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A B S T R A C T   

High-quality direct normal irradiance (DNI) observations are of vital importance for the optimal design, 
installation and profitability of CST plants. Numerous models have been developed for estimating DNI at regional 
or global scales. The goal of this study is to generate a gridded DNI dataset for all-sky conditions over mainland 
China during 1981–2014, based on a broadband DNI estimates for clear-sky conditions (obtained with the 
REST2_v9.1 model) and cloud transmittance estimates using sunshine observations. The results indicate that the 
REST2_v9.1 model can be used to estimate DNI with high accuracy and consistency, owing to its robust two-band 
parameterization of the radiation transfer processes. Comparing daily DNI modeled predictions to measurements 
at 6 BSRN (Baseline Surface Radiation Network) stations in East Asia results in relatively low errors statistics: 
RMSE, MAE, RMSER, MAER and R of 1.436 MJm� 2, 0.900 MJm� 2, 22.26%, 13.95% and 0.972. Somewhat 
lessened agreement is found at the 17 CMA (China meteorological administrations) stations: 4.064 MJm� 2, 
2.864 MJm� 2, 34.41%, 24.26% and 0.914, respectively. A gridded DNI dataset is constructed using sunshine 
duration measurements at 2474 CMA meteorological stations and the MERRA-2 (Modern-Era Retrospective 
Analysis for Research and Applications, version 2) reanalysis products. The spatial and temporal variations of 
DNI in different climate zones throughout China are also investigated. The gridded DNI datasets generated in this 
study would assist in numerous solar resource studies and solar energy applications.   

1. Introduction 

Solar energy is appealing as a clean, renewable, sustainable and 
environmentally friendly energy source for the continuation of life on 
our planet [1,2]. Many countries have devoted great attention and effort 
on the development of solar electrical applications since the 2000s 
[5–8]. In particular, various types of solar energy systems have been 
developed to convert solar radiation into low-grade heat, process heat or 
electricity, using either flat-plate or concentrating solar collectors. 
Whereas the former collector type can benefit from both direct and 
diffuse forms of solar radiation, the latter type is strictly sensitive to 
direct irradiance [9]. Therefore, evaluating, mapping, and monitoring 
the direct normal irradiance (DNI) is of vital importance for the proper 

design, financing, and operation of solar power plants using concen
trating technologies (CSP) [10]. China is the country with the largest 
thermal power generation, making it the largest emitter of greenhouse 
gases [11]. The huge demand for electricity and energy consumption 
make the Chinese government turn to vigorously develop CSP industry 
[12]. China is in the leading position in the construction and planned 
installed capacity of CSP power generation [13]. Clear understanding of 
DNI in China would improve the efficiency of CSP resources utilization 
[14]. 

DNI is the amount of solar radiation received per unit area by a 
surface perpendicular to the sun rays that come in a straight line from 
the direction of the sun at its current position in the sky [15]. DNI is 
typically measured with a pyrheliometer mounted on a sun tracker. DNI 
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can also be modeled in different ways, e.g., through proper decompo
sition from global solar radiation measurements [16,17], or through 
direct modeling from atmospheric data [18–20]. Measured DNI infor
mation has high value because it has the lowest uncertainty of all solar 
radiation components, if it follows the best practices [21]. To be useful 
on a large scale, such measurements should be obtained from a dense 
network of observing stations. Despite worldwide continuous efforts to 
establish solar radiation measurement stations in recent years, the 
needed networks are still too sparse for high-end DNI applications, 
owing to the high cost and maintenance effort of observation platforms 
[22]. Additionally, equipmentmal function, operation-related problems, 
and data quality-control requirements are other limitations for DNI 
observations. Thus, it is of great significance to estimate DNI using 
modeling. 

From a recent review on existing DNI models and their performance 
[23], it is clear that two types of radiation models can be used in the 
current practice of solar resource assessments: empirical models and 
physically-based models. Numerous empirical models have been 
developed for the estimation of DNI [24–27]. Empirical models assume 
that solar radiation is directly linked to meteorological variables such as 
sunshine duration, air temperature, relative humidity or site ele
vation—or even just solar position [26]. For example, Louche et al. 
developed an empirical formula in forms of fifth order polynomial to 
retrieve DNI values at Ajaccio [28]. Tiris et al. established the empirical 
relationship between the ratio of DNI to global solar radiation (RDNI) 
and the ratio of the daily sunshine hour to the daily maximum sunshine 
hour (n/N) in Gebze [29]. Benson et al. proposed an empirical 
sunshine-based model to reveal the linear regression relations for 
monthly RDNI and n/N with RMS of 8.8%~24.4% [30]. Li et al. 
developed a humidity based model for retrieving direct solar radiation 
in Yunnan Province, using seasonal averaged daily absolute humidity in 
the dry seasons and wet seasons [31]. However, empirical models are 
subjected to poor universality and lower accuracy [23,32], because all 
their numerical coefficients are calculated based on some simple rela
tionship between DNI and a few model inputs. In contrast, 
physically-based models can relate DNI to various atmospheric pro
cesses, which are parameterized from strict radiative transfer theory. 
Many physically-based DNI estimation models have been developed to 
estimate DNI at regional or global scale [18,19,33–39]. Physically-based 
DNI models can be roughly divided into spectral models and broadband 

