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Abstract: A stable and reliable cloud detection algorithm is an important step of optical satellite
data preprocessing. Existing threshold methods are mostly based on classifying spectral features
of isolated individual pixels and do not contain or incorporate the spatial information. This often
leads to misclassifications of bright surfaces, such as human-made structures or snow/ice. Multi-
temporal methods can alleviate this problem, but cloud-free images of the scene are difficult to
obtain. To deal with this issue, we extended four deep-learning Convolutional Neural Network
(CNN) models to improve the global cloud detection accuracy for Landsat imagery. The inputs
are simplified as all discrete spectral channels from visible to short wave infrared wavelengths
through radiometric calibration, and the United States Geological Survey (USGS) global Landsat
8 Biome cloud-cover assessment dataset is randomly divided for model training and validation
independently. Experiments demonstrate that the cloud mask of the extended U-net model (i.e.,
UNmask) yields the best performance among all the models in estimating the cloud amounts (cloud
amount difference, CAD = −0.35%) and capturing the cloud distributions (overall accuracy = 94.9%)
for Landsat 8 imagery compared with the real validation masks; in particular, it runs fast and
only takes about 41 ± 5.5 s for each scene. Our model can also actually detect broken and thin
clouds over both dark and bright surfaces (e.g., urban and barren). Last, the UNmask model
trained for Landsat 8 imagery is successfully applied in cloud detections for the Sentinel-2 imagery
(overall accuracy = 90.1%) via transfer learning. These prove the great potential of our model in
future applications such as remote sensing satellite data preprocessing.

Keywords: cloud detection; deep learning; transfer learning; Landsat 8; Sentinel-2

1. Introduction

Clouds can affect the Earth’s radiation balance through absorption and scattering [1],
and then affect the atmospheric environment and climate change [2]. However, for passive
remote sensing, especially quantitative remote sensing retrieval, clouds are troublesome
noises that need to be accurately identified and masked before extracting the land-related
(e.g., land use classification, urban building extraction et al.) and atmospheric (e.g., aerosol
or gas retrieval) parameters [3–5]. Clouds are everywhere, covering more than half of the
globe each year, especially in tropical areas [6–8]. In addition, both the shapes and amounts
of clouds are changing over time, leading to diverse mixed pixels with the underlying
surfaces, significantly increasing the detection difficulties [5].

To address this issue, a series of classical cloud detection algorithms have been pro-
posed successively over the years. The most popular one is the fixed threshold approach,
which is simple and easy to operate, such as those developed for the International Satellite
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Cloud Climatology Project (ISCCP) [9–11], Clouds from the Advanced Very High Resolu-
tion Radiometer (AVHRR) (CLAVR) [12], and AVHRR Processing scheme Over cLouds,
Land and Ocean (APOLLO) [13,14]. Besides them, a lot of efforts have been made to help
improve cloud detection, especially those clouds over bright surfaces, e.g., Irish adopted
multiple spectral indices and band ratios to enhance the difference between clouds and
bright surfaces [15], and then established an Automatic Cloud Cover Assessment (ACCA)
system [16]. Hazy Optimized Transform (HOT) was designed to detect haze apart from
clouds [17,18], and a whiteness index to exclude cloudy pixels by considering the different
reflectance changes in the visible band compared to other surface types [19]. Hegarat-
Mascle and Andre introduced the green and Short Wave Infrared (SWIR) channels along
with Markov Random Field (MRF) to detect different types of clouds [20]. Zhu and Wood-
cock proposed the Fmask algorithm by setting up a series of spectral tests that integrated
the advantages of previous different threshold methods to identify clouds for Landsat
imagery [21]. Sun et al. developed a dynamic threshold algorithm upon radiative transfer
simulation by constructing a prior surface reflectance database to improve cloud detection
by minimizing the influence of mixed pixels [4]. Zhai et al. calculated and combined the
spectral indices and cloud and cloud shadow indices to identify clouds for multispectral
and hyperspectral optical sensors [22].

Despite unique advantages, threshold methods still suffer from great challenges,
especially for those sensors with high spatial resolutions and few spectral channels, making
it difficult to find a proper threshold to separate clouds from the complex underlying
surfaces [16,23,24]. They also face difficulties in bright areas, such as bare land, snow,
and ice areas, due to the similarity in reflectance from visible to near-infrared bands.
Temperature-based tests also often fail with inversion effects in high-latitude areas [25].
For special areas such as vegetation and desert, additional thresholds varying with the
geometric position should be considered and designed [13]. These surface conditions make
the detection logic of the threshold methods more complex [16]. Therefore, “clear restoral
tests” are needed to avoid misclassification [26] and testing areas of ice and snow also adds
uncertainty to the results [27].

In recent years, machine learning (ML) has made great progress in improving cloud
detection for sensors with fewer channels due to its strong data mining capability from
a large number of input potential features [28]. The fundamental reason for the perfor-
mance improvement is the ability to optimize the extracted features in the loop [29]. The
specific step is to find the optimal classifier through a series of nonlinear transformations
of the input data. An increasing number of cloud mask studies have been performed
by adopting different ML approaches, e.g., support vector machine (SVM) [30], neural
network (NN) [31], decision tree [32], and random forest [33]. However, most ML methods
work in pixel-by-pixel classification mode, which cannot consider the context and global
information of clouds. In contrast, deep learning (DL) models can combine spectral and
spatial information simultaneously and have been widely used in the fields of Computer
Vision (CV) and medicine, such as face recognition [34,35], segmenting and tracking on
3D video sequences [36], and extracting and curating individual subplots [37]. DL is also
particularly suitable for remote sensing classification tasks. Convolutional Neural Network
(CNN) is the most widely used in remote sensing classification [38,39] and object detec-
tion [40,41]. CNN models can extract different features, which have been preliminarily
applied to cloud detection, e.g., Goff et al. combined the Simple Linear Iterative Clustering
(SLIC) algorithm and deep Convolutional Neural Network (CNN) to identify clouds for
SPOT imagery [42]. Zi et al. designed a double-branch PCA Network (PCANet) utilized by
SLIC and Conditional Random Field (CRF) to recognize clouds for Landsat 8 imagery [43],
deep pyramid network [44], SegNet [45], U-net [29,46], and Multi-scale Convolutional
Feature Fusion (MSCFF) [47]. The CNN model has a strong generalization ability and is
not easy to overfit [48]. Although the CNN model can achieve high accuracy, training the
CNN model requires a large number of pixel-level classification labels, and the acquisition
of these labels is very time-consuming and laborious. To solve this problem, a generative
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adversarial network (GAN) can be used, which only needs block labels emerged [49]. GAN
is a weakly supervised classification method, including two parts: generative model and
discriminative model. The generation model can generate image data consistent with the
distribution of input data, and the discrimination model can determine the category of
image. GAN has been successfully applied in image conversion [50,51], and has also been
adopted for many remote sensing applications [52–54]. For cloud detection, the generative
model can generate simulated cloudless images, then obtain cloud detection results through
the difference with cloud images, and finally, use a small number of pixel-level labels for
fine tuning [55]. Wu et al. introduced the self-attention mechanism into GAN(SAGAN) to
extract this difference [56]. Zou et al. added a cloud matting network to learn and train
the fake cloud images GAN generated. However, GAN generally has problems, such as
training difficulty and mode collapse [57], which mean that GAN has not been applied on
a large scale in remote sensing. On the other hand, images can be seen as two-dimensional
sequences with location information. Based on this idea, some Natural Language Pro-
cessing (NLP) models are applied to CV, such as transformer. Vision Transformer (ViT)
consists of embedding, an encoder, and an MLP head. The embedding layer can transform
the image into a token sequence, then encodes the token sequence and last outputs the
probability vector of the image classification [58]. When the training data are sufficient, the
model performance of ViT will exceed that of CNN and can obtain a better transfer effect in
downstream tasks. To better adapt to semantic segmentation tasks and reduce the amount
of computation, Swim Transformer designs a structure similar to CNN to gradually reduce
the feature map resolution and limits the global self-attention to a certain area compared
with ViT. Finally, results are very good under 15 million images training. Furthermore, in
order to better identify objects with large size and different directions in remote sensing
images, Wang et al. used the MillionAID dataset to pretrain remote sensing backbones,
proving that it is practical in the downstream tasks of remote sensing [59], and developed a
transformer model specifically applied to remote sensing [60]. However, the transformer
models need lots of data for training, and require high hardware requirements, which is
still in the development stage.

