus, besides the original global regression method, we take a further step to analyze the 
relationship between SUHI intensity and several driven factors with the assistance of 
MGWR, which is an improved method of geographically weighted regression tradition-
ally applied by researchers [67]. MGWR allows different bandwidths (instead of a sole 
global bandwidth) to be assigned to each variable. The parameters of MGWR are esti-
mated for each observation; thus, the spatially varied correlation between the SUHI inten-
sity and drivers is more exhaustively and intuitively visualized. 

When applied to spatial data, a typical linear regression model should assume a rel-
atively stationary process, i.e., when stimuli are the same or similar, the response in each 
component of the study area will all be the same or similar. However, data that must be 
applied by spatially variant processing remain where spatial nonstationarity is exhibited. 
The GWR can be used to overcome this problem and is formulated as follows: 

0 =1
= ( )+ ( ) + , 1,...,p

i k ik ik
Y i i X i n     (4) 

Considering that the model parameters are variant across different locations i, then 
the GWR can be estimated as: 

1'( ) ( ) ( )T Ti X WX i X W i Y（）   (5) 
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where W(i) denotes a matrix of weights that is subject to the change of position i (longitude 
and latitude), considering that the observations closer to i should have more significant 
weights than distant ones. 

In GWR, the data for the current location is estimated based on the neighboring loca-
tions. Typically, the weighting matrix can be determined via numerous weighting 
schemes, although those schemes tend to be Gaussian and reflect the dependency type 
that usually occurs in most spatial processes. Weighting methods can be categorized into 
adaptive or fixed approaches. In a fixed Gaussian kernel-based local regression model, 
the parameter Wij is used to refer to the continuous function for the data location j and 
local regression location i: 

2( / )
=exp[ ]

2
ij

ij

d h
W   (6) 

where dij represents the distance between locations i and j, and h stands for the bandwidth; 
that is to say, when h grows, the steepness of the kernel gradient reduces, and the local 
calibration can contain additional data points. The optimum value of h can be derived in 
the GWR calibration. A choice between variance and bias is required to choose the optimal 
bandwidth. We obtain the optimal bandwidth via an iterative process in each GWR cali-
bration to minimize the corrected Akaike information criterion (AICC) value. 

GWR can capture all spatial heterogeneity in relationships. However, it is assumed 
that all of these relationships change with a similar spatial scale across any covariate. Since 
MGWR relaxes the assumption that variables have the same spatial scale and thus makes 
it possible to optimize the covariate-specific bandwidths, it can improve the GWR signif-
icantly. It is formulated as: 

log = ( , ) ( , ) logi bw i i bw i i ij ij
Y U V U V X     (7) 

where bw * describes the particular optimum bandwidth employed within the estimation 
of the * th conditional relationship, while various processes can work at multiple spatial 
scales using MGWR to respectively derive the bandwidth for certain conditional relation-
ships between the response variable and different predictor ones.  

The back-fitting algorithm presented by Fotheringham et al. [34] can be employed to 
calibrate the MGWR. In this work, MGWR 2.2.1 software was used for calibration (more 
information can be found at the homepage of MGWR. Available online: 
https://sgsup.asu.edu/sparc/multiscale-gwr (accessed on 1 November 2021)).  

4. Results 
4.1. Results of the OLS Analysis 

According to the results presented in Table 2, only ΔNDVI and NTL variables always 
have statistical importance. The coefficients of daytime NTL and Pop and nighttime 
ΔNDVI, ΔPre, and Pop increase within the study interval, and there is no consistent pat-
tern in the remaining variables’ coefficients. Moreover, the ΔNDVI variable exhibits sig-
nificant negative orientation in daytime models and positive orientation at nighttime, in-
dicating that, in the global model, the control of SUHIs by vegetation shows opposite pat-
terns during the day and night, i.e., ΔNDVI mitigates urban heat islands during the day 
and exacerbates them at night. In contrast, the NTL and Pop variables have a positive 
orientation in both daytime and nighttime models, indicating that the socioeconomic con-
ditions of the city always increase SUHIs. Pre and PM2.5 variables do not exhibit stable 
driving patterns over the study period, indicating that climate and air pollution factors 
influence SUHIs in complex ways, and an accurate conclusion is difficult to obtain. How-
ever, the above two points are likely inaccurate conclusions due to the global model’s in-
ability to capture the heterogeneity of spatial context and geographic locations. 



