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a b s t r a c t

In the past few decades, extensive epidemiological studies have focused on exploring the adverse effects
of PM2.5 (particulate matters with aerodynamic diameters less than 2.5 mm) on public health. However,
most of them failed to consider the dynamic changes of population distribution adequately and were
limited by the accuracy of PM2.5 estimations. Therefore, in this study, location-based service (LBS) data
from social media and satellite-derived high-quality PM2.5 concentrations were collected to perform
highly spatiotemporal exposure assessments for thirteen cities in the Beijing-Tianjin-Hebei (BTH) region,
China. The city-scale exposure levels and the corresponding health outcomes were first estimated. Then
the uncertainties in exposure risk assessments were quantified based on in-situ PM2.5 observations and
static population data. The results showed that approximately half of the population living in the BTH
region were exposed to monthly mean PM2.5 concentration greater than 80 mg/m3 in 2015, and the
highest risk was observed in December. In terms of all-cause, cardiovascular, and respiratory disease, the
premature deaths attributed to PM2.5 were estimated to be 138,150, 80,945, and 18,752, respectively. A
comparative analysis between five different exposure models further illustrated that the dynamic
population distribution and accurate PM2.5 estimations showed great influence on environmental
exposure and health assessments and need be carefully considered. Otherwise, the results would be
considerably over- or under-estimated.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few decades, PM2.5 (fine particulate matter with
aerodynamic diameters of less than 2.5 mm) has become a serious
health concern (Cohen et al., 2004; Anenberg et al., 2010; Shang
et al., 2013). The fine particulate matter, composed of various
chemical compounds and aerosols (e.g., combustion particles,
organic compounds, andmetals), can penetrate human bronchi and
lungs, causing great damage to human health (Pope and Dockery,
2006). Nowadays, numerous epidemiologic studies have explored
and established associations between PM2.5 exposure and prema-
ture mortalities, such as cardiopulmonary death and respiratory
death (Dockery et al., 1993; Lelieveld et al., 2015; Nel, 2005). Such
e by Admir Cr�eso Targino.
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findings are especially concerning in China. Due to unprecedented
economic development and urbanization in recent decades, China
has experienced a tremendous increase in energy consumption and
is highly polluted with PM2.5 (Kan et al., 2012; Sun et al., 2016). In
2013, a previous study reported that more than 96% of the Chinese
population were exposed to PM2.5 concentrations exceeding the
World Health Organization (WHO) Air Quality PM2.5 Interim
Target-1 (IT-1, annual mean of 35 mg/m3) level (Ma et al., 2014). In
2014, the annual mean PM2.5 concentration was about 61 mg/m3

(Fang et al., 2016) in China, which exceeded the WHO's recom-
mended air quality standard (10 mg/m3/year) by six times. Recent
estimations suggest that PM2.5 pollution is associated with 1.2
million premature deaths per year from 1999 to 2010 (Peng et al.,
2016). Therefore, it is critically important to accurately estimate
the population exposure to PM2.5 in order to implement counter-
measures to reduce air pollution.

The accurate estimation of PM2.5 concentrations is one of the
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most critical prerequisites in PM2.5-related environmental pollu-
tion and epidemiologic studies (Chen et al., 2018a). Station-based
and satellite-station-hybrid models are two widely used ap-
proaches in estimating the surface PM2.5 concentrations. Station-
based models use the station or monitor-based records and inter-
polation methods to obtain the pollution levels with high update
frequencies (Nyhan et al., 2016; Park and Kwan, 2017). However,
the sparsely distributed surface monitor stations cannot fully cap-
ture the spatial variability of PM2.5 concentrations, thus leading to
relatively low accuracy. Compared to station-based models,
satellite-station-hybrid models can more effectively estimate the
ground-level PM2.5 concentrations at high spatial resolutions by
integrating satellite remote sensing data and in-situ monitoring
records. Satellite-derived aerosol optical depth (AOD) product is an
important optical property and has been proved to be highly
positively correlated with PM2.5 (He and Huang, 2018a). Satellite-
station-hybrid models can effectively present the spatial hetero-
geneity of air pollution (Lv et al., 2017), and a large number of
statistical regression models have been developed to quantify the
PM2.5-AOD relationships and improve the accuracy of ground-level
PM2.5 estimations. These models mainly include the simple linear
regression model (Wang and Christopher, 2003), the linear mixed
effect (LME) model (Ma et al., 2015; Xie et al., 2015), the
geographically weighted regression (GWR) model (Song et al.,
2014), and the geographically and temporally weighted regres-
sion (GTWR)model (He and Huang, 2018a, b). However, most of the
current PM2.5 exposure studies are based on station-based models
rather than satellite-station-hybrid models, and the uncertainties
caused by the above-mentioned issue have not been comprehen-
sively explored, especially the comparison with satellite-station-
hybrid models.