When the satellite has not been launched, or the band range of the satellite is narrow,
such as GF-1 or Proba-V satellite, it is difficult to design a cloud detection algorithm and
there is a lack of sufficient verification data. In this context, using the wealth of information
contained in the existing labeled datasets, it is possible to transfer previous knowledge
about the problem between similar satellites. Mateo-García et al. proved that the cloud
detection model based on deep learning could be transferred between satellites with similar
spectral and spatial information [61]. Li et al. used Landsat 8 data to train the generating
adversarial network (GAN), which has good transferability to Sentinel-2 images [62]. Since
the CNN model is still the most widely used deep learning model, the objective of this
research is to increase both the accuracy and efficiency in cloud detection for Landsat 8
imagery by adopting a variety of derivative-developed models based on the original CNN
model, including the Fully Convolutional Networks (FCN) [63], U-net [64], SegNet [65],
together with DeepLabv3+ [66] models. Here, we trained each model using the global
cloud cover assessment database provided by the United States Geological Survey (USGS)
and qualitatively comprehensively evaluated, compared, and discussed the performance,
advantages, and uncertainties of the different models in cloud detection over varying
surfaces from both qualitative and quantitative perspectives. Last, the best-performing one
was successfully transferred to the latest released Sentinel-2 imageries via transfer learning.

2. Data Materials

Landsat is one satellite mission (e.g., 15–120 m, 4–11 bands) which was widely used
in monitoring land change, heat island effects, and air quality. The Landsat series has
launched a total of nine satellites, of which the Landsat 7 satellite was placed into orbit
mode in April 2022, and Landsat 8 and 9 satellites launched in February 2013 and September
2021, respectively, and has become the primary data source for future continuous Earth
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observations. The Landsat 8 satellites carry two sensors, including the Operational Land
Imager (OLI) and the Thermal Infrared Sensor (TIRS), and achieve global coverage every
16 days.

Sentinel-2 has two satellites called Sentinel-2A and Sentinel-2B, which launched in
June 2015 and March 2017, respectively. Both carry a MultiSpectral Instrument (MSI)
and cover 13 spectral channels, from visible and near-infrared to short-wave infrared, at
different spatial resolutions. Sentinel-2 data are the only data with three bands in the
red-edge range, which is very effective for monitoring vegetation health information [67].
Different from Landsat 8 and 9 data, Sentinel-2 data have a very diverse set of bands,
showing large differences from visible to near-infrared channels (Figure 1), and thus are
selected to test the applicability of transfer learning. Table 1 shows detailed information
about Landsat and Sentinel imagery.

Figure 1. Comparison in spectral response functions between Landsat 8 and Sentinel-2A satellites.

Table 1. Detailed information about the Landsat 8 and Sentinel 2 satellites.

Landsat 8 OLI/TIRS Sentinel 2A MSI
Band Type

Band Index Wavelength (µm) Spatial Resolution Band Index Wavelength (µm) Spatial Resolution

1 0.435–0.451 30 m 1 0.433–0.453 60 m Coastal
2 0.452–0.512 30 m 2 0.458–0.523 10 m Blue
3 0.533–0.590 30 m 3 0.543–0.578 10 m Green
4 0.636–0.673 30 m 4 0.650–0.680 10 m Red
5 0.851–0.879 30 m 8 0.785–0.900 10 m NIR
6 1.566–1.651 30 m 11 1.565–1.655 20 m SWIR-1

10 10.60–11.19 100 m _ _ _ TIR-1
7 2.107–2.294 30 m 12 2.100–2.280 20 m SWIR-2
8 0.503–0.676 15 m _ _ _ Panchromatic
9 1.363–1.384 30 m 10 1.360–1.390 60 m Cirrus

11 11.50–12.51 100 m _ _ _ TIR-2
_ _ _ 5 0.698–0.713 20 m Red edge
_ _ _ 6 0.733–0.748 20 m Red edge
_ _ _ 7 0.773–0.793 20 m Red edge
_ _ _ 8a 0.854–0.875 20 m Red edge

9 0.935–0.955 60 m Water vapor

Landsat 8 Biome Cloud Mask Validation database (U.S. Geological Survey, Reston,
VA, USA, 2016) were selected to establish the cloud detection model for Landsat 8 imagery.
It includes 96 global scenes covering all surface types, including barren, water, wetlands,
forest, grass/crops, shrubland, urban, and snow/ice [68]. Here, clouds and non-clouds of
the scenes over different underlying surfaces were selected using the stratified sampling
method and used for training (48 scenes) and validation (48 scenes) data (Figure 2). The
Sentinel-2 Cloud Mask Catalogue dataset was employed, which consists of 513 subscenes
(259 Sentinel-2A images and 254 Sentinel-2B images) with 1022 × 1022 pixels evenly
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distributed throughout the world [69]; they were employed and used to evaluate the
performance of transfer learning for Sentinel-2 imagery.

Figure 2. Geolocations of global Landsat 8 Biome training (marked in red colors) and validation
(marked in pink colors) images. Background map is MODIS land use cover product in 2019.

3. Models and Methods
3.1. Convolutional Neural Network

CNN is a model that acquires the ability to learn by making reasonable assumptions
about images (such as local correlations) [70], which is similar to artificial neural networks.
In the field of image classification and recognition, the input is an image with the size of
m × n × k, where m, n, and k are the height, width, and number of the image channels,
respectively. The output is a vector with the dimension of c, where c is the number of
classification categories. Each element in the vector represents the probability of the
corresponding category. Differently, in the image segmentation task, the input and output
embrace the same height and width. The CNN model usually experiences two steps, e.g.,
(1) it runs the downsampling continuously and collects the image information of various
scales using the convolutional layer and pooling layer; (2) the fully connected layer is
applied to integrate the information for the classified output. The extensive application of
the specific CNN models appreciates the usage of these two working steps in the image
classification and recognition field.