Remote Sens. 2021, 13, 4428 9 of 25 
 

 

Table 2. Results of the ordinary least squares regression model applied to SUHI intensity and drivers in 2005, 2010, 2015, 
and 2018. 

 2005 2010 2015 2018 
 Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Daytime 

ΔNDVI −0.735 *** 0.208 *** −0726 *** 0.337 *** −0.790 *** 0.399 *** −0.776 *** 0.386 *** 
ΔPRE −0.013 −0.014 0.068 * 0.063 0.037 0.100 −0.008 0.132 ** 
NTL 0.082 ** 0.205 *** 0.083 ** 0.056 ** 0.121 *** 0.139 *** 0.131 *** 0.059 

ΔPM2.5 0.000 −0.012 −0.036 −0.043 0.068 −0.02 0.092 *** 0.055 
POP 0.003 0.001 0.019 0.012 0.034 0.06 0.04 0.074 

R2 0.545 0.087 0.540 0.135 0.666 0.181 0.658 0.176 
Adj. R2 0.537 0.071 0.532 0.120 0.660 0.166 0.652 0.161 
AICC 592.758 788.989 595.728 773.649 505.325 758.541 510.183 757.353 
RSS 128.370 257.435 129.729 243.806 94.148 231 96.043 231.459 
Note: Coefficients provided in this table have all been standardized; ***, **, * refer to the respective significance at 1%, 5%, 
and 10% levels, respectively; AICc = corrected Akaike’s information criterion; RSS = residual sum of squares; Adj. R2 = 
adjusted coefficient of determination. 

For diagnostic information, the R2 of the daytime model is significantly higher than 
that of the nighttime. The highest R2 is acquired from the daytime 2015 data (0.666), and 
the lowest R2 is observed in the nighttime 2005 data (0.087). Thus, the daytime OLS models 
have reasonable R2 values. However, a direct comparison of AICc among different models 
with various datasets is of little necessity. Therefore, RSS and AICc are taken for compari-
son with the MGWR model for improvement. We employ the distribution of OLS standard 
residuals in Figures S1 and S2 to obtain a primary observation of the spatial autocorrelation. 
The residual maps show that high standard residuals exist in many municipalities, while 
their corresponding distributions are relatively clustered within the years 2005, 2010, 2015, 
and 2018. A multicollinearity test is also performed with variance inflation factor (VIF) num-
bers as the diagnostic data to determine multicollinearity. A relatively ideal value of the VIF 
for a predictor variable cannot be greater than 10. For every model, the VIFs are all below 
2, which means there is no significant multicollinearity between variables. 

In addition to these analyses, Moran’s criterion for all three time periods (see Table 
3) is utilized to verify the existence of spatial autocorrelation in the SUHIs. The test results 
indicate that SUHI intensities in this study have a likelihood lower than 1% (p-value < 
0.01) in all years, demonstrating a significant spatial autocorrelation of SUHI intensity. 
Combined with the maps of residual distribution, the clustered patterns can be generated 
randomly, indicating significant spatial heterogeneity in the OLS model. 

Table 3. Spatial autocorrelation statistics results for the SUHI intensity in each of the four time pe-
riods. 

 2005 2010 2015 2018 
 Day Night Day Night Day Night Day Night 

Moran’s Index 0.408 0.261 0.475 0.334 0.544 0.246 0.546 0.260 
Z-score 17.31 11.06 20.19 16.06 22.93 10.402 22.08 10.538 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

4.2. MGWR Results 
The dependent and independent variables of the MGWR model are similar to those 

employed by the OLS model. Local model results are presented in Tables S1–S4. Compar-
ing the diagnostic data of the OLS results, the MGWR model achieves superior efficiency 
considering its lower RSS and AICc values and its higher regulated R2. This enhancement 
is more significant in the nighttime than in the daytime. Furthermore, the MGWR models 
can allocate various bandwidths for variables. Thus, the bandwidths are changed accord-
ing to the variables (see Tables S1–S4).  
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Both ΔPM2.5 and Pop can be considered as global variables (bandwidths are between 
252–281), which means they control SUHIs in the same way globally. However, the re-
maining four variables show significant spatial variations (bandwidths are between 43 
and 124), further illustrating the necessity of applying the MGWR model. The bandwidths 
of the vast majority of variables in the nighttime model are typically larger than those in 
the daytime, suggesting that the spatial heterogeneity of daytime SUHI drivers is stronger 
than that of the nighttime. While spatial data and spatial processes are two different con-
cepts, in this study, they display a similar spatial heterogeneity pattern (daytime greater 
than nighttime).  

