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ABSTRACT: Existing studies mostly explored the association between
urban environmental exposures and blood pressure (BP) in isolation,
ignoring correlations across exposures. This study aimed to systematically
evaluate the impact of a wide range of urban exposures on BP using an
exposome-wide approach. A multicenter cross-sectional study was
conducted in ten cities of China. For each enrolled participant, we
estimated their urban exposures, including air pollution, built environment,
surrounding natural space, and road traffic indicator. On the whole, this
study comprised three statistical analysis steps, that is, single exposure
analysis, multiple exposure analysis and a cluster analysis. We also used deletion−substitution−addition algorithm to conduct
variable selection. After considering multiple exposures, for hypertension risk, most significant associations in single exposure model
disappeared, with only neighborhood walkability remaining negatively statistically significant. Besides, it was observed that SBP
(systolic BP) raised gradually with the increase in PM2.5, but such rising pattern slowed down when PM2.5 concentration reached a
relatively high level. For surrounding natural spaces, significant protective associations between green and blue spaces with BP were
found. This study also found that high population density and public transport accessibility have beneficially significant association
with BP. Additionally, with the increase in the distance to the nearest major road, DBP (diastolic BP) decreased rapidly. When the
distance was beyond around 200 m, however, there was no obvious change to DBP anymore. By cluster analysis, six clusters of urban
exposures were identified. These findings reinforce the importance of improving urban design, which help promote healthy urban
environments to optimize human BP health.
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1. INTRODUCTION

Elevated blood pressure (BP) refers to a noteworthy public
health problem worldwide. As indicated from recent global
reports, 1278 million hypertension patients aged 30−79 years
were identified worldwide in 2019, two times that of 1990.1

Moreover, as revealed from the Global Burden of Disease Study,
high systolic BP (SBP) acts as the leading risk factor globally for
deaths, accounting for 19.2% all deaths in 2019.2 Accordingly,
all-around actions at the individual and social levels should be
carried out to improve BP health.
From a global perspective, rapid global urbanization has raised

a concern that how to develop a healthy urban environment,
given the elevated levels but modifiable environmental stressors
in the process.3−6 China, the biggest developing country, is
estimated to achieve the urbanization rate of 71% by 2030,
which calls for the optimization of urban planning and design.4

Thus far, several existing studies have suggested significant
associations between BP and urban environmental exposures
(e.g., air pollutants, residential greenness and built environ-

ment),7−9 whereas the conclusions are inconsistent. In multiple
urban environments, the association between built environment
and BP has been primarily investigated in developed nations,
and such evidence from China is scarce. However, the identical
neighborhood-built environment attribute might exert different
effects on different population. For instance, high population
density was suggested to be protective against obesity in
Australia,10 while not in Korea.11 Thus, the association between
built environment and BP in China should be analyzed, since the
identification of the built environment attributes supporting
habitually active lifestyles is prioritized in public health
researches. Furthermore, the association between natural
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environments (mostly green spaces) and BP has been arousing
rising attention globally, but few studies have analyzed the
impact of exposures to blue spaces (e.g., rivers, lakes). Emerging
evidence (though in small number) has suggested that exposure
to blue spaces can create health benefits,12,13 which might be
related with stress reduction, physical activity and social contact
promotion. Given the information acquired by the authors, the
association between blue spaces and BP was only investigated in
two studies. One of the two studies only covered 59 subjects and
focused on acute effects (after short walks along blue spaces),14

while the other one was conducted in children.15 Consequently,
the association between urban environment features and BP has
not been fully explored in China, especially for built environ-
ment and blue spaces.
It is noteworthy that existing epidemiological research

primarily explored the BP effect of single urban exposure. As a
matter of fact, urban environments are characterized by various
factors generally with high correlations that are likely to affect
health simultaneously. In addition, single-exposure studies may
ignore the probable confounding effects between multiple urban
exposures. The exposome (i.e., encompassing all environmental
exposures from conception onwards) presents a novel
perspective for environmental health research.16 Several
limitations (e.g., selective reporting and possible confounding
by co-exposures) in conventional environmental research could
be addressed by simultaneously covering numerous urban
environmental exposures (i.e., urban exposome approach).17

Accordingly, the exposome approach may help identify
determinants of unfavorable BP more scientifically and develop
prevention priorities. Furthermore, such an exposome method
has achieved its recent application in systematically assessing
urban environmental exposures and numerous child health

outcomes in Europe,15,18−21 including one study that specifically
focused on BP in children, which identified several relevant
environmental exposures (e.g., air pollution).15 However, none
studies have analyzed the impact of urban environment on BP in
adults using such an exposome approach.
In summary, the present study aimed at analyzing the

association of urban environments and BP based on multi-city
and multi-exposure (i.e., air pollution, built environment,
surrounding natural spaces, road traffic indicator) design,
which optimized the control of confounding factors. On that
basis, the results of this study may help policymakers and urban
planners form a BP healthy city.