The convolutional layer is similar to the traditional filters such as the mean filter and
Gaussian filter:

(I ∗ K)(i, j, d) = ∑m ∑n ∑l I(i−m, j− n, l)K(m, n, l) (1)

where i and j present the position of pixels, I is the input image or feature map, and K
is the m × n × l kernel. The number of kernels, d, is determined by the channels of the
output feature maps. It is selected manually when constructing the network architecture.
Another layer is named the pooling layer, including the max pooling, and mean pooling
refers to the downsampling towards each area. The downsampling can be operated to
exploit a wider range of features, reduce the input size of the next layer, decline the amount
of calculation, and diminish the number of parameters. In addition to the above two layers,
other layers can be incorporated together in some typical CNN models, such as VGG-16.
Figure 3 illustrates the structure of VGG-16, which employs not only the convolutional
layer and pooling layer but also the fully connected layer. However, only the convolution
layer and pooling layer are most used in the field of image segmentation.
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Figure 3. The VGG-16 architecture.

3.1.1. FCN

The FCN model is the precursor which extends the end-to-end and pixels-to-pixels
CNN to the image semantic segmentation [63]. The FCN architecture schematic is presented
in the FCN model, and the fully connected layer is substituted into the convolutional layer
to input images regardless of their size (Figure 4a). Then, the size of the feature map
is gradually restored by skip structure and deconvolution layer. The skip connections
combine the feature map undergoing the convolution and pooling operations with the
corresponding upsampling data to cover the lost spatial information and restore the image
details. Almost all CNN models of image segmentation apply this structure. According to
the stride of the deconvolution layer, the FCN model can be divided into FCN-8s, FCN-16s,
and FCN-32s, etc. Theoretically, more detailed spatial information contributes to a better
classification result. Therefore, the FCN-2s were selected to represent the FCN model.

Figure 4. Framework for (a) FCNmask, (b) UNmask, (c) SNmask, and (d) DLmask, respectively.

3.1.2. U-Net

Based on the thought of the FCN model, the U-net model is developed to improve its
basic structure [64] (Figure 4b). Several differences can be summarized as follows: (1) The
U-net model is completely symmetrical. Its decoder is processed with the convolutional
layer, which can better seize the detailed information. Diversely, the FCN model has sole
upsampling layers in the decoder. (2) In the U-net model, each channel of the images is
concatenated by the skip connection’s structure, and the number of channels is raised. The
FCN model is solely the summation of the corresponding pixels.
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The encoder consists of 3 × 3 convolutions, each followed by a Rectified Linear
Correction Unit (ReLU) and a 2 × 2 max pooling operation with downsampling with stride
2. Each step in the decoder consists of upsampling the feature map and concatenating it
with the corresponding feature map from the encoder. U-net combines deep and shallow
image information through skip structure, and in the upsampling part, the contextual
information is sent to higher-resolution layers.

3.1.3. SegNet

Similarly, the SegNet model also exhibits a completely symmetrical structure [65]
(Figure 4c), which is highlighted by the fact that this model saves the index values of the
max pooling. After each pooling operation, the relative position of the maximum value of
the element, namely the index value in the pool, is saved by a 2 × 2 matrix. In the decoder
part, each encoder corresponds to a decoder. The index value pre-served in the encoder is
applied in the decoder. Notably, each 2 × 2 matrix loses three weights which cannot be
recovered after the pooling operations. The size of the feature map is zoomed in twice, but
the position of the largest element in the pooling can be gained in the upsampling layer.
Then, the maximum value of the input feature map is placed according to the index. The
rest positions are padded with zero, and their weight is zero correspondingly. In order
to fill in the missing content, the convolutional layer is employed in the SegNet model.
Overall, training and learning are not required in this upsampling, and the number of
parameters can be cut down effectively.

3.1.4. DeepLab

DeepLab models introduce atrous convolution, which can increase the receptive fields
while the size of the feature map is fixed. Despite the increment of the receptive fields on
the premise of unchanging the size of the feature map, utilizing the atrous convolution
once to extract multi-scale target information is limited. The information of small-scale
feature maps cannot be reflected by that of large-scale maps, and the adoption of the
atrous convolution to exploit all feature maps is very redundant. Therefore, the atrous
convolution is often employed accompanied by the convolutional and pooling layers,
which can diminish the number of the pooling and upsampling layers, and the information
losses can be cut down. In the DeepLabv1 [71], some convolutional layers are substituted
by the atrous convolution based on the VGG-16. DeepLabv2 [72] features the addition of
the Atrous Spatial Pyramid Pooling (ASPP), which can gain more layers of diverse dilated
rates to enhance the ability to recognize the same objects of different sizes. As depicted in
Figure 4d, the DeepLabv3+ [66] applies the encoder and decoder structure, and the ASPP
is inserted into the decoder, which is the most accurate DeepLab model at present.

In this study, based on the initial frameworks of these traditional CNN models, more
changes are made, e.g., the use of multiple spectral discrete channels with additional
normalization and newly added cropping layers to block remote sensing images, leading
to four extended models for Landsat remote sensing images, named FCNmask, UNmask,
SNmask, and DLmask, respectively.

To describe the complexity and running speed of the CNN models, the parameters
amount and floating-point operations per second (FLOPs) can be used (Table 2). The
complexity of the model is expressed by the parameter amount. In contrast, the reasoning
speed is replaced by FLOPs. It should be noted that due to various factors, such as computer
hardware, the number of FLOPs cannot accurately reflect the actual speed [73].
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Table 2. The parameters amount and FLOPs for CNN models. 1 M = 106, 1 G = 109.

Model Params FLOPs

UNmask 7.85 M 28.11 G
SNmask 4.47 M 56.35 G
DLmask 13.09 M 42.22 G

FCNmask 27.84 M 57.72 G

3.2. Model Training and Validation
3.2.1. Model Training

The model training experiences three steps, including data normalization, image
clipping, and optimizer and initialization method settings. We converted the DN values
into top-of-atmosphere (TOA) reflectance for data normalization. The size of patches
and overlap was maintained at the baseline conditions of 256 × 256 and 100 separately
for training data. These patches were used for data augmentation, and there is a 50%
probability of horizontal or vertical flips. The total iterations were about 6000, and the batch
size was 8. The Adam optimizer was employed for training. The activation functions were
ReLU, and batch normalization was set at a momentum of 0.9. Xavier’s normal initialization
method was used for all the convolutional layers. To avoid overfitting problems, dropout
probability and L2-regularization were both fixed at 0.5 in training models. We trained
the efficiency of the DL cloud detection model based on the computer with Intel Core
i7-10875H, 16 GB RAM, and Nvidia GTX 2060, using Keras 2.3.1 and TensorFlow 2.1.0.
Figure 5 shows the performance of different models during training.

Figure 5. The optimization curves of accuracy for different models.

Notably, although various measures were taken during the training process, it is
evident in Figure 6 that the overfitting phenomenon still exists on the Sentinel-2 dataset. In
order to address this problem, an early stop strategy was adopted, and the epoch equal to 5
was selected for the investigation.
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Figure 6. The training and validation accuracy on the Landsat 8 and Sentinel 2 datasets for the
UNmask model.