Estimating population exposure to ambient PM2.5 is challenging.
Demographic data based on administration cells (census-tract)
have been widely used to provide reliable population information
(Fleischer et al., 2014; Gray et al., 2014). However, these spatially-
aggregated census data ignore the spatial heterogeneity of popu-
lation distribution and have a low update frequency (5e10 years),
leading to low assessment accuracy. Gridded population data, such
as LandScan Global Population (Dobson et al., 2000), can provide
detailed spatial distributions of population and have been used in
numerous exposure assessment studies (Lelieveld et al., 2015; Van
Donkelaar et al., 2014). Nevertheless, population census data are
also the source data for these pixel-based population distribution
maps, significantly limiting their spatiotemporal accuracy (Chen
et al., 2018b). Approaches like questionnaire surveys or on-site
investigations may remedy above limitations by offering more
exact and timely location information (Pope et al., 2002), but the
limited samples (i.e., interviewees or participants) prevent gener-
alizing the results beyond a small area. More importantly, given the
dynamic changes in population distribution, these aforementioned
static data are less likely to capture the ever-changing interactions
between humans and air pollution.

To address this issue, researchers have collected and involved
human mobility information to improve the accuracy of exposure
estimations. For example, by using GPS-based wearable air moni-
tors, researchers can collect the real-time locations (GPS trajec-
tories) of participants and the ambient air pollution levels (Wang
et al., 2018). However, privacy issues and the amount of
manpower required to collect such information create roadblocks
to large-scale, long-term, and continuous studies. Recently, the
rapid development and popularization of mobile internet tech-
nology, diverse computing platforms (e.g., smartphones, tablets,
and PCs), and location-based services have promoted the genera-
tion of location-based service (LBS) data to record people's
spatiotemporal activities (Liu et al., 2015). Compared to
demographic data or GPS-based records, LBS data are representa-
tive indicators with a much better spatiotemporal scale and suffi-
cient sample size (Hawelka et al., 2014). Despite increasing studies
involving the LBS data (Chen et al., 2018a; Nyhan et al., 2016; Song
et al., 2018), the contribution of integrating LBS data and satellite-
station-based PM2.5 concentrations in assessing PM2.5 exposure
and health impacts remains unclear.

Therefore, this objective of this study is to improve the model
for PM2.5 exposure and health risk assessments and addresses the
uncertainties caused by station-based PM2.5 concentration and
static population data. For this, a new exposure assessment model
is first developed using dynamic population distribution data ob-
tained from social media and PM2.5 concentrations derived from an
improved satellite-station-hybrid model. Then the PM2.5 exposure
levels and the number of premature deaths caused by PM2.5 are
estimated in 2015 for thirteen cities in the Beijing-Tianjin-Hebei
(BTH) region, China. Lastly, the comparative analysis between five
different exposure models are conducted to evaluate the impor-
tance of time-resolved population distribution and improved PM2.5
concentration maps in environmental exposure/health-related
studies.

2. Materials and methods

2.1. Study area

The PM2.5 exposure levels and the number of premature deaths
in the BTH metropolitan regionwere assessed for the year 2015. As
the capital region of China, the BTH region is the biggest urbanized
and economically developed region in northern China. The region
consists of thirteen cities (Fig. 1): two municipalities, Beijing (BJ)
and Tianjin (TJ); one provincial capital city, Shijiazhuang (SJ); and
10 prefecture-level cities including Tangshan (TS), Qinhuangdao
(QH), Handan (HD), Xingtai (XT), Baoding (BD), Zhangjiakou (ZJ),
Chengde (CD), Cangzhou (CZ), Langfang (LF), and Hengshui (HS). In
2015, the total population of the BTH regionwas 111 million (China,
2016). Heavy air pollution episodes frequently occur in this densely
populated region. The annual mean PM2.5 concentration exceeded
90 mg/m3 in 2014 (He and Huang, 2018a), which was about nine
times higher than the WHO's recommended air quality standard.