2. METHODS

2.1. Study Participants. A multi-center survey, termed as
the Sub-Clinical Outcomes of Polluted Air in China, was
conducted in Beijing−Tianjin−Hebei and surrounding regions
from October, 2018, to March, 2019. Ten cities (i.e., two
province-level municipalities, three provincial capitals as well as
five general cities) were recruited (Figure 1). Specific
information regarding the mentioned cities is listed in Table
S1. The sampling methods were fully expressed previously.22

For recruited communities, participants satisfying the inclusion
criteria belowwere selected: (1) 40−89 years; (2) residing at the
current address for at least 2 years; (3) without hearing or
language impairment; (4) willing to participate in the survey.
The eligible subjects were stratified based on gender and age
group (40−49, 50−59, 60−69, 70−79, and 80−89 years), and
then random sampling was conducted in each layer. On the
whole, 2041 participants were surveyed, whereas, individuals
with unclear address information or missing data were excluded

Figure 1. Study areas for this study.
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here (N = 39, 1.9%), thereby leaving 2002 subjects recruited
finally.
2.2. Urban Exposome Measurements. The covered

urban environmental exposures (four groups) are listed in
Table 1. The mentioned variables were selected after extensive
literature regarding urban environmental exposures and BPwere
reviewed. The respective participant’s residential address was
geocoded into latitude and longitude, and the mentioned
individual-level variables were extracted with GIS (Geographic
Information System) software.

(1) Air pollutants: with Surface PM2.5, NO2, SO2, CO and O3
data are collected from the ChinaHighAirPollutants
(CHAP) dataset,23−25 which has been extensively
applied.26,27 In addition, specific information regarding
methods could be referenced from CHAP dataset
websites (https://weijing-rs.github.io/product.html). In
brief, the spatial resolutions reached 0.01° (≈1 km) for
PM2.5, 0.05° (≈5 km) for NO2, and 0.1° (≈10 km) for
SO2, CO, and O3, respectively; all daily predictions
exhibited high accuracy with cross-validation CV-R2

values of 0.80−0.94 and average root-mean-square errors
of: 5.07−290 μg/m3. By referencing existing research,7,26

for the respective pollutants, three-year average concen-
trations were adopted to represent long-term exposure
level. Furthermore, one-year average concentrations were
investigated in sensitivity analysis.

(2) Built environment: the built environment features (i.e.,
population density, building density, street connectivity,
facility richness, facility density, public transport lines and
public bus stops, walkability) surrounding residence with
a buffer of 500 m were extracted by conducting the main
analysis. Table S2 presents the specific definition
regarding the mentioned features. Among them, public
transport lines and public bus stops in a 500 m buffer were
adopted to examine the accessibility of public trans-
portation. Besides, an indicator of walkability was
calculated in accordance with population density,
building density, street connectivity and facility density
by summing the z-scores of the respective compo-
nent.28,29 The higher the value of walkability, the better
the walkable supportive environment would be.30,31 A
buffer of 500 m was set in the main analysis, since it was
equivalent to nearly a 15 min walk laps, and was also
applied in prior research.32,33 Moreover, in sensitivity
analysis, the result with a buffer of 1000 m was also
achieved.

(3) Surrounding natural spaces: with green and blue spaces
included. NDVI was adopted to indicate residing
greenness here. The NDVI values were collected from
the Landsat8 data released regularly (https://
earthexplorer.usgs.gov/), with a spatial resolution of 30
m × 30 m. The NDVI values ranges from −1 to 1; the
higher values, the higher the greenness would be.
Consistent with the buffer of built environment features
here, a 500 m buffer for NDVI was also selected as the
main exposure. Moreover, this selection was extensively
applied in existing studies.8,34 The mean value of NDVI of
cloud-free images in spring and summer (i.e., the greenest
period of a year) was calculated. For blue spaces, the
distance to the nearest blue spaces from their home was
calculated for the respective subject by employing the
Land use map of GlobeLand30 (http://www.
globallandcover.com/).