3.2.2. Model Validation

Here, the cloud amount difference (CAD) is used by calculating the difference between
the predicted and the true cloud masks [4]. Moreover, three typical evaluation indices, i.e.,
Accuracy, Recall, and Precision, are selected to represent the overall accuracy, omission
error, and commission error of the model clarifications, respectively. They are calculated
(Equations (2)–(5)) through the confusion matrix using four quantities: true positives (TP),
false negatives (FN), true negatives (TN), and false positives (FP). In the cloud detection
task, the positive class is clouds, while the negative class is non-clouds. Last, the balanced
F score (F1-score), defined as the harmonic average of Precision and Recall rates, is also
adopted to measure the performance of classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

McNemar’s test statistic is used to estimate whether two models are significantly
different [74]. Statistics χ2 depends on the chi-square distribution, where b is the model 1
correct prediction and model 2 wrong prediction, and c is the model 1 wrong prediction
and model 2 correct prediction. The larger the χ2, the greater the difference between the
two models.

χ2 =
(|b− c|−1)

b + c

2

(6)

3.2.3. Transfer Learning

Theoretically, different sensors need their own data samples for model training; how-
ever, manually labeling and sketching a large number of data samples for any sensor
takes huge time and effects. Under such background, the idea of transfer learning is
proposed [75], that is, to find a balance between two assumptions: (1) the training set is
adequate to represent the potential data distribution, (2) the test data originate the same
distribution. Transfer learning is also applicable to cloud classification among different
sensors with similar designs in spectral channels, e.g., Landsat 8 and Sentinel-2 (Figure 1),
assuming that the available training samples for the former can be applied to the latter.
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For transfer training, we labeled data from the source domain and unlabeled data
from the target domain. Considering the DL model for cloud detection has already been
trained for Landsat 8 imagery, first, we used the Landsat 8 data to train the model, then
converted the Sentinel-2 data into Landsat 8 data; last, we obtained the Sentinel-2 result.
Note that although these two satellite sensors are similar, there are still spectral differences
that needed be corrected first. Here, we adopted the spectral convolution method [76]
via the spectral response functions (SRF) to eliminate such differences since the spectral
overlap between signals in two domains exists:

Cbandi
=

∫ bandimax
bandimin

sbandi
(λ)sbandj

(λ)dλ∫ bandimax
bandimin

sbandi
(λ)dλ

(7)

where Cbandi
indicates the coefficient of conversion for band I of Sentinel-2. sbandi (λ) is

the Sentinel-2 spectral response function for the band i. sbandj(λ) is the Landsat 8 spectral
response function for the band j. bandimin and bandimax are the minimum and maximum
wavelengths where sbandi (λ) is greater than zero.

4. Results and Discussion
4.1. Landsat 8 Cloud Detection Results

Figure 7 illustrates the typical examples and the corresponding cloud distributions
detected by four involved DL models under diverse underlying surfaces. The cloud
detection results are basically consistent with the true cloud distributions; specifically,
clouds over densely vegetated areas can be accurately classified for all models of their large
differences in reflectance (Figure 7a–e). Furthermore, good classification results are also
observed in other dark surfaces, such as the ocean (Figure 7a), coastal waters (especially
the land–sea junction) (Figure 7b), and inland water (Figure 7c). As the surface brightens,
most DL models still can identify well different types of clouds over, e.g., the urban areas,
especially broken clouds near or above the buildings (Figure 7e), as well as the barren areas
(Figure 7f), especially the thin clouds over the desert (pointed by orange arrows), showing
few omissions and misclassifications. Despite overall good results, some differences in
details exist among the models due to the differences in algorithm designs, e.g., it is easier
for the FCNmask model to miss small and broken clouds than others.

Figure 7. Examples of full-scene and zoom-in standard-false-color (RGB: 4-3-2) images and cloud
detection results from (a–f) dark to bright surfaces for Landsat 8 imagery using the UNmask, FCN-
mask, SNmask, and DLmask, respectively. The right-side annotations indicate the acquisition time
(yyyymmdd, where yyyy = year, mm = month, dd = day).
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Figure 8 illustrates the performance of different CNN-derived DL models in detecting
clouds on varying bright surfaces with great challenges due to their similar spectral char-
acteristics compared to clouds. For the clear-sky surfaces, most models rarely misclassify
bright surface-type pixels into clouds over artificial constructions (Figure 8a), minerals
and rocks (Figure 8b), Gobi and deserts (Figure 8c,d), as well as high-altitude mountains
(Figure 8e) and polar regions (Figure 8f) covered by temporary and permanent snow and
ice (Figure 8e,f), showing low commission errors (pointed by red arrows). By contrast, for
cloudy regions, large differences are seen among these models, e.g., in general, UNmask can
more accurately capture both the shape and edge of the clouds, which is more consistent in
the spatial distribution with the real image, especially for thin and broken cloudy scenes.

Figure 8. Same as Figure 7, but the bright surfaces: (a) urban, (b–d) bare and desert, (e–f) ice and
snow, where orange and red arrows point to cloudy and clear-sky surfaces.

SNmask shows a similar performance compared to UNmask in most situations, show-
ing few cloud omissions and misidentifications. This benefits from the preserved index
value of the max pooling [65]. FCNmask can easily miss the broken clouds in the images
due to the limitations of the deconvolution layer used, which will lose some extremely high
values [77]. DLmask misses the most clouds over the bright surfaces, especially for the
ice and snow surfaces (Figure 8f), because the atrous convolution for the model core has
kernel gaps, where only part of the pixels are used for calculation, resulting in a loss of
information continuity. In addition, the gained uncorrelated remote spatial information
hinders the detection process, while clouds are most locally related [78].

4.2. Quantitative Accuracy Evaluation
4.2.1. Overall Performance and Operating Efficiency

First, we validate the predicted cloud amount by different CNN-derived models
against the real cloud amount (Figure 9). Overall, the percentages of the cloud cover calcu-
lated by these models are basically consistent with those of the USGS manual generations
(e.g., slope = 0.92−0.96, and R2 = 0.9−0.97). Among these models, the DLmask model
shows the worst performance in estimating the cloud amount with the lowest correlation
and smallest slope, showing the largest MAE value. In general, the FCNmask and SNmask
models show comparable performance with similar evaluation indices. By contrast, the
UNmask model is the most accurate one with the strongest slope, highest R2, and smallest
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MAE (~2.2%) values, which can be of great importance for future Landsat image screening
and selection. It should be noted that, overall, all the models tend to underestimate the
cloud amount (i.e., CAD < 0), especially for the FCNmask model (CAD = −0.67%), which
is mainly attributed to the easy omission of small and broken clouds.

Figure 9. Comparison in cloud amount between Landsat 8 Biome validation dataset and different
CNN models: (a) UNmask, (b) FCNmask, (c) SNmask, and (d) DLmask.

Next, we evaluate the overall accuracy of different DL models in cloud classification
(Table 3) and discuss their performance on different surface types (Figure 10). All four mod-
els have good evaluation indices exceeding 90%. Nevertheless, the performance of the
four models is quite different according to McNemar’s test statistics χ2 (Table 4). Under
the circumstances, the F1-score and overall accuracy indices of the UNmask model are
equal to 94.1% and 94.9%, respectively, which are superior to the other three models. The
UNmask model and FCNmask model are biased by the Biome datasets, leading to the
imbalance between Recall and Precision index and a sub-optimal F1-score. Notably, in
terms of Recall and Precision metrics, the Recall value of the FCNmask model is much
higher than Precision because of the fixed threshold, which is more likely to misidentify
clouds as non-clouds. In general, the UNmask model shows the best performance with all
the highest evaluation indices among these CNN-derived models.