models. Leckner [36] proposed a spectral model for the estimation of 
DNI that considered the main spectral transmittances of solar radiation 
in the atmosphere, including Rayleigh scattering, ozone absorption, 
absorption by uniformly gases, aerosol extinction and water vapor ab
sorption. Gueymard [40] developed the more elaborate ‘SMARTS’ 
spectral model to predict direct normal irradiance, diffuse irradiance 
and global irradiance incident on the Earth’s surface, covering the whole 
shortwave solar spectrum (280–4000 nm) with high spectral resolution. 
The SMARTS model is still being updated and validated [32], but its 
relative complexity may not be ideal for intensive simulations at con
tinental scale. Although, the accuracy of spectral models may be 
somewhat higher than that of broadband models because of their su
perior spectral resolution, the latter are much faster to operate. For 
instance, the REST2 model [18] uses the parameterizations of SMARTS 
results, and a much coarser spectral resolution (two wide bands vs. 2002 
wavelengths in SMARTS). It divides the shortwave solar spectrum into 
two parts including Band 1 (below 700 nm) and Band 2 (above 700 nm), 
each one evaluating the irradiance components from a set of trans
mittances. Remarkably, the performance of REST2 is comparable to that 
of SMARTS [32,41], despite the simplifications embedded in the former. 

As with all radiation models, the accuracy is ultimately dependent on 
that in their key inputs, as demonstrated elsewhere [41]. Since, more
over, irradiance predictions are needed on a large scale, an ideal situa
tion would be that all the inputs required by a radiation models are 
accurately available at high spatiotemporal resolution. In practice, 
however, the required inputs are observed at only sparse meteorological 
or sun photometric stations. Popular satellite-derived data, such as at
mosphere and land products from MODIS, Meteos at or MTSAT, provide 
an efficient way to retrieve some or all of the required inputs to DNI 
models at regional or global scales. Numerous models [42–46] have 
been developed to estimate DNI using satellite signals. Despite the 
effectiveness of satellite-based DNI models, the accuracy of satellite re
trievals is subject to a lot of uncertainties like calibration, cloud 
screening, aerosol model or surface-albedo artifacts. Moreover, satellite 
records are most often not perfectly continuous over time or space, 
particularly over decadal periods. In contrast, reanalysis databases, such 
as NASA’s Modern Era Retrospective-Analysis for Research and Appli
cations, version 2 (MERRA-2) from NASA or ECMWF’s CAMS cover the 
whole globe at hourly resolution over many decades. 

In China, the solar radiation observation network has been carried 
out by the China Meteorological Administration (CMA) since the 1960s, 
providing daily global, direct and diffuse solar radiation measurements. 
These CMA radiation stations cover most areas of China and are scat
tered over a number of climate zones [47]. However, these CMA stations 
with high-quality DNI measurements were still too sparse for solar ra
diation applications. For example, there are only 17 first-class radiation 
stations currently providing daily DNI data in China. Constructing a 
gridded and gap less DNI dataset for China spanning 34 years 
(1981–2014) is one main justification to this study, aimed at helping the 
solar industry’s development in China. 

In what follows, DNI measurements at 17 first-class CMA meteoro
logical stations over mainland China are used to evaluate the perfor
mance of the latest version (9.1) of REST2 during 1993–2014. In a 
subsequent step, a DNI database is constructed using MERRA-2 products 
and sunshine duration measurements at 2474 CMA stations, combined 
with the clear-sky REST2 predictions. Finally, the spatiotemporal vari
ations of DNI over different climate zones and terrains in mainland 
China are investigated. Overall, this study should prove helpful in solar 
resource and energy applications that need long-term gridded DNI data 
with moderate spatio-temporal resolution and acceptable accuracy. 