(4) Road traffic indicator: for the respective participant, the
distance to the nearest major road from their residential
address was measured. The road information regarding
study areas in 2018 originated from OpenStreetMap
(http://www.openstreetmap.org/), in which, the road
types primarily fell to motorway, trunk, primary,
secondary, tertiary, unclassified, residential and service.
For the present study, tertiary and above roads were
defined as major road.

2.3. Outcomes. Three outcomes were included here, that is,
SBP, DBP (diastolic BP) and hypertension. During the survey,
all the enrolled participants conducted a clinical examination
and face-to-face questionnaire interview by trained investigators
in community healthcare center. The subjects should avoid
severe exercise and eating in 1 h before BP being measured, and
they were asked to keep quiet when measured with electronic
sphygmomanometer. After a measurement was completed, the
arm strap was loosened, the subjects sat quietly for 1 min, and
the next measurement was performed. On the whole, the
measurement was performed 3 times, with 1 min per interval.
Lastly, the average one was adopted. Hypertension was defined
as SBP ≥140 mmHg or DBP ≥90 mmHg, or the subject
reported having been prescribed anti-hypertensive medication.

2.4. Covariates. To select a minimally sufficient adjustment
set, a directed acyclic graph (DAG) was generated with DAGitty
v3.0 software. According to Jager et al.,35 for this study, a
potential confounding factor should be a risk for BP, and it must
be a “cause” of exposure to the urban environment and is
unevenly distributed between groups in different urban
environments. However, it can neither be an “effect” of urban

Table 1. Overview of Included Urban Exposure Variables

exposure group variables units data sources

air pollution PM2.5, NO2, SO2, CO, O3 μg/m3 ChinaHighAirPollutants, CHAP dataset
built environment population density people/km2 WorldPop

building density 0−1 OpenStreetMap
street connectivity intersections/km2 Baidu Map
facility density facilities/km2

facility richness 0−1
public transport lines km
public bus stops number of bus stops
walkability index

surrounding natural spaces green space (NDVI) −1 to 1 Landsat8
distance to nearest blue space m GlobeLand30

traffic road indicator distance to nearest major road m OpenStreetMap
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environmental exposure nor an intermediate factor in the causal
pathway between urban environment and BP. Based on the
DAG, individual-social economic status (SES, assessed by
household income, education level, age, sex, and marital status)
and area-level GDP per capita were identified as confounders in
our main analysis (Figure S1). Apart from the area-level GDP
per capita which was obtained from each city’s Bureau of
Statistics, other variables involved were investigated through a
face-to-face questionnaire interview with the participants of this
study.
2.5. Statistical Analyses. The statistical analyses flow of

this study is illustrated in Figure S2. On the whole, this study
comprised three steps (i.e., single exposure analysis, multiple
exposure analysis and a cluster analysis), and this statistical
protocol was adapted from HELIX (Human Early Life
Exposome) project.15 All statistical analyses were conducted
with R software version 4.0.5.
2.5.1. Single Exposure Analysis. An exposome-wide

association study (ExWAS) analysis was conducted to
determine the association between each exposure variable with
the respective outcomes (i.e., SBP, DBP and hypertension)
separately. The potential nonlinear association between the
respective exposure and outcomes was assessed by restricted
cubic spline (RCS). RCS item with three knots (i.e., 5th, 50th
and 90th percentiles) was added in the model,36,37 which was
regulated for covariates. The likelihood ratio test was performed
to test the potential non-linearity, with p < 0.05 indicating non-
linear relationship. Furthermore, the p-values thresholds were
corrected to illustrate multiple hypothesis tests with the use of a
family-wise error rate correction (5% divided by the effective
number of tests).38 The p-value threshold corrected by multiple
testing reached 0.003.
2.5.2. Multiple Exposure Analysis. Deletion/substitution/

addition algorithm (DSA), a method to decrease independent
variables, was adopted since it was demonstrated to yield false-
positive findings with a lower proportion in comparison with
ExWAS,39 and has also been extensively employed in urban
exposome research.15,20,21 Detailed introduction about DSA
could be found in Supporting Information (Text 1). Briefly,
DSA is an algorithm that selects variables based on optimal joint