2.2. Location-based service data

In this study, the LBS data (i.e., geo-tagged messages) were ob-
tained from Weibo (http://weibo.com) to reflect the dynamic
change in population distribution.Weibo is one of themost popular
social media platforms and microblogging services in China. In
September 2015, Weibo had 222 million monthly active users
(MAUs), and mobile MAUs represented 83% of the total MAUs. The
ratio of male users to female users was 1:1, and young people (aged
17e35 years old) comprised the largest segment, accounting for
79% of active users (Weibo-Corporation, 2015). Similar to Twitter
(http://twitter.com), Weibo users can post messages (e.g., short
texts, images, voice, video, etc.) and share their real-time locations
via this online social network. Using a series of probability models
and indicators of mobility patterns, Jurdak et al. (2015) conducted a
comprehensive analysis and demonstrated that the geo-tagged
data from social media could capture several features of human
mobility and effectively represent real-time population distribution
at the metropolitan scale. Jurdak et al. (2015) also concluded that
the three inevitable issues (i.e., potential sampling bias, location
bias, and communication modality) in using geo-tagged social
media data (e.g., Twitter) did not strongly influence the perfor-
mance of LBS data in characterizing dynamic population distribu-
tions at city scale. Moreover, LBS data from social media have been
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Fig. 1. (a) Location and (b) population of the Beijing-Tianjin-Hebei region in China.
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successfully used in pioneering studies on human mobility (Huang
and Li, 2016; Luo et al., 2016), travel behavior (Rashidi et al., 2017;
Zhang et al., 2017), environmental exposure (Chen et al., 2018b;
Zheng et al., 2019), land-use classification (Chen et al., 2017b; Liu
et al., 2017), and urban planning (Cai et al., 2017; Zhang and
Zhou, 2018). These studies illustrated that LBS data from social
media could be a useful proxy for describing dynamic population
distribution.

This study collected 7.8 million geo-tagged records through the
Weibo application programming interface (API) (http://open.
weibo.com) from 1 January 2015 to 31 December 2015. All infor-
mation about Weibo users' identities and other private information
was deleted before the data were released. Information obtained
from geo-tagged records (i.e., LBS data) included user ID (anony-
mous), gender, message, release time, and location. Only the
“release time” and “location” data were used to generate the dy-
namic population distribution maps.

2.3. Demographic data

The demographic data in the BTH region for the year 2015 was
obtained from the National Scientific Data Sharing Platform for
Population and Health (http://www.ncmi.cn). This dataset has
recorded annual resident population information at the county
level since 2004 and is maintained by the Chinese Infectious Dis-
ease Network Reporting System.

2.4. PM2.5 concentrations

The ground-level PM2.5 concentrations used in this study were
estimated using our recently developed satellite-ground-hybrid
model (He and Huang, 2018a). The model includes two spatio-
temporal models, i.e., the GTWR model and the improved GTWR
model by incorporating seasonal characteristics. The GTWR model
has been widely applied in environmental studies (Bai et al., 2016;
Chu et al., 2015; Guo et al., 2017) by carefully considering the spatial
and temporal variabilities. The inputs variables mainly included the
Moderate Resolution Imaging Spectroradiometer (MODIS) 3-km
AOD product, ground-level PM2.5 measurements, and ancillary
variables (i.e., the relative humidity, temperature, wind speed, and
normalized difference vegetation index). The 3-km AOD product
was fused based on the newly released 3-km Dark Target and the
10-kmDeep Blue AOD products to improve the spatial coverage and
data quality compared to the official AOD products (Wei et al.,
2019). Then the model was employed to generate the daily 3-km
PM2.5 concentration dataset. The PM2.5 estimations were evalu-
ated against the ground-level PM2.5 measurements using the 10-
fold cross-validation method, and the results showed that GTWR
models can capture more than 80% of the daily PM2.5 variations in
the BTH region (He and Huang, 2018a).

2.5. Mortality database

The total mortality and the incidences of mortality data sets for
different health endpoints were collected for the health impact
assessments. The total mortality data were collected from the
Statistical Yearbook (2015) published by the governments of the
thirteen cities. The incidences of mortality for different health
endpoints (i.e., cardiovascular mortality and respiratory mortality)
were collected from the Statistical Yearbook (2015) and National
Disease Surveillance Points System (2015).

2.6. Quantifying dynamic population distribution

The LBS data were used as indicators to quantify the spatio-
temporal pattern of population distribution. Due to the differences
in socioeconomic development and mobile internet popularity
among different cities, estimates for dynamic population distribu-
tion were conducted separately for each city. The monthly density
maps of LBS data were generated and used in this study by aggre-
gating all geo-tagged records for each grid because the Weibo geo-
tagged messages are always sparse and insufficient during a rela-
tively short period (Cai et al., 2017; Liu et al., 2015; Steiger et al.,
2015). The monthly density maps can more comprehensively
quantify the population distribution.