Figure 4 shows the variations of local R2 distribution in the analyzed duration. A 
higher local R2 for a city indicates a higher explainable level of correlation. The relatively 
lower R2 are usually localized in the Southwest region in the daytime and are concentrated 
in the Northeast at night. From 2005 to 2018, the spatiotemporal distribution pattern of R2 
does not change much, but the explanation rate of the model increases. This result indi-
cates that the explanatory variables selected in this paper cover the main drivers of SUHIs, 
which become increasingly important as a city expands. The comprehensive parameters 
leading to the mentioned variations are presented subsequently. 

Figures 5–8 show the change of local significance and the variable’s coefficients from 
2005 to 2018. Only the municipalities with a notable dependency between SUHIs and var-
iables are colored (p-value < 0.1). Various patterns and characteristics can be determined 
from the results, including: (i) Figures 5 and 6 show that the daytime ΔNDVI variable’s 
coefficient is negative in all cities. Still, the effect is generally higher in the Northwest than 
in the Southeast. Conversely, the nighttime situation produces significant differences, 
with largely negative coefficients in the Southeast and positive coefficients in the North-
west. This suggests that the control of SUHIs by vegetation indeed differs considerably 
between the day and night but differently from the coarse pattern expressed by the global 
model (i.e., the OLS model). Since vegetation is the most crucial driver of SUHIs, it is dis-
cussed further in Section 5.2. (ii) As also illustrated in Figures 5 and 6, the effect of the 
ΔPre variable on SUHIs is positive in the Northwest, both during the night and day. Apart 
from this, there is a strongly negative effect in the central region during the daytime and 
in the North during the nighttime. This revealed that there was a strong spatial heteroge-
neity in the impact of precipitation on SUHI. ( iii) In addition, Figures 5 and 6 demonstrate 
the influence of spatial context on SUHIs. Along with the covariate-specific optimized 
bandwidths, the intercept’s local estimates are perhaps the most compelling output from 
the MGWR. These indicate the intrinsic levels of the dependent variable holding every-
thing else in the model constant. In this case, the local intercept estimates indicate the 
inherent impact of cities on SUHIs. In essence, this is a measure of spatial context. The 
spatial context may include some urban features that are difficult to quantify on a large 
scale, including the architectural style or drainage structure of the city itself. The effect of 
spatial context on SUHIs is significantly positive only in the Northeast and Southeast dur-
ing the daytime and nighttime. At night, the regional extent of the effect increases signif-
icantly and is positive in the North and negative in the South. (iv) Air pollution has often 
been considered a critical SUHI driver in previous studies. However, according to Figures 
7 and 8, air pollution does not appear to have a significant influence, particularly in 2015 
and 2018. This result may be related to a series of public strategies (such as the Air Pollu-
tion Prevention and Control Action Plan) enacted by the Chinese government targeting 
PM2.5 reduction. (v) The NTL and Pop variables together characterize the city’s socioeco-
nomic level. Interestingly, the Pop variable is insignificant in almost all models, and the 
effect of NTL on SUHIs differs significantly between daytime and nighttime. 
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Figure 4. Spatial distributions of MGWR’s local R2 in 2005, 2010, 2015, and 2018. 
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Figure 5. Spatial distributions of the coefficients of ΔNDVI, ΔPrecipitation, and Intercept for the daytime MGWR model 
in 2005, 2010, 2015, and 2018. 
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Figure 6. Spatial distributions of the coefficients of ΔNDVI, ΔPrecipitation, Intercept for the nighttime MGWR model in 
2005, 2010, 2015, and 2018. 
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Figure 7. Spatial distributions of the coefficients of NTL, ΔPM2.5, and Population for the daytime MGWR model in in 2005, 
2010, 2015, and 2018. 
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Figure 8. Spatial distributions of the coefficients of NTL, ΔPM2.5, and Population for the nighttime MGWR model in 2005, 
2010, 2015, and 2018. 

5. Discussion 
5.1. Multiscale Extensions of Geographically Weighted Regression 

The respective bandwidths produced by MGWR can more intuitively interpret geo-
graphical scale [34]. MGWR could also enhance policy-making by framing UHI determi-
nants using a possible combination of global, regional, and local spatial contexts. 

Several past studies have investigated the drivers of urban heat islands using classi-
cal GWR models [44–46], which inevitably ignore the fact that different relationships may 
occur at different scales. To address this issue, we analyze the same variables utilized in the 
GWR model to compare the differences between the GWR and MGWR models (Table 4). 