prediction results with minimal root mean square error
(RMSE). In this study, DSA was run 50 times by DSA packages
in R, and variables selected at least 3 times (6%) were covered in
the final multi-exposure model. Collinearity between exposures
introduced in the multi-exposure model was evaluated using
variance inflation factor (VIF) and exposures reporting a VIF > 5
were excluded. The multi-exposure models were considered as
our main analysis.
In the DAG (Figure S1), built environment, surrounding

natural spaces and road traffic take up part of the urban design
and are likely to determine the levels of air pollution in the
city.40,41 Hence, air pollution may be on the causal pathway
between the urban design indicators and BP, that is, the
mediator. While, the urban design indicators (i.e., built
environment, surrounding natural spaces and road traffic) can
be considered mutual confounders between each other, and are
considered confounders between air pollution and BP.
Accordingly, two multi-exposure models were applied: (1) to
analyze the effect of air pollution, the model included air
pollutants, built environment, surrounding natural spaces, traffic
road indicator and covariates; (2) to analyze the effect of built
environment, surrounding natural spaces, traffic road indicator,
the model included built environment, surrounding natural
spaces, traffic road indicator and covariates.
In this study, for non-linear association between exposure and

BP, we reported their overall association by P value (Poverall).
Besides, we also ran a model considering the exposure in
categories using the knots as cut-off. For linear association
exposure, mean changes represented as beta (β) in SBP/DBP or
odds risk (OR) of hypertension was identified, with a 10 μg/m3

increase for air pollutants and per interquartile range (IQR)
increase for other exposures. Furthermore, the corresponding
95% confidence intervals (CI) for β and OR were provided.

2.5.3. Cluster Analysis. A principal component analysis
(PCA) was first conducted to reduce the dimension of the data.
The number of components was selected in accordance with the
accumulated value of the explanatory variable’s variance (at least
80%). Subsequently, a hierarchical cluster method (Ward’s
criterion) was adopted to determine exposure clusters by
complying with the components from PCA. R2 statistic was

Table 2. Association between Urban Environment and SBP, DBP and Hypertension in Single-Exposure ExWAS Model

SBP DBP hypertension

exposure variables (per increase) β(95% CI) P β(95% CI) P OR (95% CI) P

PM2.5 (10 μg/m
3) 0.001a 1.25(0.77, 1.73) 0.001 1.08(0.98, 1.18) 0.118

NO2(10 μg/m
3) 5.40(2.61−8.20) 0.001 1.95(0.34,3.56) 0.018 1.68(1.23, 2.28) 0.001

SO2(10 μg/m
3) 0.001a 0.003a 0.93(0.85, 1.02) 0.122

CO (10 μg/m3) 0.064a 0.11(0.05, 0.17) 0.001 1.01(0.99, 1.02) 0.675
O3 (10 μg/m

3) 0.021 1.84(0.74, 2.95) 0.001 0.073a

population density (21832.2 people/km2) 0.001a −1.91(−2.55, −1.27) 0.001 0.86(0.76, 0.97) 0.014
building density (0.19 units) −3.60(−5.02, −2.17) 0.001 0.14(−0.69, 0.96) 0.746 0.76(0.65, 0.89) 0.005
street connectivity (25.47 intersection/km2) 0.001a −0.06(−0.28, 0.16) 0.597 0.95(0.91, 0.99) 0.013
facility density (59.9 facilities/km2) −1.79(−2.84, −0.74) 0.001 0.23(−0.38, 0.83) 0.459 0.86(0.76, 0.96) 0.009
facility richness (0.33 units) −0.80(−2.39, 0.79) 0.325 −1.08(−1.99, −0.16) 0.021 0.85(0.71, 1.02) 0.074
walkability index (4.07 units) −4.54(−5.96, −3.12) 0.001 −0.82(−1.65, −0.01) 0.050 0.72(0.62, 0.84) 0.001
public bus stops (3 bus stops) 0.065a 0.59(−0.05, 1.24) 0.072 0.92(0.81, 1.04) 0.160
public transport lines (22.83 km) −3.62(−4.62, −2.62) 0.001 0.001a 0.84(0.75, 0.93) 0.001
NDVI (0.09 units) −0.67(−1.73, 0.38) 0.211 −1.04(−1.64, −0.43) 0.001 1.02(0.90, 1.14) 0.802
distance to nearest blue spaces (4488.41 m) 0.91(−0.06, 1.88) 0.067 1.02(0.46, 1.58) 0.001 1.05(0.95, 1.17) 0.352
distance to the nearest major road (206.86 m) 0.007a 0.001a 1.01(0.90, 1.14) 0.860