Then, the monthly density maps of LBS data were used to
redistribute the demographic data for each city (Eqs. (1) and (2)),
assuming that the inter-city human mobility did not dramatically
affect the total population of a city within the monthly time win-
dow. That is, population changes caused by human movement
across different cities were neglected in this study.

Wij ¼
pijPn
i¼1pij

(1)

Popij ¼ TP �Wij (2)

where pij is the number ofWeibo geo-tagged records at the ith pixel
in a given month j, n is the total number of the pixels in a city,Wij is
the weight for redistributing population, TP is the total population
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in a city, and Popij denotes the population approximation in the ith
pixel in a given month j.

2.7. PM2.5 exposure assessment

Due to the dynamic changes in PM2.5 concentrations and pop-
ulation distribution, a population-weighted metric was adopted to
estimate the dynamic population exposure to PM2.5. The daily
PM2.5 concentrations were first averaged into monthly maps to
make the temporal resolution consistent with the LBS-based pop-
ulation maps. PM2.5 exposure levels were obtained by integrating
population distribution and PM2.5 concentrations. For each city, the
monthly exposures were assessed via a pixel-based method (Eq.
(3)), which can effectively reduce the potential zoning effect of the
modifiable areal unit problem (MAUP) (Ho et al., 2015; Ho et al.,
2018). Finally, the annual mean exposure levels for different cities
can be calculated using Eq. (4).

Etj ¼
Popij � PMijPn

i¼1Popij
(3)

Ey¼
X12

j¼1
Etj

=12 ; ðj ¼ 1;2;&;12

!
(4)

where PMij and Popij are the average PM2.5 concentration and the
estimated population in ith pixel in a given month j, respectively; n
is the total number of pixels in a city; Etj is the monthly mean
population-weighted exposure in a city, and Ey is the annual mean
population-weighted exposure of PM2.5 in a city.

2.8. Health impact assessment

The premature deaths associated with PM2.5 exposure were
estimated using the concentration-response (C-R) function that
relates changes in fine particle concentrations to changes in mor-
tality. The C-R function was developed based on a log-linear rela-
tionship between relative risk and concentrations (Anenberg et al.,
2010). Detailed information regarding the C-R function can be
found in Section 1 of the Supplementary Materials.

In this study, we estimated premature deaths for three types of
health endpoints (i.e., all-cause mortality, cardiovascular mortality,
and respiratory mortality) under the assumption that the entire
population was exposed to a level same as their ambient outdoor
PM2.5 concentration. Notably, the relative risk (RR) from PM2.5
concentration varied significantly at the city level (Lu et al., 2015;
Shang et al., 2013). However, because large amounts of clinical or
mortality data are unavailable, the city-level RR values regarding
short-term PM2.5 exposure were only estimated for less than 25
cities in the Greater China Region (including mainland China,
Table 1
Exposure assessment models used for comparison.

Model Datasets Notes

Population PM2.5

Model-1 County-level demographic
data

Station-based interpolated PM2.5

concentration
(1) Low spati
terms of pop

Model-2 Pixel-based Landscan
population data

Station-based interpolated PM2.5

concentration
(1) Low spat
terms of pop

Model-3 County-level demographic
data

Satellite-station-based PM2.5

concentration
(1) Lower sp

Model-4 Pixel-based Landscan
population data

Satellite-station-based PM2.5

concentration
(1) Lower tem

Model-5 LBS-based dynamic
population data

Satellite-station-based PM2.5

concentration
(1) Improved
in terms of p
Taiwan, Hong Kong, and Macao), according to a systematic review
based on both English- and Chinese-language literature databases
from 1990 to 2013 (Lu et al., 2015). Therefore, the meta-analysis-
based RR derived from a large number of epidemiological studies
has become an acceptable solution for this issue for regional-scale
studies. The short-term RR used in this study was derived from a
meta-analysis of nine related studies concerning Chinese cities
(Shang et al., 2013). It has also been widely used in regional studies
concerning the adverse health effects caused by PM2.5 exposure in
parts of China, including the BTH region (Yang et al., 2019; Zhao
et al., 2019), the Pearl River Delta region (Lu et al., 2016), the
Yangtze River Delta region (Liao et al., 2017; Wang et al., 2015), the
Henan Province (Shen et al., 2017), and across mainland China
(Chen et al., 2017a). Specifically, the RR suggested that an increase
of 10 mg/m3 in the annual mean PM2.5 would cause 0.38% (95% CI:
0.31%, 0.45%), 0.44% (95% CI: 0.33%, 0.55%), and 0.51% (95% CI:
0.30%, 0.75%) increase in all-cause mortality, cardiovascular mor-
tality, and respiratory mortality, respectively. In addition, the
baseline incidence rates (y0) of different health endpoints and the
exposed population (Pop) in 2015 were collected. The baseline of
PM2.5 concentration (C0) was set as the WHO's recommended air
quality level (i.e., 10 mg/m3/year). The actual PM2.5 concentration (C)
was the calculated annual mean population-weighted PM2.5