Table 3. Statistics describing the evaluation results using confuse matrix for different models.

Model Accuracy (%) F1 (%) Recall (%) Precision (%)

UNmask 94.9 94.1 95.4 92.9
FCNmask 94.2 93.3 94.7 91.8
SNmask 93.9 93.0 93.2 92.8
DLmask 92.5 91.4 91.4 91.3

The bold text denotes the best-performing method.

Table 4. McNamara’s test statistics χ2 describing the evaluation results for different models.

Model UNmask FCNmask SNmask DLmask

UNmask - 222 3982 1,230,033
FCNmask - - 6434 2,085,938
SNmask - - - 743,929
DLmask - - - -

The p-values are all zero.
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Figure 10. Model performance in cloud detection for Landsat 8 imagery over different land-use types
in terms of (a) Accuracy, (b) Recall, (c) Precision, and (d) F1-score.

All surface types can be divided into three groups: dark surface (water and wetlands),
vegetated surfaces (forest, grass/crops, shrubland), and bright surface (urban, barren, and
snow/ice). For dark surfaces, all indicators are very balanced. The overall accuracy and
F1-score indices surpass 95%, and the Recall and Precision of the four models are close,
illustrating that there are almost no obvious misclassification and omission errors. The
excellent performance is attributed to the distinctive spectral differences between dark
surfaces with low surface reflectance and high-reflecting clouds. It is noteworthy that the
Precision is less than the Recall for the DLmask model, indicating that some clouds may
be missed.

In the vegetated areas, the overall accuracy index is greater than 93% for all models.
For all vegetated surface types, the UNmask model is superior to others for all indica-
tors. With respect to the forest surface type, grass/crops surface type, and shrubland
surface type, the overall accuracy is 93.6%, 97.3%, and 94.5%, and the F1-score is 94.2%,
96.8%, and 93.5%, respectively. Notably, for forest and shrubland, the Recall values of the
four models are much higher than the Precision values, demonstrating that many clouds
are missed detected.

For bright surfaces, the performance of the UNmask model ranks in the first position.
Urban surface embraces the best performance for all the models. The F1-score and overall
accuracy are up to 97.5% and 97.2%, respectively, under the simulation of the UNmask
model. The ignorable difference demonstrates that these models are robust without obvious
cloud omissions and misidentifications, which can be attributed to two aspects: clouds are
primarily distributed in dark surfaces such as vegetated and lake areas, which are easier
for detecting clouds; these models grasp the spectral characteristics and differences by fully
training datasets consisting of cloud pixels and clear sky pixels from different surfaces. As
for the barren surface types, the Recall is higher than the Precision, indicating that clouds
are often missed. However, an opposite phenomenon is observed over snow/ice surfaces.
In summary, the UNmask model shows the best performance among different surface types
from Figure 10.

4.2.2. Model Comparison and Efficiency Analysis

Here, we use the same validation source Landsat 8 biome reference masks to compare
with some algorithms (Table 5). It is noteworthy that the reference images used are not the
same, which may lead to unfair accuracy comparison. The results indicate that the UNmask
algorithm performs better than traditional threshold-based models, such as the Landsat 8
Surface Reflectance Code (LaSRC) algorithm, the ACCA, Artificial Thermal (AT)-ACCA,
and Fixed Temperature (FT)-ACCA algorithms, the C implementation of Function of Mask
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(CFmask) algorithm [45,68], the CDAL8 algorithm [24], and the FMask algorithm [29,47,79].
UNmask is an improvement on our previously developed RFmask model [33] due to a
higher capacity for deep learning; in addition, it is superior or comparable to other devel-
oped ML or DL algorithms such as the See5 algorithm [68], SegNet [45], and MSCFF [47].
In general, our Unmask model outperforms most models developed in previous studies; in
particular, its advantages of rapid automation and transfer learning have broad prospects
for future applications.

Table 5. Comparison in cloud detection with previous studies using the same Landsat 8 Biome cloud
validation mask.

Algorithm Accuracy (%) Recall (%) Precision (%) Literature

LaSRC 73.1 - - Foga et al., 2017 [68]
FT-ACCA 74.2 - -

ACCA 83.8 - -
See5 85.8 - -

AT-ACCA 87.5 - -
CFmask 89.3 - -
CDAL8 88.8 - - Oishi et al., 2018 [24]
RS-Net 93.1 91.8 94.1 Jeppesen et al., 2019 [29]
Fmask 93.3 95.0 97.0 Zhu et al., 2015 [79]

RFmask 93.7 87.6 89.0 Wei et al., 2020 [33]
SegNet 94.0 93.1 94.5 Chai et al., 2019 [45]
MSCFF 95.0 95.1 93.9 Li et al., 2019 [47]

UNmask 94.9 95.4 92.9 This study

The data preprocessing includes data load, band combination, and radiometric cal-
ibration, taking a total of about 12.0 ± 1.6 s, and the main time-consuming steps of this
process are the layer stack. It is noteworthy that the prediction time is independent of the
model type, costing 25.6 ± 3.4 s. The cloud detection results are saved as GeoTiff files,
which use 3.4 ± 1.0 s. The above results are based on a single-threaded implementation. A
multi-threaded implementation that simultaneously loads/saves and processes data will
reduce the total processing time, making it close to the predicted time. The total time is
41 ± 5.5 s, which is much faster than pixel-by-pixel classification, indicating that it has
obvious application prospects.

4.2.3. Impacts of Threshold Setting on Cloud Detection

Last, the influence of varying thresholds on the cloud detection results is also analyzed.
The Recall swiftly rises, and the Precision marginally declines when the threshold is low
(Figure 11a). As the threshold is augmented, the increase in the Recall and the decrease
in the Precision are basically the same. Then, the Precision reduces rapidly, and Recall
increases slowly when the threshold is high. These unique tendencies reflect that to find an
appropriate threshold, a trade-off between Recall and Precision should be involved. Con-
sidering that the F1-score is a harmonic mean between the Recall and Precision, the F1-score
accompanied by the overall accuracy is specified to investigate the effect of the thresholds.

The impact of different thresholds on the F1-score is shown in Figure 11b. In general,
the F1-score exhibits a trend of rising first and then depreciating. Comparatively, the
evolution of the UNmask, FCNmask, and SNmask model changes more smoothly due to
the slow variation of the Recall and Precision, while the DLmask is opposite completely.
The overall accuracy behaves similarly to the F1-score, as observed in Figure 11c. The
tendency of the increasing first and then decreasing of the F1-score and overall accuracy
highlights that an optimal threshold exists. For these models, a threshold in the range of
0.2–0.7 is recommended. For the DLmask model, a threshold less than 0.6 is considered
suitable. Within this range, the optimal threshold can be found from the intersection of
the Recall and Precision curves in Figure 11a. The optimal threshold is close to 0.4 for the
UNmask and FCNmask models and is close to 0.5 for the SNmask and DLmask models.
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Figure 11. Effects of varying thresholds on different CNN models using Landsat 8 Biome dataset in
terms of (a) Recall and Precision, (b) F1-score, (c) Accuracy.