aP value of overall association for non-linear association exposure. The corresponding exposure-response curves were shown in Figure S4; models
were adjusted by household income, education level, age, sex, marital status and area-level GDP per capita.
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adopted to determine the number of clusters (Figure S3). The
identified clusters acted as an independent variable in the
regression model.
2.5.4. Sensitivity Analyses. Sensitivity analyses were

conducted to verify the robustness of the results of this study
as follows: (a) the multi-exposure models were additionally
adjusted for smoking, drinking, and BMI (bodymass index); (b)
we adjusted the 3-day (i.e., the day of BP measurement and 2
days before) mean ambient temperature in the multi-exposure
models; (c) one-year air pollutants levels were used, and the
buffer of built environment features and NDVI were regulated,
that is, 1000-m.

3. RESULTS

3.1. Study Population. Table S3 lists the basic character-
istics of recruited subjects. On the whole, 2002 of participants
(1011 males and 991 females) were recruited, with a mean
(±standard deviation, SD) age of 64.76± 13.48 years older. The
mean (±SD) SBP andDBP for all participants reached 139± 21
and 82 ± 12 mmHg, respectively. 1206 (60.2%) subjects were
diagnosed with hypertension. Levels of exposure are presented
in Tables S4 and S5, and the correlationmatrix of exposure levels
is shown in Table S6.
3.2. Single Exposure Analysis. Table 2 and Figure S4

present the results of single exposure analysis. For SBP, we
detected deviation from linearity with some urban exposures,
including PM2.5, SO2, CO, O3, population density, street
connectivity, public bus stops and distance to the nearest
major roads (Figure S4). After correction for multiple testing,

among these non-linear association exposures, PM2.5, SO2,
population density, and street connectivity, were still signifi-
cantly associated with SBP (Poverall = 0.001). For linear
association variables, NO2 exposure was significantly associated
with increased level of SBP (β = 5.40, 95%CI: 2.61, 8.20). While,
per IQR increment in building density, facility density,
walkability and public bus lines, SBP significantly decreased by
−3.60 (95% CI:−5.02,−2.17),−1.79 (95% CI:−2.84,−0.74),
−4.54(95% CI: −5.96, −3.12) and −3.62(95% CI: −4.62,
−2.62) mmHg, respectively. All of them passed the multiple
testing corrected p-value.
The deviation was also detected from linearity between DBP

with urban exposures, which comprised SO2, public bus lines
and distance to the nearest major road (Figure S4).
When correcting for multiple testing, public bus lines and

distance to the nearest major roads remained statistically
significant (Poverall = 0.001). For others, per 10 μg/m3 increase
in PM2.5 and O3 corresponded with 1.25 (95% CI: 0.77, 1.73),
and 1.84 (95% CI: 0.74, 2.95) mmHg increase in DBP,
respectively. Also, for per IQR increase in distance to the nearest
blue spaces, the level of DBP elevated significantly (β = 1.02,
95% CI: 0.46, 1.58). While, higher NDVI (β = −1.04, 95% CI:
−1.64, −0.43) and population density (−1.91, 95% CI: −2.55,
−1.27) were significantly associated with lower DBP. After
correction for multiple testing, all these-above mentioned
exposures remained significant. However, several urban
exposures (including NO2, facility richness, walkability) were
associated with DBP, but failed to pass the correction for
multiple testing.

Figure 2. Results of multiple exposure analysis of urban exposures and BP. (A) SBP; (B) DBP; (C) hypertension (note: only significant associations
were listed here, and all detailed results of multiple regression analysis were shown in Table S7; for linear association variables, we reported beta/OR
with per IQR increase. For non-linear association exposures, the exposure-response curves were presented here; models were adjusted by household
income, education level, age, sex, marital status and area-level GDP per capita.).
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For hypertension, O3 was found to have a non-linear
association with, whereas it was non-significant (Poverall =
0.073). Ambient NO2 exposure was significantly associated
with a greater risk of hypertension, with OR of 1.68 (95% CI:
1.23, 2.28). Whereas, higher walkability and public bus lines
were revealed to noticeably reduce the risk of hypertension (i.e.,
OR = 0.74, 95% CI: 0.63, 0.85, and 0.84, 95% CI: 0.75, 0.93,
respectively). After correction for multiple testing, all these-
above mentioned exposures remained significant. However,
several urban exposures, including population density, building
density, street connectivity and facility density were associated
with hypertension risk, but failed to pass the correction for
multiple testing.
3.3. Multiple Exposure Analysis. Figure 2 and Table S7