exposure level for each city.
2.9. Comparison of five exposure models

To better understand the uncertainties caused by station-based
PM2.5 concentration and static population data, we compared five
exposure models based on different datasets (Table 1). Station-
based PM2.5 concentrations and pixel-based population data were
used in the first four models. Station-based PM2.5 concentrations
were interpolated into continuous surface data at 3-km spatial
resolution using the inverse distance-weighted technique and then
averaged to monthly maps (He and Huang, 2018a). The 1-km
LandScan Global Population data (2015) were downloaded from
the Oak Ridge National Laboratory (http://web.ornl.gov/sci/
landscan) and were aggregated into 3-km cell grids. The exposure
and health impact assessments of these models were conducted
using the above-introduced methods, respectively. For Model-1/3,
the county-level demographic data were equally distributed into
each 3-km pixel.
3. Results

3.1. Monthly population distribution

The monthly population distributions in the BTH region were
estimated by integrating density maps of LBS data and city-scale
al accuracy in terms of PM2.5 concentration; (2) Lower spatiotemporal variability in
ulation distribution.
ial accuracy in terms of PM2.5 concentration; (2) Lower temporal variability in
ulation distribution.
atiotemporal variability in terms of population distribution.

poral variability in terms of population distribution.

spatial accuracy in terms of PM2.5; (2) Considering the spatiotemporal variability
opulation distribution
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demographic data. Fig. 2a shows the result in November 2015, in
which the intensity represents the specific amount of the popula-
tion within the area covered by each pixel, with stretched colors
from yellow to dark blue denoting the varied population densities.
The results show that the pixel-based population map could more
appropriately characterize the spatial distribution of people. In the
BTH region, a vast majority of the population is centered in the
urban core of each city, and the remaining proportion is spread over
the entire regionwith several concentrated hot spots. The zoomed-
in Beijingmap (Fig. 2b) suggests that the LBS-based populationmap
could provide a spatially explicit visualization of population den-
sity, especially for urban cores. The correlation coefficient matrix
(Fig. 2c) of the monthly population maps in Beijing further indi-
cated the dynamics of population distributions over space and
time. These monthly dynamic changes could be explained by
several factors that directly or indirectly affect the population dis-
tribution and transport, such as weather conditions, commuting
Fig. 2. (aeb) Maps of LBS-based population distribution (2015/11) in the BTH region and Beij
distribution in Beijing in 2015.

Fig. 3. (aed) Monthly mean PM2.5 concentration maps in January, April, September, and Octo
to 2015/12. The x-axis represents January to December 2015, and the y-axis represents the
routines, and special holidays.
3.2. Ground-level PM2.5 concentrations

Fig. 3aed shows themonthlymean PM2.5 concentrationmaps in
January, April, September, and October, which were estimated us-
ing the GTWR satellite-station-hybrid model. Overall, the PM2.5
concentration level in the southeast plain was higher than that of
the northwest mountainous region. Besides, the spatial patterns of
PM2.5 concentrations changed significantly at the month scale in
the year. Inwinter (e.g., January, Fig. 3a), for instance, increased coal
burning for heat and unfavorable meteorological conditions jointly
contributed to the most severe PM2.5 pollution in the BTH region
(Zhang et al., 2009). In spring (e.g., in April, Fig. 3b), the high PM2.5
concentrations in the plain were mainly caused by sand dust raised
by strong winds (Lv et al., 2017). In late summer and early autumn
(i.e., September, Fig. 3c) the PM2.5 pollution is slightest, but large-
ing, respectively. (c) Correlation coefficient matrix of the monthly LBS-based population

ber 2015, respectively. (e) City-scale monthly mean PM2.5 concentrations from 2015/01
thirteen selected cities in the BTH region.
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scale straw burning in late autumn (i.e., October, Fig. 3d) in the
northwest rural areas raised the PM2.5 level again (Duan et al.,
2004). The monthly mean PM2.5 concentrations at the city scale
(Fig. 3e) suggest that the highest (lowest) PM2.5 pollution always
occurred in December (August) at most of the selected cities.
Fig. 5. Cumulative percentage of PM2.5 exposure in the BTH region. The x-axis rep-
resents January to December 2015, and the y-axis represents the percentage of the
population in the entire BTH region.
3.3. Temporal dynamics of population exposure to PM2.5