4.3. Transfer Learning Cloud Detection for Sentinel 2 Imagery
4.3.1. Overall Performance and Operating Efficiency

Additionally, UNmask was applied to the cloud detection for Sentinel 2 through
transfer learning, and it performs well over dark surfaces, such as the ocean (Figure 12a),
the boundary between land and sea (Figure 12b), and most of the thin and broken clouds
can be correctly detected. Additionally, the model shows superior performance in vegetated
areas (Figure 12c–e). For the bright surfaces, the distribution of detected clouds agrees well
with the original image over urban buildings (pointed out by red arrows in Figure 12d).
Moreover, expected cloud detection results are also observed in the bare rock and bare land
(Figure 12e,f), even in the presence of mountain snow (Figure 12b indicated by red arrows).
For Sentinel-2, the overall accuracy, F1-score, Recall, and Precision are 90.1%, 90.2%, 89.1%,
and 91.4%, respectively. Nevertheless, this is acceptable compared with the huge time and
energy consumption caused by reconstructing or retraining the model, especially largely
limited to the available cloud validation mask data for different satellite sensors.

Figure 12. Examples of standard-false-colour (RGB: 8-4-3) images and cloud detection results from
(a–f) dark to bright surfaces for Sentinel 2 imagery. The acquisition time is below the image (yyyym-
mdd, where yyyy = year, mm = month, dd = day).

4.3.2. Model Comparison

We also used Fmask 4.0 algorithm [80] and the GAN-CDM-6 model [62] to predict
the results of the Sentinel-2 Cloud Mask Catalogue dataset, and the results are listed in
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Table 6. From the perspective of model performance, the GAN-CDM-6 model has the
highest indicators (Accuracy = 92.5%, F1 = 92.9%), followed by UNmask and the lower
Fmask 4.0 algorithm. Although the GAN-CDM-6 model has the advantage of higher
accuracy than Unmask model and only requires block labels, the complexity of the training
model is higher, indicating that the GAN-CDM-6 model convergence is time-consuming
and difficult (FLOPs = 201.66 G, Iterations = 1,000,000). In contrast, the UNmask model
can achieve an accuracy (Accuracy = 90.1%, F1 = 90.2%) close to that of the GAN-CDM-6
model, and the difficulty of model training is also low (FLOPs = 28.11 G, Iterations = 6000),
which is more conducive to practical application.

Table 6. Average accuracy, FLOPs, and Iterations indicators of different methods on 512 images in
Sentinel-2 Cloud Mask Catalogue dataset for Fmask 4.0, UNmask, and GAN-CDM-6 models.

Model Accuracy (%) F1 (%) Recall (%) Precision (%) FLOPs Iterations

Fmask 4.0 86.1 85.2 85.6 84.9 - -
UNmask 90.1 90.2 89.1 91.4 28.11 G ~6000

GAN-CDM-6 92.5 92.9 92.8 92.9 201.66 G ~1,000,000

5. Conclusions

Traditional threshold cloud detection methods mainly use spectral properties and
hardly consider the spatial autocorrelation of target objects, especially for those satellites
(e.g., Landsat) with high spatial resolution but few channels, significantly increasing the
difficulties in detecting thin and broken clouds, particularly those over the bright surfaces.
Therefore, this study employed four typical CNN-derived DL models, i.e., FCNmask,
UNmask, SNmask, and DLmask, which are based on various convolution kernels, pooling,
and skip connections to extract more different scale spatial features and to improve cloud
detection for Landsat 8 imagery. The USGS Landsat 8 Biome Cloud Validation Masks
covering diverse underlying surfaces were collected to train and validate the models.
The top-of-atmosphere reflectance from visible to short-wave infrared wavelengths after
radiometric calibration was used as the model input. Last, we also investigated whether
the reconstructed cloud detection model for Landsat 8 imagery can be transferred, learned,
and applied to Sentinel-2.

Experiments demonstrate that the estimated cloud amount has a good linear re-
lationship with the validation cloud masks, especially the UNmask model (R2 = 0.97)
with the smallest estimation uncertainties (i.e., MAE = 2.2%). This model also can most
accurately identify the cloud distribution with an overall accuracy of 94.9% and an F1-
score of 94.1% for Landsat 8 imagery. In general, the UNmask model has good adapt-
ability over different underlying surfaces, with the best performance over urban areas
(overall accuracy = 97.5%, and F1-score = 97.2%). In addition, the model also works well on
brighter surfaces such as barren and snow/ice surfaces, e.g., overall accuracy = 94.6% and
89.3%, and F1-score = 93.4% and 82.0%, respectively. Furthermore, the efficiency test shows
that the model is fast, which only takes a total of 41 ± 5.5 s on average to finish one-scene
cloud detection. Finally, we transferred the UNmask model to the Sentinel-2 imagery and
found that it has good classify accuracy (e.g., CAD = 5.85%, overall accuracy = 90.1%) and
efficiency in both dark and bright surfaces, which further illustrates the robustness of our
model and its great significance for quantitative application ability in the future.

Although the deep CNN model has significant advantages, some improvement meth-
ods can be considered for Landsat cloud detection. The digital elevation model and global
surface coverage map can be included as the additional bands by layer stack, which can
design appropriate thresholds for different surface types and altitudes to improve the
performance of the model. Moreover, new architectures can be designed to improve cloud
detection by considering the image texture and shape information.



Remote Sens. 2023, 15, 1706 17 of 20

Author Contributions: Conceptualization, J.W.; methodology, S.P.; software, S.P.; validation, S.P.,
Y.T. and Y.M.; formal analysis, J.W. and S.P.; investigation, S.P., Y.T. and Y.M.; resources, S.P.; data
curation, S.P. and Y.T.; writing—original draft preparation, S.P.; writing—review and editing, J.W.;
visualization, Y.T. and Y.M.; supervision, L.S.; project administration, L.S.; funding acquisition, L.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Introduction plan of high-end foreign experts (Grant No.
G2021025006L) and the National Natural Science Foundation of China (Grant No. 42271412).

Data Availability Statement: Landsat 8 Biome Cloud Mask Validation database (U.S. Geological
Survey, 2016, available at https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-
data (accessed on 1 January 2023). The Sentinel-2 Cloud Mask Catalogue dataset (available at
https://zenodo.org/record/4172871#.YYI4BmBByUk (accessed on 1 January 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harshvardhan; Randall, D.A.; Corsetti, T.G. Earth Radiation Budget and Cloudiness Simulations with a General Circulation

Model. J. Atmos. Sci. 1989, 46, 1922–1942. [CrossRef]
2. Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-Radiative Forcing and

Climate: Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [CrossRef] [PubMed]
3. Sun, L.; Wei, J.; Wang, J.; Mi, X.T.; Guo, Y.M.; Lv, Y.; Yang, Y.K.; Gan, P.; Zhou, X.Y.; Jia, C.; et al. A Universal Dynamic

Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database. J. Geophys. Res. Atmos. 2016,
121, 7172–7196. [CrossRef]

4. Wei, J.; Huang, B.; Sun, L.; Zhang, Z.; Wang, L.; Bilal, M. A simple and universal aerosol retrieval algorithm for Landsat series
images over complex surfaces. J. Geophys. Res. -Atmos. 2017, 122, 13338–13355. [CrossRef]

5. Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless
mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [CrossRef]

6. Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [CrossRef]
7. King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by

MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [CrossRef]
8. Zhang, Y.C.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of

atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys.
Res. -Atmos. 2004, 109, D19105. [CrossRef]

9. Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Sèze, G.; Smith, E. ISCCP
cloud analysis algorithm intercomparison. Adv. Space Res. 1985, 5, 185. [CrossRef]

10. Rossow, W.B.; Schiffer, R.A. ISCCP Cloud Data Products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [CrossRef]
11. Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. J. Clim.