Table 4. Diagnostics information for the classical GWR model in each of the three time periods. 

 2005 2010 2015 2018 
 Daytime Nighttime Daytime Daytime Nighttime Nighttime Daytime Nighttime 

Bandwidth 73 88 63 86 74 98 83 78 
R2 0.804 0.588 0.851 0.868 0.632 0.609 0.861 0.619 

Adj. R2 0.756 0.508 0.810 0.842 0.545 0.543 0.832 0.535 
AICC 479.856 662.772 421.886 342.88 652.109 634.155 362.921 655.341 
RSS 55.396 116.224 41.919 36.968 103.365 110.241 39.175 107.310 

Note: AICc = corrected Akaike’s information criterion; RSS = residual sum of squares; Adj. R2 = adjusted coefficient of 
determination. 
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Results indicate that the GWR bandwidth can be considered an intermediate value 
of the MGWR bandwidth, i.e., it ignores the global robustness of some variables and fails 
to capture the spatial heterogeneity of some variables. Thus, GWR models typically have 
lower R2 and higher AICC and RSS than MGWR models and produce specific local pa-
rameters that are difficult to interpret. For example, the results of MGWR’s analysis show 
that the effect of vegetation on SUHIs is very localized (bandwidths are small) compared 
to air pollution, and the development of UHI mitigation policies from these two perspec-
tives should focus on inter-regional characteristics. 

It is worth noting that previous studies usually mention that MGWR models can bet-
ter handle the problem of multicollinearity. However, all models in this study do not have 
significant multicollinearity (VIF < 1.5 in the OLS model, local condition index < 15 in 
MGWR and GWR models, see Table S5). There is no discussion of multicollinearity in the 
different models.  

5.2. Seasonal Variation of SUHIs and Vegetation 
In all models used in this study, vegetation differences among urban and rural areas 

are the most critical drivers of SUHIs, and previous studies have come to a similar con-
clusion [14,20,30,53]. However, in the present study, in some areas, larger ΔNDVI in-
creases SUHIs at night. This phenomenon seems to contradict the classical theory that 
“vegetation is a regulator of urban temperature” [68]. The areas with positive ΔNDVI ef-
fects on nighttime urban heat islands are concentrated in China’s most economically dy-
namic Shenzhen metropolitan region. In contrast, those with negative effects are concen-
trated in the less economically developed Northwest region. The significant socioeco-
nomic and climatic differences between the two areas result in significantly different veg-
etation types. The Shenzhen metropolitan region has a substantially higher proportion of 
artificial vegetation than the Northwest. Therefore, we speculate that the difference in 
vegetation types may affect how vegetation controls SUHIs to some extent. To further test 
this hypothesis, we keep the remaining variables inconvenient and analyze the relation-
ship between SUHI and ΔNDVI in summer and winter, respectively, using the MGWR 
model (Figures 9 and 10). 

Results show that the contribution of ΔNDVI to SUHIs is negative in almost all cities 
during the summer daytime and negative during the winter daytime except for in the 
Northeast area. During summer nights, the coefficient of ΔNDVI remains positive in the 
GBA region, while it is mainly negative in the rest of the region. Most interestingly, during 
winter nights, the coefficients of ΔNDVI are primarily positive across the country and are 
significant only in the Northwest, Northeast, and Southwest regions (except for in 2005). 
The above results suggest that differences in vegetation type may indeed lead to changes 
in the mechanism of vegetation influence on nighttime SUHIs and that such changes are 
more likely to occur in summer. 
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Figure 9. Spatial distributions of the coefficients of ΔNDVI for the daytime MGWR model in the 
summer and winter of 2005, 2010, 2015, and 2018. 
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Figure 10. Spatial distributions of the coefficients of ΔNDVI for the nighttime MGWR model in the 
summer and winter of 2005, 2010, 2015, and 2018. 

5.3. Spatial Context and Population 
Unlike the global mode, the MGWR does not statistically intercept at zero, and the 

spatial heterogeneity identifies hot spots of SUHIs in the parameter estimates after the 
applied variables have been controlled. Both geographical effects associated with the re-
maining and omitted variables may be included in these spatial patterns. For instance, 
spatial context may make a noticeable contribution to the city’s architectural style, the con-
sumption structures of residents and further alter the thermal environment of the city. Al-
ternatively, the intercept may help in policy formation, informing follow-up investigations 
and additional determinants. For example, in this study, the effects of intercept variables on 
SUHIs are all positive during the daytime and positive in the North and negative in the 
South in the nighttime. This result indicates that urban characteristics, such as latitude, ar-
chitecture, and urban planning, significantly affect nighttime north–south SUHIs. Further 
research on these findings is essential for the mitigation of nighttime SUHIs. 