The temporal dynamics of population exposure to PM2.5 were
evaluated using the satellite-station-hybridmodel by incorporating
dynamic population distribution and PM2.5 concentrations. Fig. 4a
shows the temporal variation of monthly exposure for each city
from January to December 2015. Except for Zhangjiakou, Chengde,
and Hengshui, most cities presented an obvious unimodal structure
in the time-series profiles, with peak PM2.5 exposure levels in
December. Meanwhile, a slight rise of PM2.5 exposure levels in July
could be found in some cities (e.g., Beijing, Handan, Zhangjiakou).
The annual mean PM2.5 exposure in 2015 shows that a cluster of
cities in the southwest of the BTH region (i.e., Handan, Xingtai,
Shijiazhuang, Hengshui, and Baoding) have experienced relatively
higher exposure levels than other cities (Fig. 4b). Baoding and
Hengshui were the two most polluted cities with annual mean
PM2.5 exposures reaching up to 93.16 mg/m3/year and 90.63 mg/m3/
year, respectively.

To better present the monthly variation in PM2.5 exposure, we
aggregated the pixel-based assessments to obtain the monthly
cumulative percentage of PM2.5 exposure in the BTH region (Fig. 5).
The results show that January to February and November to
December are the two worst periods with high PM2.5 pollution in
2015. More than 50% (20%) of the population in the BTH region
were exposed to an average PM2.5 concentration higher than 80
(120) mg/m3. In December, a sudden deterioration appeared and
50% of the population were exposed to an average PM2.5 level
higher than 110 mg/m3. This phenomenon could be explained by
increasing heating demands and coal consumption during the cold
season. Notably, most of the coal combustion and emissions
Fig. 4. (a) Temporal variation of the monthly PM2.5 exposure levels of the selec
occurred inside areas of human settlement, which directly de-
teriorates ambient air quality and human health. The period with
the lowest PM2.5 exposure level was around August, but still, 50% of
the population were exposed to PM2.5 concentrations higher than
50 mg/m3.
3.4. Total attributive deaths for different causes

Three health endpoints were considered in this study and coded
according to the International Classification of Diseases, Revision
10: all causes (A00eR99), cardiovascular diseases (I00eI99), and
respiratory diseases (J00eJ98). Table 2 presents the annual pre-
mature deaths estimated by the C-R function under the WHO AQG
PM2.5 scenario (10 mg/m3/year). The results showed that the total
ted cities. (b) Annual mean PM2.5 exposure of each city in the BTH region.



Table 2
Premature deaths due to PM2.5 for each city in the BTH region.

City All cause (A00eR99) Cardiovascular (I00eI99) Respiratory (J00eJ98)

Premature Mortality 95% CI Premature Mortality 95% CI Premature Mortality 95% CI

Beijing 22,153 (18,447, 25,706) 12,965 (8,107, 17,432) 2900 (1,814, 3900)
Tianjin 18,657 (15,551, 21,627) 12,500 (7,839, 16,757) 1971 (1,236, 2643)
Shijiazhuang 15,440 (12,915, 17,835) 8787 (5,569, 11,658) 2199 (1,394, 2917)
Tangshan 6966 (5,807, 8073) 3989 (2503, 5345) 998 (626, 1337)
Qinhuangdao 3002 (2,489, 3498) 1736 (1,072, 2364) 434 (268, 591)
Handan 10,388 (8,702, 11,982) 5896 (3,754, 7788) 1475 (939, 1949)
Xingtai 11,074 (9,271, 12,782) 6293 (3,998, 8329) 1575 (1,000, 2084)
Baoding 16,265 (13,642, 18,740) 9213 (5,885, 12,129) 2305 (1,473, 3035)
Zhangjiakou 3179 (2,626, 3719) 1852 (1,130, 2553) 463 (283, 639)
Chengde 4165 (3,439, 4872) 2426 (1,480, 3344) 607 (370, 837)
Cangzhou 10,106 (8,440, 11,693) 5769 (3,639, 7689) 1443 (911, 1924)
Langfang 4335 (3,620, 5015) 2474 (1,561, 3297) 619 (391, 825)
Hengshui 12,420 (10,409, 14,321) 7045 (4,490, 9297) 1763 (1,123, 2326)
Total 138,150 (115,358, 159,863) 80,945 (51,027, 107,982) 18,752 (11,828, 25,007)
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number of premature deaths for each city ranged from 3002 to
22,153 for all-cause, 1736 to 12,965 for cardiovascular diseases, and
434 to 2900 for respiratory diseases in 2015. The total number of
premature deaths in the BTH region was 138,150, 80,945, and
18,752 for all-cause, cardiovascular diseases, and respiratory dis-
eases, respectively.
3.5. Comparison of five exposure models