1993, 6, 2341–2369. [CrossRef]
12. Stowe, L.L.; McClain, E.P.; Carey, R.; Pellegrino, P.; Gutman, G.G.; Davis, P.; Long, C.; Hart, S. Global distribution of cloud cover

derived from NOAA/AVHRR operational satellite data. Adv. Space Res. 1991, 11, 51–54. [CrossRef]
13. Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote

Sens. 1988, 9, 123–150. [CrossRef]
14. Kriebel, K.T.; Saunders, R.W.; Gesell, G. Optical Properties of Clouds Derived from Fully Cloudy AVHRR Pixels. Bcitr. Phys.

Atmosph. 1989, 62, 165–171.
15. Irish, R. Landsat 7 automatic cloud cover assessment. Proc. SPIE Int. Soc. Opt. Eng. 2000, 4049, 348–355. [CrossRef]
16. Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment

(ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [CrossRef]
17. Zhang, Y.; Guindon, B. Quantitative assessment of a haze suppression methodology for satellite imagery: Effect on land cover

classification performance. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1082–1089. [CrossRef]
18. Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud

contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [CrossRef]
19. Gomez-Chova, L.; Camps-Valls, G.; Calpe-Maravilla, J.; Guanter, L.; Moreno, J. Cloud-screening algorithm for ENVISAT/MERIS

multispectral images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4105–4118. [CrossRef]
20. Le Hegarat-Mascle, S.; Andre, C. Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical

images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 351–366. [CrossRef]
21. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012,

118, 83–94. [CrossRef]
22. Zhai, H.; Zhang, H.Y.; Zhang, L.P.; Li, P.X. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical

remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 235–253. [CrossRef]

https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
https://zenodo.org/record/4172871#.YYI4BmBByUk
http://doi.org/10.1175/1520-0469(1989)046&lt;1922:ERBACS&gt;2.0.CO;2
http://doi.org/10.1126/science.243.4887.57
http://www.ncbi.nlm.nih.gov/pubmed/17780422
http://doi.org/10.1002/2015JD024722
http://doi.org/10.1002/2017JD026922
http://doi.org/10.5194/acp-23-1511-2023
http://doi.org/10.1080/01431160010006926
http://doi.org/10.1109/TGRS.2012.2227333
http://doi.org/10.1029/2003JD004457
http://doi.org/10.1016/0273-1177(85)90319-9
http://doi.org/10.1175/1520-0477(1991)072&lt;0002:ICDP&gt;2.0.CO;2
http://doi.org/10.1175/1520-0442(1993)006&lt;2341:CDUSMO&gt;2.0.CO;2
http://doi.org/10.1016/0273-1177(91)90402-6
http://doi.org/10.1080/01431168808954841
http://doi.org/10.1117/12.410358
http://doi.org/10.14358/PERS.72.10.1179
http://doi.org/10.1109/TGRS.2003.811817
http://doi.org/10.1016/S0034-4257(02)00034-2
http://doi.org/10.1109/TGRS.2007.905312
http://doi.org/10.1016/j.isprsjprs.2008.12.007
http://doi.org/10.1016/j.rse.2011.10.028
http://doi.org/10.1016/j.isprsjprs.2018.07.006


Remote Sens. 2023, 15, 1706 18 of 20

23. Frantz, D.; Hass, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds
from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481. [CrossRef]

24. Oishi, Y.; Ishida, H.; Nakamura, R. A new Landsat 8 cloud discrimination algorithm using thresholding tests. Int. J. Remote Sens.
2018, 39, 1–21. [CrossRef]

25. Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New neural network cloud mask algorithm
based on radiative transfer simulations. Remote Sens. Environ. 2018, 219, 62–71. [CrossRef]

26. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with
MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [CrossRef]

27. Wang, X.; Xie, H.; Liang, T. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China.
Remote Sens. Environ. 2008, 112, 1497–1513. [CrossRef]

28. Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data
records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136.
[CrossRef]

29. Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep
learning. Remote Sens. Environ. 2019, 229, 247–259. [CrossRef]

30. Sui, Y.; He, B.; Fu, T. Energy-based cloud detection in multispectral images based on the SVM technique. Int. J. Remote Sens. 2019,
40, 5530–5543. [CrossRef]

31. Hughes, M.; Hayes, D. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural
Networks and Spatial Post-Processing. Remote Sens. 2014, 6, 4907–4926. [CrossRef]

32. Ghasemian, N.; Akhoondzadeh, M. Introducing two Random Forest based methods for cloud detection in remote sensing images.
Adv. Space Res. 2018, 62, 288–303. [CrossRef]

33. Wei, J.; Huang, W.; Li, Z.; Sun, L.; Zhu, X.; Yuan, Q.; Liu, L.; Cribb, M. Cloud detection for Landsat imagery by combining the
random forest and superpixels extracted via energy-driven sampling segmentation approaches. Remote Sens. Environ. 2020,
248, 112005. [CrossRef]

34. Jin, B.; Cruz, L.; Gonçalves, N. Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis.
IEEE Access 2020, 8, 123649–123661. [CrossRef]

35. Jin, B.; Cruz, L.; Gonçalves, N. Pseudo RGB-D Face Recognition. IEEE Sens. J. 2022, 22, 21780–21794. [CrossRef]
36. Zhao, M.; Liu, Q.; Jha, A.; Deng, R.; Yao, T.; Mahadevan-Jansen, A.; Tyska, M.; Millis, B.; Huo, Y. VoxelEmbed: 3D Instance

Segmentation and Tracking with Voxel Embedding Based Deep Learning. Mach. Learn. Med. Imaging 2021, 12966, 437–446.
37. Yao, T.; Qu, C.; Liu, Q.; Deng, R.; Tian, Y.; Xu, J.; Jha, A.; Bao, S.; Zhao, M.; Fogo, A.; et al. Compound Figure Separation of

Biomedical Images with Side Loss. Deep. Gener. Model. Data Augment. Label. Imperfections 2021, 13003, 173–183.
38. Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution

multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [CrossRef]
39. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understand-

ing for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]
40. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical

Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]
41. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional

neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [CrossRef]
42. Goff, M.L.; Tourneret, J.-Y.; Wendt, H.; Ortner, M.; Spigai, M. Deep Learning for Cloud Detection; International Conference of Pattern

Recognition Systems (ICPRS): Madrid, Spain, 2017; pp. 1–6.
43. Zi, Y.; Xie, F.; Jiang, Z. A Cloud Detection Method for Landsat 8 Images Based on PCANet. Remote Sens. 2018, 10, 877. [CrossRef]
44. Ozkan, S.; Efendioglu, M.; Demirpolat, C. Cloud detection from RGB color remote sensing images with deep pyramid networks.

In Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July
2018; pp. 6939–6942.