2. Materials and methods 

2.1. Sites and data processing 

Daily direct normal irradiance (DNI) measurements during 

Table 1 
Basic information of the CMA and BSRN stations used in this study.  

Stations Code Name Latitude Longitude Elevation 
(m) 

BSRN FUA Fukuoka, Japan 33.58� N 130.38� E 3.0 
TAT Tateno, Japan 36.06� N 140.13� E 25.0 
SAP Sapporo, Japan 43.06� N 141.33� E 17.2 
LLN Lulin, China 23.47� N 120.87� E 125.0 
ISH Ishigakijima, 

Japan 
24.34� N 124.16� E 5.7 

XIA Xianghe, China 39.75� N 116.96� E 32.0 
CMA MH Mohe 53.47� N 122.37�E 296 

HEB Herbin 45.75� N 126.77�E 142 
WUR Wurmuqi 43.78� N 87.62�E 918 
KAS Kashi 39.47� N 75.98�E 1289 
EJN Ejinaqi 41.95� N 101.07�E 941 
GEM Germu 36.42� N 94.90�E 2808 
LAZ Lanzhou 36.05� N 103.88�E 1517 
SHY Shengyang 41.73� N 123.45�E 43 
BEJ Beijing 39.93� N 116.28�E 54 
LAS Lasha 29.67� N 91.13�E 3649 
CHD Chengdu 30.70� N 103.83�E 539 
KUM Kunming 25.02� N 102.68�E 1891 
ZHZ Zhengzhou 34.72� N 113.65�E 110 
WUH Wuhan 30.62� N 114.13�E 23 
SHH Shanghai 31.40� N 121.48�E 4 
GUZ Guangzhou 23.13� N 113.32�E 7 
SAY Sanya 18.23� N 109.52�E 6  
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1993–2014 at 17 CMA stations over mainland China and 6 Baseline 
Surface Radiation Network (BSRN) stations in East Asia were used for 
model validations of REST2_V9.1 model. Before 1993, the observation 
radiometers that were used at these CMA stations were similar to those 
used in the Soviet Union. However, the observation precision of these 
radiometers was impacted by imprecise instrument calibration, sensor 
aging and data quality control method [48]. To address these issues, the 
CMA updated the observation instruments to a modern design of ther
mopile pyrheliometer (DFY-4) with higher accuracy and robustness 
[49]. The Baseline Surface Radiation Network (BSRN; https://bsrn.awi. 
de/) provides 1-min DNI data at many stations around the world. These 
data have been checked for ensuring the data quality using various data 
quality control methods. Table 1 illustrated the basic information of 

these CMA and BSRN stations. Fig. 1 showed the spatial distributions of 
the CMA and BSRN meteorological stations that were used in this study. 
These stations covered most areas of China (18.22� ~N53.47�N, 
75.75�E~126.77�E) and East Asia (23.47� ~N43.06�N, 
120.87�W~141.33�W) with distinct climatic and terrain features. 
Meanwhile, 2474 CMA stations with sunshine duration measurements 
were used to calculated the cloud transmittance on DNI (see Fig. 2). 

The climate regionalization data provided by Resource and envi
ronment science data center of Chinese Academy of Sciences 
(http://www.resdc.cn) were used to investigate the spatial-temporal 
variations of DNI in different climate zones throughout China. (A for 
humid, B for semi-humid, C for semi-arid, D for arid; I for cold 
temperate, II for mid temperate, III for warm temperate, IV for north 

Fig. 1. Spatial distributions of the BSRN and CMA stations that are used in this study.  

Fig. 2. The climatic zones over mainland China.  
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subtropical zone, V for the mid-subtropics, VI for the south subtropics, 
VII for the edge of tropical zone, HI for sub-frigid zone in plateau, HII for 
temperature zone in plateau, IIE for mid tropical zone with humid 
weather). 

2.2. REST2_V9.1 model 

REST2_V9.1 model is a physically based model for predicting hourly 
and daily cloudless-sky broadband irradiance, illuminance and DNI. 
REST version 1 was firstly developed by Gueymard [34] in November 
2003, then corrected and modified by Gueymard [50] (REST to 
REST2_V9.1). REST2 have been validated as one of the best broadband 
solar radiation estimation models, which has been widely used in lot of 
solar radiation researches [34]. The REST2_V9.1 model has corrected 
the diffuse calculation under low-AOD, near-Rayleigh conditions in the 
model. The DNI in REST2_V9.1 could be obtained using following 
equations: 

DNI¼TRTgToTnTwTaE0ni (1)  

where TRTgTo,Tn, Twand Ta were the transmittances for Rayleigh scat
tering, uniformly mixed gases absorption, ozone absorption, nitrogen 
dioxide absorption, water vapor absorption and aerosol extinction, 
respectively. E0ni is the extraterrestrial solar radiation (H) at a given 
location. These transmittances have been obtained accurately by fitting 
a large number of parametric runs of the SMARTS code to computa
tionally efficient polynomial ratios [50]. More detail description and 
resulting equations of REST2 model could be found in Ref. [18,50]. 