The MGWR has another advantage in exploring the robustness of abstractions ap-
plied in the definition of explanatory variables. While population variables have received 
extensive attention in previous studies [30,40], no statistically nonzero local associations 
with SUHIs are observed in our study. Comparing this study to prior studies reveals that 
the effect of population indicators on SUHI may not be robust. This implies that more 
indicators of drivers need to be developed in the study of SUHIs to obtain more meaning-
ful analysis results. For example, more appropriate indicators to characterize the impact 
of human activities on the urban thermal environment should be considered rather than 
simply employing the population within an administrative boundary as the indicator. 
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6. Conclusions 
While previous studies have examined the drivers of SUHIs in detail using multiple 

temporal and spatial dimensions, driver spatial heterogeneity and spatial scale have re-
ceived little attention. This study provided a comprehensive and in-depth analysis of SU-
HIs in China for 2005, 2010, 2015, and 2018 using the MGWR model. According to the ob-
tained results, the MGWR model outperformed the OLS and classical GWR models in terms 
of both diagnostic indicators and model coefficient interpretability. The MGWR model had 
significantly enhanced explanatory power during the daytime than during the nighttime, 
with ΔNDVI and NTL variables being the most important during the daytime and 
nighttime, respectively. The control pattern of vegetation on SUHIs was significantly differ-
ent at night, and even positive effects were observed in Northwest and Northeast regions. 
By further analyzing the seasonal variability of vegetation and SUHIs, we found that differ-
ences in vegetation types due to socioeconomic and urban development patterns may be 
the main reason for spatial heterogeneity as the driving force of vegetation on SUHIs. 

This paper also provided some potential references for the development of regionally 
targeted SUHI mitigation policies. For example, the results from the MGWR model sug-
gested that air pollution management is also of considerable value in improving the ther-
mal environment of urban agglomerations in North and Central China. In addition, the 
increase of vegetation in urban areas played an essential role in urban environmental 
management in the daytime in northern regions and during the night in southern areas. 
According to the analysis of the influence patterns of spatial context on SUHIs, managing 
the urban thermal environment at night was much more challenging than vegetation 
planting and air pollution controls in the daytime, especially in eastern China. From the 
spatial scale of drivers, a joint prevention and control approach should be adopted to 
manage air pollution and thus mitigate SUHI because PM2.5 as a global variable has a 
widespread effect on SUHIs. The mitigation of SUHIs through the control of other local 
variables requires a more tailored approach. Furthermore, because China covers various 
climate zones, our research has a specific global reference value. 

We acknowledge that the relevant conclusions of this study are confined to obvious 
sky situations. The MGWR model in this study explains 62% (nighttime) to 87% (daytime) 
of the inter-regional variations in SUHI intensity. However, despite its excellent perfor-
mance, the inevitable problem of omitted variables remains in the present model, which 
is largely due to variable measurements. For example, urban drainage structures may af-
fect SUHIs by changing urban evapotranspiration, but it is challenging to find a suitable 
and accurate indicator to quantify it. It will also be valuable to add more driving factors 
and extend the research time (for example, combining simulation data to quantify future 
SUHIs under multiple scenarios) in future research. 

Nevertheless, the current work provides valuable insights into the attribution analysis 
of SUHIs by systematically investigating the spatiotemporal patterns of SUHI driving fac-
tors from a multiscale perspective. Accordingly, it provides a full explanation and realiza-
tion of SUHIs and references for developing urban environmental governance policies. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/rs13214428/s1, Figure S1: Spatial distributions of standard residuals of daytime OLS re-
gression and MGWR model in 2005; Figure S2: Spatial distributions of standard residuals of 
nighttime OLS regression and MGWR model in 2005; Table S1. Results of multiscale geographically 
weighted regression model between SUHI intensity and drivers in 2005; Table S2. Results of mul-
tiscale geographically weighted regression model between SUHI intensity and its drivers in 2010; 
Table S3. Results of multiscale geographically weighted regression model between SUHI intensity 
and drivers in 2015; Table S4. Results of multiscale geographically weighted regression model be-
tween SUHI intensity and drivers in 2018; Table S5. Local condition index of each city in MGWR 
mode (take daytime 2015 as an example). 
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