45. Chai, D.; Newsam, S.; Zhang, H.K.K.; Qiu, Y.; Huang, J.F. Cloud and cloud shadow detection in Landsat imagery based on deep
convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [CrossRef]

46. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network.
Remote Sens. Environ. 2019, 230, 111203. [CrossRef]

47. Li, Z.W.; Shen, H.F.; Cheng, Q.; Liu, Y.H.; You, S.C.; He, Z.Y. Deep learning based cloud detection for medium and high resolution
remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [CrossRef]

48. Zheng, Q.; Yang, M.; Yang, J.; Zhang, Q.; Zhang, X. Improvement of Generalization Ability of Deep CNN via Implicit Regulariza-
tion in Two-Stage Training Process. IEEE Access 2018, 6, 15844–15869. [CrossRef]

49. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada,
8–13 December 2014; pp. 2672–2680.

50. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.

http://doi.org/10.1016/j.rse.2018.04.046
http://doi.org/10.1080/01431161.2018.1506183
http://doi.org/10.1016/j.rse.2018.09.029
http://doi.org/10.1029/1998JD200032
http://doi.org/10.1016/j.rse.2007.05.016
http://doi.org/10.1016/j.rse.2020.112136
http://doi.org/10.1016/j.rse.2019.03.039
http://doi.org/10.1080/01431161.2019.1580788
http://doi.org/10.3390/rs6064907
http://doi.org/10.1016/j.asr.2018.04.030
http://doi.org/10.1016/j.rse.2020.112005
http://doi.org/10.1109/ACCESS.2020.3005687
http://doi.org/10.1109/JSEN.2022.3197235
http://doi.org/10.1016/j.rse.2018.04.050
http://doi.org/10.1038/s41586-019-0912-1
http://doi.org/10.1109/TGRS.2016.2601622
http://doi.org/10.1016/j.isprsjprs.2018.04.003
http://doi.org/10.3390/rs10060877
http://doi.org/10.1016/j.rse.2019.03.007
http://doi.org/10.1016/j.rse.2019.05.022
http://doi.org/10.1016/j.isprsjprs.2019.02.017
http://doi.org/10.1109/ACCESS.2018.2810849


Remote Sens. 2023, 15, 1706 19 of 20

51. Shao, X.; Zhang, W. SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021;
pp. 6526–6535.

52. Lin, D.; Fu, K.; Wang, Y.; Xu, G.; Sun, X. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image
Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2092–2096. [CrossRef]

53. Castro, J.; Nigri Happ, P.; Feitosa, R.; Oliveira, D. Synthesis of Multispectral Optical Images From SAR/Optical Multitemporal
Data Using Conditional Generative Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1220–1224. [CrossRef]

54. Li, J.; Wu, Z.; Hu, Z.; Zhang, J.; Li, M.; Mo, L.; Molinier, M. Thin cloud removal in optical remote sensing images based on
generative adversarial networks and physical model of cloud distortion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 373–389.
[CrossRef]

55. Nyborg, J.; Assent, I. Weakly-Supervised Cloud Detection with Fixed-Point GANs. In Proceedings of the 2021 IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 4191–4198.

56. Wu, Z.; Li, J.; Wang, Y.; Hu, Z.; Molinier, M. Self-Attentive Generative Adversarial Network for Cloud Detection in High
Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1792–1796. [CrossRef]

57. Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. Stat 2017, 1050. [CrossRef]
58. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021; pp. 1–21.

59. Wang, D.; Zhang, J.; Du, B.; Xia, G.S.; Tao, D. An Empirical Study of Remote Sensing Pretraining. IEEE Trans. Geosci. Remote Sens. 2022.
[CrossRef]

60. Wang, D.; Zhang, Q.; Xu, Y.; Zhang, J.; Du, B.; Tao, D.; Zhang, L. Advancing Plain Vision Transformer Towards Remote Sensing
Foundation Model. IEEE Trans. Geosci. Remote Sens. 2022. [CrossRef]

61. Mateo-Garcia, G.; Laparra, V.; Lopez-Puigdollers, D.; Gomez-Chova, L. Transferring deep learning models for cloud detection
between Landsat-8 and Proba-V. ISPRS J. Photogramm. Remote Sens. 2020, 160, 1–17. [CrossRef]

62. Li, J.; Wu, Z.; Sheng, Q.; Wang, B.; Hu, Z.; Zheng, S.; Camps-Valls, G.; Molinier, M. A hybrid generative adversarial network for
weakly-supervised cloud detection in multispectral images. Remote Sens. Environ. 2022, 280, 113197. [CrossRef]

63. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

64. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI); Medical Image Computing and Computer-Assisted Intervention (MICCAI):
Cham, Switzerland, 2015; pp. 234–241.

65. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

66. Chen, L.C.E.; Zhu, Y.K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 833–851.

67. Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating
burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [CrossRef]

68. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud
detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390.
[CrossRef]

69. Francis, A.; Mrziglod, J.; Sidiropoulos, P.; Muller, J.-P. Sentinel-2 Cloud Mask Catalogue. Zenodo 2020. [CrossRef]
70. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. Acm

2017, 60, 84–90. [CrossRef]
71. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.P.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional

Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062.
72. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolu-

tional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
[PubMed]

73. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 13728–13737.

74. Edwards, A.L. Note on the “correction for continuity” in testing the significance of the difference between correlated proportions.
Psychometrika 1948, 13, 185–187. [CrossRef] [PubMed]

75. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
76. Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems.

Remote Sens. Environ. 2003, 88, 412–422. [CrossRef]
77. Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016. [CrossRef]

http://doi.org/10.1109/LGRS.2017.2752750
http://doi.org/10.1109/LGRS.2019.2894734
http://doi.org/10.1016/j.isprsjprs.2020.06.021
http://doi.org/10.1109/LGRS.2019.2955071
http://doi.org/10.48550/arXiv.1701.04862
http://doi.org/10.1109/TGRS.2022.3176603
http://doi.org/10.1109/TGRS.2022.3222818
http://doi.org/10.1016/j.isprsjprs.2019.11.024
http://doi.org/10.1016/j.rse.2022.113197
http://doi.org/10.1109/tpami.2016.2644615
http://doi.org/10.1016/j.jag.2016.03.005
http://doi.org/10.1016/j.rse.2017.03.026
http://doi.org/10.5281/zenodo.4172871
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1007/BF02289261
http://www.ncbi.nlm.nih.gov/pubmed/18885738
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1016/j.rse.2003.08.010
http://doi.org/10.23915/distill.00003


Remote Sens. 2023, 15, 1706 20 of 20

78. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding Convolution for Semantic Segmentation.
In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA,
12–15 March 2018; pp. 1451–1460.

79. Zhu, Z.; Wang, S.X.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow
detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [CrossRef]

80. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery.
Remote Sens. Environ. 2019, 231, 111205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.rse.2014.12.014
http://doi.org/10.1016/j.rse.2019.05.024

	Introduction 
	Data Materials 
	Models and Methods 
	Convolutional Neural Network 
	FCN 
	U-Net 
	SegNet 
	DeepLab 

	Model Training and Validation 
	Model Training 
	Model Validation 
	Transfer Learning 


	Results and Discussion 
	Landsat 8 Cloud Detection Results 
	Quantitative Accuracy Evaluation 
	Overall Performance and Operating Efficiency 
	Model Comparison and Efficiency Analysis 
	Impacts of Threshold Setting on Cloud Detection 

	Transfer Learning Cloud Detection for Sentinel 2 Imagery 
	Overall Performance and Operating Efficiency 
	Model Comparison 


	Conclusions 
	References