Furthermore, the exposure levels and health outcomes (all-
cause mortality) were estimated using other four exposure models
based on different datasets (Table 3). The quantitative comparison
shows that there are obvious disagreements in the estimated
average exposure levels and the corresponding all-cause premature
mortalities among the five exposure assessment models. For
example, in Beijing, the minimum and maximum number of all-
cause premature deaths were observed in Model-3 and Model-2
respectively. Similar situations were also found in Shijiazhuang,
Tangshan, Xingtai, Baoding, Chengde, Cangzhou, and Hengshui.
Compared with our model's results (Model-5), overestimates
existed in the Model-1's and Model-2's results with a positive bias
of 3309 and 4841 premature deaths, respectively; by contrast, un-
derestimates existed in the Model-3's and Model-4's results with a
negative bias of 6017 and 1881 premature deaths, respectively.
Table 3
Comparison of average exposure levels and premature deaths estimated by five exposur

City Model-1 Model-2 Model-3

Average
Exposurea

Premature
Mortality

Average
Exposurea

Premature
Mortality

Average
Exposure

Beijing 68.561 21,459 72.862 22,855c 63.301
Tianjin 75.414 19,081c 74.006 18,718 74.367
Shijiazhuang 90.535 16,454 89.898 16,343c 80.108
Tangshan 72.343 6,780b 74.041 6,943c 72.132
Qinghuangdao 57.188 2,966b 57.266 2971 57.354
Handan 92.861 10,753 93.091 10,778c 87.419
Xingtai 93.106 11,773 94.073 11,889c 85.247
Baoding 95.914 16,719 98.639 17,165c 83.634
Zhangjiakou 49.206 3,464c 47.701 3340 44.639
Chengde 50.840 4724 49.440 4,574c 44.673
Cangzhou 80.200 10,160 81.051 10,267c 77.399
Langfang 77.305 4191 77.135 4,182b 80.677
Hengshui 94.578 12,935 94.813 12,966c 90.016
Totals 141,459 142,991c

a mg/m3/year.
b The minimum number of premature mortalities among the five models in each city
c The maximum number of premature mortalities among the five models in each city
4. Discussion

This study introduced a robust PM2.5 exposure model using the
PM2.5 concentrations derived from the GWTR satellite-ground-
hybrid model, and LBS-based dynamic population maps to assess
the monthly exposure levels and the health outcomes at thirteen
cities in the BTH region in 2015. Compared with previous exposure
assessment methods, the newly proposed method adequately
considered the estimation accuracy of PM2.5 concentrations and the
spatiotemporal variability of population distribution. In addition,
our method was compared with the other four PM2.5 exposure
models based on commonly used datasets. The disagreements in
exposure level and annual premature mortality among the five
exposure models highlighted the effects in the environmental as-
sessments when the complex and changeable interactions between
the population and ambient environment were ignored.

The PM2.5 concentrations estimated by the GTWR satellite-
station-hybrid model can more accurately capture the spatial var-
iabilities and ensure the accuracy of subsequent assessments. Due
to the limited number of ground stations, station-based observa-
tions alone cannot provide accurate spatial information on PM2.5
concentrations, thus may lead to potential biases in assessments
regarding pollution exposure and health impacts. The differences in
the estimated premature mortalities (or exposure levels) between
e models.