There are 15 input parameters in REST2_V9.1 model: Angsrom’s 
wavelength exponents (alfa1 for wavelength above 0.7 nm, alfa2 for 
wavelength above 0.7 nm), elevation (Altit), AOD at 550 nm (AOD550), 
air pressure (p), relative humidity (RH), regional ground albedo (rog), air 
temperature (T), reduced NO2 vertical pathlength (un), reduced ozone 

vertical pathlength (u0), precipitable water vapor (w), year, month, day, 
solar zenith angle and time zones. These parameters could be formed 
into 32 types of input parameter combinations. Considering the data 
availability, hourly reanalysis meteorological records including 
AOD550, rog, p and w derived from MERRA-2 data set during 1981–2014 
were used as model inputs for REST2_V9.1 model. The spatial resolution 
of the MERRA-2 data set that were used in this study is 0.50� (lat) 
*0.625� (lon). 

2.3. Data quality control 

Five main quality check processes including the climate limit value 
or allowable value check, station extreme value check, internal consis
tency check among timing value, the time consistency check for daily 
average value and daily extreme value, and spatial consistency check 
have been done to ensure quality of the sunshine duration measure
ments. Then, the sunshine duration measurements were marked with 0, 
1, 2 and 8, which represent correct data, suspicious data, wrong data and 
missing data, respectively. These work have been done by the China 
Meterological Administration. Meanwhile, the quality of DNI measure
ments was also conducted following the rule that each measured DNI 
value should not exceed the global solar irradiance at the top of the 
atmosphere (G0) at the same geographical location, otherwise it will be 
directly deleted in the DNI measurements. For DNI estimates, the esti
mated DNI value that exceeded the G0 will be replaced by the mean 
values in the nearby days. G0 could be calculated as following equation: 

G0¼ 24S0L0

h� π
180

�
γðsinδsin ∅ Þþ ðcosδcos ∅ sinγÞ

i
π (2)  

2.4 where γ is the sunrise hour angle; S0 represent the solar constant 
(1367 W m-2); L0is the earth orbit correction factor; δ is the solar 
declination angle; ∅ is the geographic latitude. Anusplin. 

The sunshine durations during 1981–2014 were routinely measured 
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Fig. 3. The flowchart of the processes of Anusplin tool.  
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at 2474 CMA stations over mainland China. However, these stations 
were still too sparse for the DNI estimation in this study, thus, we pro
duced the gridded sunshine duration data (0.50� (lat) *0.625� (lon)) 
using these sunshine durations measurements at CMA stations based on 
Anusplin tool. The Anusplin tool was widely used in climate data 
interpolation [51]. Detail description of the Anusplin tool could be 
found in Refs. [52]. The main interpolation process in Anusplin tool was 
shown in Fig. 3. 

2.4. Comparisons of measures of fit 

The measures of fit-used in the present study include the root mean 
square error (RMSE, MJm� 2day� 1), the mean absolute bias error (MAE, 
MJm� 2day� 1), the relatively root mean square error (RMSER, %), the 
relatively mean absolute bias error (MAER, %) and the correlation co
efficient (R), which can be expressed as: 

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ðXmi � XoiÞ

2

v
u
u
t (3)  

MAE¼
1
N
Xn

i¼1
jXmi � Xoij (4)  

RMSER¼
100
Xo
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ðXmi � XoiÞ

2

v
u
u
t (5)  

MAER¼
100
Xo
�

1
N

Xn

i¼1
jXmi � Xoij (6)  

R¼
Pn

i¼1ðXmi � XmÞðXoi � XoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1ðXmi � XmÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðXoi � XoÞ2

q (7)  

where N and bar respectively indicate the number of data and mean of 
the variables; Xm and Xo are the modeled and observed DNI; Xm and Xo 
are the mean value of the observed DNI value. 