present the results of multiple exposure analysis. For SBP, 8
exposures were included in the final multi-exposure model,
including one (building density) that was excluded because of
collinearity (VIF > 5). The final results indicated that higher
NDVI, walkability, and public transport lines were significantly
associated with lower SBP level, with β of −2.16 (95% CI:
−3.33,−0.99),−4.87 (95%CI:−7.53,−2.21), and−2.48 (95%
CI: −3.60, −1.36), respectively. Besides, it was observed that
SBP raised gradually with the increase in PM2.5 but such a trend
slowed down when PM2.5 concentration reached a relatively
high level (Poverall = 0.011). With population density increasing,
SBP showed a downward trend overall (Poverall = 0.001). For
DBP, both green and blue spaces were shown to have a
protective role, with β of −0.74 (95% CI: −1.38, −0.10) and
0.66(95% CI: 0.09, 1.23), respectively. Also, there was a
significantly negative association between population density
and DBP (β = −1.10, 95% CI: −1.81, −0.38). Meanwhile, we
observed that as the length of public bus lines increased, DBP
showed a downward trend overall (Poverall = 0.001). With the

distance to the nearest major road increased, DBP decreased
rapidly. When such a distance surpassed around 200 m,
however, there was no obvious change to DBP anymore (Poverall
= 0.001). For hypertension, six exposures were taken in the final
model (Table S7). Higher walkability was significantly
associated with a lower risk of hypertension (OR: 0.68, 95%
CI: 0.52, 0.90). However, none of other exposures were
indicated to be statistically significant.
The results of the models when considering the non-linear

association exposures in categories using the knots as cut-off are
listed in Figures S5 and S6.

3.4. Cluster Analyses. Figure 3 illustrates six different
patterns of the urban environment clusters. The numbers of
participants and cities included in each cluster are listed in Table
S8. In brief, cluster 1 identified high built environment features,
and low level of air pollutants, which was subsequently
considered as the reference category. Cluster 2 identified low
level of air pollutants, and high level of NDVI, but poor built
environment characteristics. Cluster 3 represented an urban
environment with high SO2 and CO, low levels of walkability
and public transport accessibility. Cluster 4 were characterized
by high PM2.5 pollution and low levels of surrounding natural
spaces (i.e., low NDVI and a far distance to blue spaces). Cluster
5 identified an urban environment with high air pollution, and
poor built environment. Cluster 6 represented high built
environment features, low level of PM2.5 and NO2, but high
level of O3. Compared with cluster 1, especially, subjects
included in cluster 5 have a higher level of SBP (β = 4.57, 95%
CI: 1.90, 7.23), DBP (β = 2.60, 95% CI: 1.08, 4.12) and higher
hypertension risk as well (OR: 1.36, 95% CI: 1.02, 1.83).

3.5. Sensitivity Analyses. After additionally adjusted for
smoking, drinking and BMI, the results remained similar in
direction as in the main analyses (Table S9). Also, when we

Figure 3. Description of six urban exposure clusters and their association with BP. (note: the left part of the figure shows the exposure levels for each
cluster. Red bars correspond to exposure levels above the mean in each specific cluster, whereas green bars correspond to exposure levels below the
mean. The right part of the figure reports the beta for SBP/DBP, and OR for hypertension of being in one cluster in comparison with being in cluster 1.
Models were adjusted by household income, education level, age, sex, marital status and area-level GDP per capita). *P < 0.05.
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included the ambient temperature in the multi-exposure models,
the effect estimates haven’t changed (Table S10). When using
one-year air pollutants levels and built environment features
with a 1000m buffer, most of the results remained same as in the
main analyses (Table S11).

