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Aerosol is an important atmospheric component that severely influences the global
climate and air quality of our planet [1–4]. In quantitative remote sensing, aerosol is also
a key factor in atmospheric correction of remote sensing data to obtain accurate surface
information [5–7]. The radiation signal received by the sensor is surface–atmosphere
coupled, including the signal of path radiance, surface reflection, and surface–atmosphere
interaction, a phenomenon which impedes quantitative information acquisition from both
surface and atmospheric aspects. Accurate aerosol estimation and atmospheric correction
are needed to solve this problem.

In this Special Issue, the studies cover several important topics, mainly involving
aerosol retrieval, aerosol emission and regional transfer, and atmospheric correction. The
goal of this Special Issue is to discuss the accurate retrieval and estimation of aerosols to
help with precise atmospheric correction and facilitate various corresponding scientific
studies focusing on the development of new technologies, instruments, and methods.

Aerosol product quality limits their data applications. Some advancements are made
in this Special Issue that improve aerosol detection and retrieval accuracy. Focusing on the
characteristics of Coherent Doppler Wind Lidar (CDWL), a novel method for the calibration
and quantitative assessment of aerosol properties is proposed [8]. The result is verified
through comparison with synchronous Rayleigh–Mie–Raman Lidar (RMRL) data, resulting
in good agreement, proving the ability of CDWL to retrieve aerosol properties accurately.
Meanwhile, exploring aerosol retrieval of single-angle and multi-band polarization instru-
ments containing short-wave infrared bands, surface and atmosphere decoupling without
prior information about the surface is conducted based on optimal estimation theory [9].
The method can avoid the inversion error caused by the untimely updating of the surface
reflectance database and the error in spatiotemporal matching. After being applied to the
Particulate Observing Scanning Polarimeter (POSP) and validated by AErosol RObotic
NETwork (AERONET) measurements, the effectiveness of the proposed algorithm under
different geographical regions and pollution conditions is verified. Another independent
article thoroughly examines MODIS aerosol retrieval accuracies under different land cover
types, aerosol types, and observation geometries based on AERONET measurements involv-
ing three different algorithms, namely Dark Target (DT), Deep Blue (DB), and Multi-Angle
Implementation of Atmospheric Correction (MAIAC), each with unique characteristics [10].
This Special Issue also contains studies aimed toward the identification of specific aerosol
types. A novel MERSI haze mask (MHAM) algorithm to directly categorize haze pixels
in addition to cloudy and clear ones has been designed based on the Medium Resolution
Imaging Spectrometer II (MERSI-II) on board the FY-3D satellite [11]. The algorithm can
illustrate the boundary of the haze region with high reliability, remaining consistent with
the true color image. Determining the threshold value for background aerosol optical depth
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(BAOD) is crucial for identifying aerosol types. A statistical method to select the best BAOD
threshold value using VIIRS DB AOD products is proposed in this Special Issue [12]. The
VIIRS aerosol type classification scheme was further updated using the BAOD threshold.
The results indicate that the updated scheme can reliably detect changes in aerosol types
under low aerosol loading conditions.

Using aerosol products, further scientific studies of atmospheric aerosol are conducted
and included in this Special Issue. The seasonal characteristics and long-term variations
in aerosol optical parameters in Hong Kong are analyzed using AERONET data and
satellite-based observations based on the extreme-point symmetric mode decomposition
(ESMD) model [13]. The interactions between aerosol loading and meteorological factors are
also discussed. Another study uses Cloud–Aerosol LiDAR with Orthogonal Polarization
(CALIOP) aerosol products to identify the global long-range aerosol transport pathways
(the trans-Atlantic, the trans-Pacific, and the trans-Arabian Sea) [14]. Two significant paths
within the range of the trans-Pacific transport pathway (aerosols from the Taklimakan
Desert and aerosols from the North China Plain) are analyzed in detail. A three-stage
conceptual model is further built, providing a straightforward and evident approach to
exploring long-range aerosol transport pathways. To investigate frequently occurring
severe haze pollution in northeast China, the vertical characteristics of aerosols and the
causes of aerosol pollution throughout the year are analyzed using multisource data
of ground-based LiDAR and Cloud–Aerosol LiDAR Pathfinder Satellite Observations
(CALIPSOs) [15]. The contribution of dust, smoke, and firework aerosols are analyzed, and
recommendations for pollution control policies are provided.

The effect of aerosols on atmospheric correction is also discussed. For Soil Organic
Carbon (SOC) estimation, Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance retrieved
from Top-Of-Atmosphere (TOA) radiance using atmospheric correction methods is needed.
A thorough sensitivity study of SOC estimation in relation to aerosol optical depth and
water vapor is conducted based on Earth Observing-1 Hyperion Hyperspectral data [16].
The research suggests using the FLAASH AC method to provide BOA reflectance values
before SOC mapping. Another study focuses on improving the accuracy of remote sensing
reflectance products in the nearshore waters of the Shandong Peninsula [17]. To achieve
that goal, a monthly aerosol model based on aerosol data collected from the Mu Ping site in
the coastal area of the Shandong Peninsula is developed to replace the standard model.

In summary, this Special Issue collects a series of representative studies in the research
field of aerosol and atmospheric correction, mainly focusing on the improvement in aerosol
identification and retrieval methods; atmospheric aerosol formation, transfer, and spa-
tiotemporal variation; and the effect of aerosols on atmospheric correction and quantitative
remote sensing. These advancements will help to continuously improve our understanding
of atmospheric aerosol and the accuracy of quantitative remote sensing research. Despite
the significant progress achieved, further related studies are still needed for the scientific
community, policy makers, and the public to reduce evaluation uncertainty and combat the
challenges faced in our society.
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