Although five indicators were introduced to reveal the accuracy of 
the estimated DNI values, each indicator could not represent the overall 
accuracy of the estimated DNI values. Therefore, a global performance 
indicator (GPI) was used in this study to access the overall model ac
curacy of DNI values. The GPI could be calculated as following equation: 

GPIi ¼
Xn

j¼1
Aj
�
~Y � Yij

�
(8)  

where �Y is the median of the scaled values of indicator j, Yij is the scaled 
value of indicator j for model i, and n is the number (5) of indicators. Aj 

equals � 1 for R, and equals 1 for other indicators. The greater the ac
curacy of the estimated DNI values, the higher the value of the GPI. 

3. Result and discussion 

3.1. Cloud transmittance for direct normal irradiance 

Because of the variability of cloud’s shapes, types and stages, cloud 
has always been considered as the most uncertain factor for the esti
mation of surface solar radiation. In this study, the relative sunshine 
duration defined as the ratio between the measured sunshine durations 
(n, the length of time for which solar direct normal irradiance exceeds a 
threshold value of 120 W m-2) and the maximum possible sunshine 
durations (N) was introduced to correct the cloud effect on direct normal 
irradiance. 

Following the example of the Ångstr€om-Prescott equation, we 
parameterized the cloud transmittance (τc) as a function of the relative 
sunshine duration (n/N), and the formula form was a quadratic poly
nomial formulation as follows: 

τc¼
Rb

Rb;clr
​ ¼ ​ aþ b ​

�n
N

�
þ c
�n

N

�2
(9)  

where Rb and Rb;clr were the daily all-sky DNI and clear-sky DNI, 
respectively; n and N are the sunshine duration and the maximum 
possible sunshine duration, respectively. 

The BSRN stations could provide hourly and daily DNI measure
ments in all-sky conditions, but did not provide DNI measurements 
under clear-sky conditions. The clear sky detection method (CSD) pro
posed by Inman et al. [53] were used to detect periods of clear sky and 
reconstruct hourly and daily DNI datasets under clear-sky conditions 
using meteorological measurements at BSRN stations. Detail de
scriptions about CSD could be found in Ref. [53]. Finally, 17,365 sam
ples were randomly selected to fit the parameter in formula 7. 

Fig. 4 showed the relationship between the cloud transmittance for 
daily DNI and the relative sunshine duration. It should be stated that τc 
could not be fully parameterized with n

N, as shown in Fig. 4, the data 
points do not cluster tightly around the fitting curve. The uncertainty of 
the cloud transmittances needs to be discussed, which may be the most 
uncertain factor for the DNI estimations in all-sky conditions. The cali
brated cloud transmittance for DNI was shown as following equations: 

Fig. 4. The relationship between the relative sunshine duration and cloud 
transmittance for DNI. 

Fig. 5. Comparison between the estimated and measured DNI in all-sky con
dition at BSRN stations. 
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τc¼ ​ 0:005þ 0:403
�n

N

�
þ 0:495

�n
N

�2
(10) 

Fig. 5 illustrated the validation result of the estimated DNI based on 
formula 8 using the 17,365 samples at BSRN stations that were used in 
this study. The estimated DNI showed good agreements with the DNI 

measurements with RMSE, MAE, RMSER, MAER and R of 1.436 
MJm� 2day� 1 and 0.900 MJm� 2day� 1, 22.26%, 13.95%, and 0.972, 
respectively. 

3.2. Validation of the estimated DNI at CMA stations 

As mentioned above, DNI measurements (129,662 samples) during 
1993–2014 at 17 CMA stations were used to validate the accuracy of 
daily estimated DNI measurements by REST2_V9.1 model. Fig. 6 indi
cated the validation results of the estimated DNI at these CMA stations 
under all-sky conditions. The daily DNI estimations showed high cor
relation with the ground DNI measurements with RMSE, MAE, RMSER, 
MAER and R of 4.064 MJm� 2day� 1, 2.864 MJm� 2day� 1, 34.41%, 
24.26%, and 0.914, respectively. 

The model deviations were mainly caused by four factors. First, there 
are too many low DNI values in Fig. 6, because low DNI values generally 
correspond to cloudy sky conditions which bring great uncertainties to 
DNI estimates. To verify this conclusion, we divided the samples into 
DNI below 2.700 (the first four percentile of the measured DNI in the 
samples) and DNI above 2.700. The result showed that the model de
viations for DNI records below 2.7 (RMSER ¼ 323.438%, MAER ¼
154.407%, R ¼ 0.384) were significantly larger than that for DNI records 
above 3.850 (RMSER ¼ 29.08%, MAER ¼ 22.33%, R ¼ 0.860). Sec
ondly, the gridded sunshine duration data used in this study were 
interpolated from sunshine duration measurements at 2474 CMA sta
tions over mainland China, which were the only available sd datasets 

Fig. 6. Validation of the estimated DNI at 17 CMA stations.  