4. DISCUSSION
To the best of the authors’ knowledge, this study conducted the
first comprehensive analysis on urban environmental exposures
and BP in adults by recruiting considerable environment
exposures accounting for potential confounding by co-
exposures. After multiple urban exposures were considered,
neighborhood walkability was reported to be significantly
associated with SBP level as well as hypertension risk in the
final model of this study, thereby stressing the importance and
priority consideration to build a walkable living environment in
China. Meanwhile, this study also demonstrated that in order to
lower residents’ BP levels, PM2.5 pollution control, nature
environments optimization, public transportation accessibility,
and road design should be taken into considerations in urban
planning and management. Overall, the mentioned valuable
findings added to the solid knowledge of urban exposures impact
on BP, contributing to the establishment of hypertension
prevention priorities and finally building a BP healthy city under
global urbanization.
As evidently proven from recent systemic review and meta-

analyses,42 existing findings on the associations between air
pollutants and BP and hypertension in adults are largely
inconsistent. For this study, most significant associations
between them in single exposure models disappeared in the
final model of this study, thereby suggesting an overestimation
of the effect in the single-exposure models. Besides the
differences in population characteristics, exposure methods,
study areas (e.g., various PM concentrations and compositions)
between prior studies, the neglects of the confounding role of
urban design factors may lead to inconsistence as well. This also
makes it difficult to determine the probable association of air
pollution attributed to the actual air pollution concentration, or
as impacted by other highly correlated exposures.
In this study, a significant association between PM2.5 exposure

and SBP instead of DBP was observed, indicating that the
cardiovascular system damage caused by PM2.5 may be more
closely related to the development of SBP. Besides, the
exposure-response curve shape of PM2.5 exposure and SBP
was similar with the findings in some prior studies.43,44 It can be
possibly explained that relatively low PM2.5 exposure is capable
of activating related biological pathways, difference of PM2.5
components in high and low concentrations, and effect of
behavioral mode (e.g., less out, more protection) under high
concentrations. Moreover, the observed non-linear association
between long-term exposure of PM2.5 and SBP is of public health
significance, thereby demonstrating that the health-impact
cannot be ignored even at relatively low concentrations.
Notably, this study suggests the importance of a walkable-

friendly environment in preventing hypertension. This
beneficial role was also observed cross-sectionally32 as well as
longitudinally.9 However, none such study has been conducted
in China previously. In this study, based on prior studies and
theory,28,29 built environment measures, including density,
design and accessibility, were selected to generate walkability
index. Moreover, our results were robust according to results
from two various buffer sizes (i.e., 500 and 1000 m). According
to considerable evidence, neighborhood walkability could be a

potentially vital determinant of physical activity.30,31 For
instance, as indicated from a cross-sectional survey from 14
cities in 10 nations with diverse features, individuals in more
walkable-friendly neighborhoods could spent more physical
activity times (68−89 min/week) as compared with those living
in less walkable environments.33 Moreover, more walkable
neighborhoods might take up stress-relieving residential
environments, and exposures over extended periods were likely
to be correlated with reduced sympathetic nervous activity.
However, we observed that walkability was beneficially
associated with SBP, but not with DBP, implying that there
may be differences in mechanism and importance between the
effect of walkability on SBP and DBP. Some previous studies
also reported similar findings as ours,45,46 while others observed
significant association between walkability and DBP.32 The
inconsistency may be due to the heterogeneity of study
population characteristics (e.g., age), and statistical methods
between studies.
As suggested from the findings of the beneficial role of

population density on BP, urban densification may be protective
against the increased BP. This could be explained by some
mechanisms. Firstly, increasing population density is capable of
increasing the diversity of urban functions (e.g., more walkable
destinations) surrounding the neighborhood, thereby affecting
the physical activity of the residents.6,47 Secondly, some findings
suggested that regions with increasing population density may
have a low air pollution level,48,49 however, the exactly contrary
conclusions were also reported.50 The mentioned distinct
impacts may be primarily determined by the urbanization level
of cities, thereby leading to different changes of the energy
structure and the travel mode with population density rising in
developed and developing nations.48 In addition, some other
mechanisms linking population density and BP (e.g., dietary
behavior, social stress and health care services accessibility) may
be also involved. Consistent with this study, beneficial effects of
high population density on BP were also reported in French
adults51 and older Japanese.52 Given the increasing global urban
density, the specific mechanisms for the beneficial and
detrimental impacts should be urgently understood, as well as
how to optimize favorable effects and mitigate adverse effects of
urban densification.
This study found that high public transport accessibility