Model-4 Model-5

a
Premature
Mortality

Average
Exposurea

Premature
Mortality

Average
Exposurea

Premature
Mortality

19,721b 70.328 22,035 70.691 22,153
18,812 73.319 18,541b 73.768 18,657
14,597b 83.968 15,293 84.787 15,440
6,759b 73.791 6919 74.282 6,966c

2976 57.579 2989 57.813 3,002c

10,145b 89.336 10,361 89.577 10,388
10,812b 87.187 11,052 87.365 11,074
14,650b 92.743 16,194 93.169 16,265
3,087b 45.629 3169 45.754 3179
4,057b 45.196 4114 45.659 4165
9,805b 78.233 9911 79.773 10,106
4,374c 79.941 4335 79.949 4335
12,338b 90.146 12,356 90.637 12,420
132,133b 137,269 138,150

.
.
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model-1 and model-3 (as well as model-2 and model-4) revealed
this issue. Moreover, a similar comparative study conducted by
Jerrett et al. (2016) also verified that simply using station-based
exposure estimates may result in incorrect estimations of health
risk. For monthly exposure estimations, regional differences also
existed when comparing the five models (Fig. S1 in Supplementary
Material). For example, for these cities located in the south BTH-
region (i.e., Baoding, Shijiazhuang, Xingtai, Handan, and Heng-
shui), the PM2.5 exposure levels estimated byModel-1/2 were over-
estimated compared with other three models' results in winter
(around January). Opposite results were found in these cities
located in the east BTH region (i.e., Qinhuangdao, Tangshan,
Langfang, and Tianjin), where under-estimations were found in the
exposure levels estimated by Model-1/2 compared with other
models in summer (around July). These dissimilarities were likely
caused by the accuracy of PM2.5 estimations and the PM2.5 varia-
tions in sources or composition. This further revealed that the
satellite-station-hybrid model could more accurately capture the
spatial variation of air pollution. Therefore, the usage of satellite-
station-based PM2.5 concentrations, with improved estimation ac-
curacy and higher spatial-resolution information, should be a
promising direction for future related studies.

More importantly, some potential biases and limitations in this
study should be highlighted. First, LBS data (e.g., social media and
mobile phone data) are regarded as non-representative data
(Kwan, 2016; Zagheni and Weber, 2015), and the density maps of
LBS data actually present the distribution of active users rather than
the real population density. This type of data tends to leave out
some sections of society (e.g., children, the elderly, and the poor)
since a lower proportion of these people actively use mobile
internet services or intelligent terminals compared to the whole
society. However, previous studies have demonstrated that po-
tential sampling bias does not debilitate social-media-based LSBD's
performance in characterizing dynamic population distribution.
However, uncertainty still exists when using such datasets, and
further validation against ground-truth datasets is needed. There-
fore, we should remain cautious about the results and conclusions
obtained using these data. Second, most human mortality datasets
released by the Chinese government are recorded at the city scale.
To maintain the sample size consistency, the health impact
assessment of PM2.5 exposure was conducted based on city
boundaries in this study. However, the aggregation process may
cause some potential biases (e.g., the zoning effect of MAUP).
Therefore, mortality information with higher spatial resolutions
(e.g., street-level) is needed to minimize the uncertainties in the r
environmental health assessments in China. Lastly, due to the
limitations on satellite data sources and quality, the spatiotemporal
resolutions (i.e., 3-km, daily) of the data used for assessments are
not high enough. Even though the satellite-station-hybrid model
used in this study shows satisfactory accuracy and high repeat-
ability, PM2.5 estimations with a high spatiotemporal resolution are
still important, because they can effectively delineate the relevant
environmental factors affecting people. Fortunately, several mete-
orological satellites with high spatiotemporal resolution (e.g.,
Himawari-8 at a 10-min temporal resolution and 500-m spatial
resolution) have been launched and can help reduce uncertainties
in future air pollution exposure assessment. Besides, some well-
designed site-based (city-scale) models (Shi et al., 2018), as well
as machine learning techniques (Xu et al., 2018), has been proved to
significantly an improve the estimations in ground-level PM2.5

concentrations with more detailed spatial information. Therefore,
how to better incorporate these site-based models and advanced
techniques in region-scale PM2.5 concentration mapping and
exposure assessment remains to be an open question for future
research.
5. Conclusions

This study tried to introduce an improved PM2.5 exposuremodel
by integrating the dynamic population distribution and satellite-
station-based PM2.5 concentrations. The results showed that the
proposed method could effectively quantify the dynamic city-scale
PM2.5 exposure levels and the three related causes of annual pre-
mature mortalities in the BTH region, China. The comparative
analysis of five exposure models further illustrated the importance
of the estimation accuracy of PM2.5 concentrations and dynamic
changes in population distribution which should be carefully
considered in environmental exposure or health assessments.
Although some limitations exist, our study provided a robust
method to quantify environmental exposure and related health
burdens, which can be extended to exposure estimations to other
environmental factors. These findings will help researchers and
policymakers better understand the spatial patterns and effects of
PM2.5 pollution exposure and establish effective pollution-control
measures.
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