Table 2 
The statistical indicators representing the model performance at 17 CMA stations.  

Station Code Name RMSE MAE RMSER MAER R GPI Temperate zones Humidity zones 

MH Mohe 3.991 2.887 30.45 22.02 0.915 � 0.212 I A 
HEB Herbin 3.845 2.883 33.78 25.33 0.910 � 0.212 II A 
WUR Wurmuqi 4.456 3.307 27.97 20.76 0.919 9.150 II D 
KAS Kashi 5.891 4.712 35.15 28.11 0.891 � 8.253 III D 
EJN Ejinaqi 4.452 3.501 23.55 18.52 0.897 15.595 II D 
GEM Germu 4.466 3.428 22.89 17.57 0.903 17.269 HII D 
LAZ Lanzhou 6.202 4.698 40.42 30.62 0.839 � 16.380 III C 
SHY Shengyang 4.213 2.984 35.38 25.06 0.873 � 2.044 II A 
BEJ Beijing 3.367 2.447 25.72 18.69 0.940 15.437 III B 
LAS Lasha 5.337 4.177 25.91 20.28 0.863 9.887 HII C 
CHD Chengdu 3.504 2.240 58.19 37.20 0.872 � 35.533 V A 
KUM Kunming 4.014 2.910 28.52 20.68 0.931 9.534 V A 
ZHZ Zhengzhou 2.736 1.958 29.62 21.20 0.931 10.132 III B 
WUH Wuhan 3.819 2.685 37.62 26.45 0.908 � 4.946 IV A 
SHH Shanghai 2.948 2.106 33.68 24.07 0.924 2.844 IV A 
GUZ Guangzhou 2.808 1.951 35.71 24.81 0.921 0.365 VI A 
SAY Sanya 4.056 2.988 32.86 24.21 0.879 1.490 IIE A  

Fig. 7. Validation of the yearly and monthly mean DNI values at CMA stations.  
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Fig. 8. Comparison of the accuracy of the daily mean DNI values derived from CM-SAF, PVGIS and DNI data in this study in 2007 at CMA stations.  

Fig. 9. Comparison of the accuracy of the daily mean DNI values derived from NERL-SWERA and DNI data in this study in 2002 at CMA stations.  

Fig. 10. Spatial distribution of DNI over mainland China.  
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with the highest density and accuracy in China. Thirdly, the interpola
tion method and the point density of the CMA stations may bring certain 
deviations to the accuracy of the DNI datasets. Further study should be 
conducted to improve the estimation of the cloud transmittances for 
DNI. Lastly, the spatial resolution of the input parameters and the output 
values were 0.50� (lat) *0.625� (lon), which may also degrade the ac
curacy of the estimated DNI. 

Table 2 showed the statistical indicators representing the model 
deviations at 17 CMA stations. The result showed that the largest model 
deviation was found in CHD with RMSE, MAE, RMSER, MAER, R and 
GPI of 3.504 MJm� 2day� 1, 2.240 MJm� 2day� 1, 58.19%, 37.20%, 0.872 
and � 35.533, because the abundant precipitable water vapor and 
frequent cloud occurrences there would affect the model accuracy. 
Relatively larger estimation errors were also found in arid zones, which 
may be due to the severe dusty air conditions and poor quality of radi
ation measurements since solar radiation measurements would be seri
ously affected in dusty air conditions. For example, the RMSE, MAE, 
RMSER, MAER, R and GPI for LAZ were 6.202 MJm� 2day� 1, 4.698 
MJm� 2day� 1, 40.42%, 30.62%, 0.839, � 16.380, respectively. The 
relatively lower estimation errors were found in Plateau areas, because 
of the clear sky conditions there, for example, the RMSE, MAE, RMSER, 
MAER, R and GPI for GEM were 4.466 MJm� 2day� 1, 3.428 
MJm� 2day� 1, 22.89%, 17.57%, 0.903 and 17.269, respectively; the 
RMSE, MAE, RMSER, MAER, R and GPI for LAS were 5.337 

MJm� 2day� 1, 4.177 MJm� 2day� 1, 25.91%, 20.28%, 0.863 and 9.887, 
respectively. 