showed beneficially significant associations with SBP and DBP.
Prior evidence suggested that high public transport accessibility
could promote the choice of public transport commuting and
elevate the physical level, typically by walking to destinations
from their origins.53 According to a systematic review and meta-
analysis of cohort research, the initiation of public transport was
correlated with a 0.30 kg/m2 reduction in BMI.54 Also, good
public transport accessibility may also bring several environ-
mental benefits (e.g., reduced urban air pollution).6 In
particular, good public transport access is required for living a
less car-dependent lifestyle (e.g., elders in the developing
nations). In addition, the booming of bike-sharing in China
leads to another active transport way (cycling) that may
contribute to health promotion as well. More specific studies on
more health supportive transport features (e.g., bike-sharing
sites) should be conducted when data are available. Meanwhile,
we found a significant association between distance to nearest
major road and DBP. Living closer to major roads in cities
generally has a higher traffic related air pollution and noise level.
Since air pollutants were not associated with DBP in this study,
other factors (e.g., noise) should be further explored in future.
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Additionally, roadway proximity does not account for traffic
density that may impact exposure to air pollution and noise, so
the assessment of near-road exposure here probably underwent
non-differential misclassification that probably reduced the
results of this study.
Urban green spaces act as vital part of a health support

environment. As suggested from this study, high greenness
would down-regulate the level of SBP and DBP, other than the
risk of hypertension, whereas the literature achieved largely
inconclusive results.12,55 In our multiple exposure models, the
association between NDVI and SBP became statistically
significant, indicating that the association was influenced by
confounding effects of the other urban exposures. As a matter of
fact, not adjusting for other urban exposures may exert obscured
true influence in existing literature. One limitation in this study
(as well as in most existing literature) should be acknowledged
that NDVI could not reveal the diversity, accessibility, security
and comfortability of such green spaces. Compared with green
spaces, the role of blue spaces on BP has been less studied. This
study suggested that living far from blue spaces would increase
the level of DBP in urban adults. Surprisingly, according to one
survey in rural areas of China,56 subjects living closer from the
blue spaces achieved a higher level of fasting blood glucose and
increased risk of type 2 diabetes. This may be associated with
different quality of blue spaces in urban and rural areas of China,
whereas distancemerits could not reflect. Great attention should
be given to the possible urban−rural difference for “blue-health”
association, which should be examined in depth. Furthermore,
given the limited research on this topic, more research should be
carried out to confirm the relationship, and more insights should
be gained into typologies of blue spaces work. Together, more
green and blue spaces exposure indicators (e.g., area-based
methods, visibility-based approaches and self-reported access
and exposure) may be attempted in the future.
This study has certain strengths. First, this is a multi-city study

with various urbanization levels, enhancing external validity or
generalizability of the results in this study. Second, we have
included multiple urban environmental exposures accounting
for the complex correlation between them, and examined
different BP outcomes (SBP, DBP and hypertension), allowing a
comprehensive assessment of BP health. Third, a statistical
approach with several advantages (e.g., reduce false-negative
rate) was applied with three complementary steps, having been
theoretically tested39 and employed in urban-exposome
studies.15,20,21 Findings here have several public health
implications. Health care providers, as well as city planners
should recognize the substantial significance of a favorable urban
environment in keeping BP healthy in China, especially in the
context of global urbanization. Besides, the observing associa-
tions with one BP measure over the other may suggest that
diversified health management strategies should be offered to
patients with different types of high BP. Further interdisciplinary
studies, involving medical and urban design researchers, are
necessary to clarify the complex associations between the urban
environment and BP.
Some limitations should also be stated. First, our cross-

sectional design limited the ability of causal inference between
urban exposures and BP. Nevertheless, the reverse causality
arouses less attention for the associations between urban
exposures and BP, since BP status is not likely to impact the
mentioned exposures. Still, longitudinal research should be
conducted to further confirm the causal interpretation of
associations. Second, residential self-selection bias is a possible

confounding factor. For instance, people with high physical
activity tend to settle in a more walkable community, which may
influence the results of this study. In this study, the personal
community selection preference information was not collected
and could not be adjusted in the model. Some approaches,
including natural experiments (e.g., relocated by government),
and within-family designs can be considered in future research.
Thirdly, we have included many urban environmental
exposures, whereas not all could be included. Some factors
(e.g., noise) were not included for data availability. Fourthly, we
could not conduct an analysis by city due to the large number of
independent variables with relatively a small number of
participants per city.
This study reveals that community walkability may be a major

determinant of hypertension risk through a systematic analysis
of the relationship between numerous environmental exposures
and BP. And we found that PM2.5 exposure has a remarkable
impact on SBP level, while increasing greenspaces, improving
walkable supportive environment, and public transportation
accessibility could help to ameliorate this adverse effect,
suggesting that optimization of urban environment is of great
significance for building an BP healthy urban environment.
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