Whether the accuracy of the estimated DNI could be applied for CST 
applications in China is worth of discussion. The yearly and monthly 
mean DNI records may be enough to meet the requirements of CST ap
plications. Therefore, the yearly and monthly mean estimated DNI 
values were compared with the DNI measurements at the CMA stations. 
Fig. 7 showed the validation results of the yearly and monthly mean DNI 
values by REST2_V9.1 model. The result indicated that the yearly and 
monthly mean estimated DNI values showed higher accuracy with 
measured DNI values than that of the daily mean estimated DNI values. 
Generally, the DNI datasets generated in this study could be used for the 
potential solar energy estimations and the proper installations of solar 
power plants using CST. 

To further validate the applicability of the DNI data generated in this 
study, the DNI data were compared with previous DNI products. The 
Climate Monitoring Satellite Application Facility (CM-SAF), the JRC 
Photovoltaic Geographical Information System (PVGIS), the Solar and 
Wind Energy Resource Assessment (SWERA) supported by the National 
Renewable Energy Laboratory (NREL) could provide estimates of direct 
normal irradiance at the earth surface in China. The daily mean DNI 
records derived from CM-SAF, PVGIS during 2007 and NREL-SWERA 
during 2002 were compared with the daily mean DNI data generated 
in this study at 7 CMA radiation stations (KAS, EJN, LAZ, LAS, CHD, 

Fig. 11. Spatial and temporal distributions of DNI over mainland China.  
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KUM and WUH). 
Fig. 8 and Fig. 9 showed the validation results of the DNI data by CM- 

SAF, PV-GIS, NERL-SWERA and the data generated in this study. The 
result indicated that the DNI data in this study showed better agreement 
with DNI measurement than that for CM-SAF, PV-GIS and NERL- 
SWERA. The RMSE, MAE, RMSER, MAER and R for the DNI data in 
2007 in this study were 5.177 MJm� 2day� 1, 3.685 MJm� 2day� 1, 
38.49%, 27.39% and 0.936, respectively. The RMSE, MAE, RMSER, 
MAER and R for the DNI data in 2002 in this study were 4.817 
MJm� 2day� 1, 3.509 MJm� 2day� 1, 39.00%, 28.41% and 0.896, 
respectively. 

3.3. Spatial and temporal variations of DNI 

By applying REST2_V9.1 model, we constructed a gridded DNI 
dataset (0.50� (lat) *0.625� (lon)) over mainland China that covers the 
period of 1981–2014. This dataset has been packed into NetCDF files. 
Each data file is named as MERRA2_direct_normal_irrdiance_ 
YYYY_MM_DD.nc (eg. MERRA2_ direct_normal_irrdiance_2002_01_01. 
nc), where YYYY is the four-digital year; MM is the two-digital month; 
DD is the two-digital day. The suffix “.nc” indicates that the data were 
stored as NetCDF format. More detail information about NetCDF could 
be found on the official website of UCAR (http://www.unidata.ucar. 
edu/software/netcdf). This DNI dataset generated in this study could 
be obtained by contacting the corresponding author of this article. 
Meanwhile, we will share this DNI dataset on scientific data sharing 
platform. 

Fig. 10 and Fig. 11 showed the spatial variations of the annual mean 
estimated DNI (ADNI) values during 1981–2014 over mainland China. 

Generally, DNI was higher in Western China than that in Southeastern 
China, due to the relatively dry air conditions in Western China. The 
Qinghai Tibetan Plateau has always been an area with the highest DNI 
(21.331 MJm� 2day� 1) across China due to the weak atmospheric 
extinction effects there. The Tarim Basin was also an area with high DNI 
values, but the DNI there showed strong seasonal variabity because of 
the seasonal changes of the incoming solar radiations in the atmosphere. 
In contrast, the Sichuan Basin had always been an area with the lowest 
DNI (3.601 MJm� 2day� 1), due to the perennial cloudy weather and 
strong atmospheric extinctions. 

Fig. 12 illustrated the annual and monthly variations of DNI during 
1981–2014 over mianland China. The result showed that the ADNI 
throughout mainland China has been gradually decreased during 
1981–2014, which may be due to the growing aerosol radiative forcing 
effects throughout China in the recent decades [54]. The lowest ADNI 
value was observed in 1992 (10.767 MJm� 2day� 1), corresponding to 
the explosion growth of aerosol particles in the air throughout East Asia 
in 1992 (the Pinatubo Volcano eruption in 1992) [55]. In terms of the 
monthly variation of DNI, the monthly mean DNI values always gradu
ally increased from January (7.995 MJm� 2day� 1) to June (18.337 
MJm� 2day� 1), then gradually decreased from July (17.167 
MJm� 2day� 1) to December (7.610 MJm� 2day� 1), owing to the monthly 
variations of the annual cycle of solar zenith and the maximum sunshine 
duration in China. 

Fig. 13 presented the annual mean and monthly mean DNI values in 
different climatic zones. It was obvious that DNI were significantly 
negtively related to the humidity due to the complicated and strong 
atmospheric extinction processes in the humid zones. The mean ADNI 
values in the humid area, semi-humid area, semi-arid area and arid area 

Fig. 12. The annually and seasonal variations of DNI throughout China.  
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were 8.011, 10.567, 15.762 and 15.799 MJm� 2day� 1, respectively. In 
terms of the temperate zones, the relatively larger ADNI values were 
found in Plateau areas, which may be due to relatively weak radiation 
dumping processes there, for example the mean value of ADNI for HI and 
HII were 16.724 MJm� 2day� 1 and 15.197 MJm� 2day� 1, respectively. In 
other temperate zones except HI and HII, ADNI were approximately 
proportional to the temperature. The smallest ADNI were found in cold 
temperate zone (6.563 MJm� 2day� 1), due to the extremely lower tem
perature than other areas. As for the monthly variations of DNI in 
climate zones, the monthly mean DNI in arid areas were always higher 
than that in humid area, but with stronger seasonal variations than 
humid area. The plateau areas has always been the area with the highest 
DNI in different humidity and temperate zones throughout the year. 

4. Conclusion 

The applicability of REST2_v9.1 model in modeling direct normal 
irradiance using meteorological measurements and MERRA2 reanalysis 
products in China were validated using DNI measurements at 6 BSRN 
stations (17,365 samples) and 17 first-class CMA radiation stations 
(129,662 samples). The long-term gridded DNI datasets during 
1980–2014 over mainland China were constructed, and the spatial and 
temporal variations of DNI in China were investigated. 

A quadratic polynomial formulation was developed to correct the 
cloud effect on direct normal irradiance following the Ångstr€om-Pre
scott equation. The result indicated that the estimated DNI showed high 
agreements with DNI measurements at BSRN stations (RMSE ¼ 1.436 
MJm� 2day� 1, MAE ¼ 0.900 MJm� 2day� 1, RMSER ¼ 22.26%, MAER ¼
13.95%, R ¼ 0.972) and CMA stations (RMSE ¼ 4.064 MJm� 2day� 1, 

MAE ¼ 2.864 MJm� 2day� 1, RMSER ¼ 34.41%, MAER ¼ 24.26%, R ¼
0.914). Although subject to some limiting factors, such as the input data 
quality and the interpolated method, the REST2_V9.1 was proved to be 
able to generate the gridded DNI datasets for solar energy applications 
with acceptable accuracy. The estimated DNI values by REST2_V9.1 
model showed better agreements with DNI measurement than that of 
PVGIS, CM-SAF and NERL-SWERA products. Then, a gridded DNI 
dataset (0.50� (lat) *0.625� (lon)) during 1980–2014 covering mainland 
China was generated using REST2_V9.1 model and packed into NetCDF 
files. Finally, the spatial and temporal variations of DNI values over 
mainland China were discussed using the DNI dataset generated in this 
study. Generally, the DNI has been gradually decreased which may be 
caused by the stronger and stronger aerosol radiative forcing effects 
throughout China in the recent decades. The lowest annual DNI values 
was found in 1992 (10.767 MJm� 2day� 1), which may be due to the 
explosion growth of aerosol particles in the air throughout East Asia in 
1992. In terms of the monthly variations, the mean DNI were higher in 
June (18.337 MJm� 2day� 1) than that in other months following with 
the seasonal variations of solar zenith angle and sunshine durations. The 
DNI values in arid areas were generally higher than that in humid areas. 
The mean ADNI values in the humid area, semi-humid area, semi-arid 
area and arid area were 8.011, 10.567, 15.762 and 15.799 
MJm� 2day� 1, respectively. The Qinghai Tibetan Plateau has always 
been area with high DNI values (clear sky condtion), while the Sichuan 
Basin has always been an area with the lowest DIN values (cloudy and 
rainy sky condition). 

Certainly, the REST2_V9.1 model should be further validated in other 
climate zones around the world. Moreover, as described above, the 
estimation accuracy of the DNI datasets were subjected to some 

Fig. 13. Yearly and monthly variations of DNI in different climate zones.  
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objective factors such as the accuracy of the interpolated sunshine 
duration measurements and the relatively coarse resolution of MERRA2 
products. Further work should be conducted to improve the accuracy of 
the DNI datasets generated in this study. 
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