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A Priori Surface Reflectance-Based Cloud Shadow
Detection Algorithm for Landsat 8 OLI
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Abstract— Prior knowledge of the background land surface
reflectance (LSR) constitutes one of the most important factors
affecting the precision of cloud shadow detection. To resolve
this problem, a surface reflectance-based cloud shadow detec-
tion (SRCSD) algorithm is proposed for multitemporal Landsat
images. Monthly surface reflectance data sets constructed from
MODIS surface reflectance products (MOD09A1) were used
to provide the background LSR for cloud shadow detection.
Based on the background LSR, the possible variation in the
top of atmosphere (TOA) reflectance for each clear pixel can be
estimated using the radiative transfer equation under different
atmospheric conditions. If a pixel has a smaller TOA reflectance
than the minimum value of the possible range under clear
conditions, it is identified as being shadow covered. One hundred
and twenty-five Landsat 8 Operational Land Imager scenes
covered by various surface types were selected to evaluate the
feasibility of the algorithm. A validation using manual cloud
shadow masks showed that the average producer’s accuracy and
user’s accuracy were approximately 0.805 and 0.893, respectively.
A comparison of the results of the SRCSD algorithm with those
of an object-based cloud shadow detection algorithm (Fmask)
recently developed for Landsat images revealed that SRCSD
generally detects cloud shadows better than Fmask. The most
significant improvement of the SRCSD algorithm is the better
detection capability for thin and broken cloud shadows, and this
algorithm can be extended to multiple types of satellite data after
proper modification.

Index Terms— Cloud shadows, Fmask, Landsat 8 Operational
Land Imager (OLI), surface reflectance-based cloud shadow
detection (SRCSD).

I. INTRODUCTION

COMPARED with previous Landsat instruments, the Land-
sat 8 Operational Land Imager (OLI), which exhibits

an enhanced radiometric resolution of 12 bits, boasts greatly
enhanced features, including the addition of a deep blue chan-
nel (band 1) and a new shortwave infrared channel (band 9)
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which is used to detect water resources, coastal zones, and
cirrus clouds. These improvements, which significantly extend
the application range of Landsat 8 OLI data, improve the
accuracy of both the retrieval of biogeochemical properties
and the identification of land cover. However, in the field of
remote sensing, clouds and cloud shadows lead to numerous
problems, including inaccurate atmospheric corrections, biased
estimations of biogeochemical properties, and erroneous land
cover classification and land cover change detection results [1].
In addition, the spectral signatures of cloud shadows can vary
with the signal characteristics of the underlying surface, and
the shadows of thin clouds can be brighter than the average
surface reflectance due to the penetration of solar radiation [2].
Therefore, the detection of cloud shadows can be difficult.

Current cloud shadow detection algorithms can be mainly
organized into two categories: threshold-based algorithms
and matching-based algorithms. Threshold-based algorithms
employ thresholds to separate shadow-covered observations
from clear observations [3]–[5]. However, due to the com-
plexity of the spectral characteristics of the land surface and
especially of thin clouds, these methods encounter difficulties
when selecting suitable thresholds.

Cloud shadows result from the projection of clouds onto the
land surface. If a cloud is detected, the direction and area of the
cloud shadow can be deduced according to the cloud height,
solar azimuth, and zenith angle. Matching-based algorithms
have been developed based upon this principle [6]–[8]. These
methods are based on mathematical concepts that utilize
a priori knowledge and geometric constraints to simulate the
projection regions. However, most applications still contain
restrictions due to elevation variations and time-consuming
geometric cloud/shadow considerations, as elevation variations
may cause errors in cloud height estimates.

To improve the cloud shadow detection performance
using Landsat 8 OLI images, this paper proposes a sur-
face reflectance-based cloud shadow detection (SRCSD)
algorithm. Time series of global monthly surface reflectance
data sets were constructed to calculate the potential apparent
clear-sky reflectances by using the radiative transfer equation.
Pixels with apparent reflectances lower than the possible min-
imum are identified as cloud shadows. The proposed approach
is clearly distinctive from previous algorithms because it uses
a dynamic threshold. In addition, this method does not depend
on the cloud height, which may contain large errors.

II. PRINCIPLE

The instrument-measured signals can be described as
follows [9]:
L(τα, μs, μv ,∅) = L0(τα, μs , μv,∅)

+ ρ

1−s(τα) · ρ
· Fd (τa, μs)T (τa, μv ) (1)
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Fig. 1. Global monthly surface reflectances produced from the MOD09A1
product for January, April, July and October in 2014.

where L(τα, μs , μv,∅) is the top of atmosphere (TOA)
reflectance; L0(τα, μs , μv ,∅) is the upward radiance of the
atmosphere for a zero surface reflectance (referred to as the
path radiance); Fd(τa, μs) and T (τa, μv ) are the downward
and upward atmospheric hemispherical reflectances, respec-
tively; μs and μv are the cosines of the solar zenith angle
(SZA) and view zenith angle (VZA), respectively; and τα is
the aerosol optical depth (AOD).

From (1), the TOA reflectances of shadow-covered obser-
vations will be much lower than those of clear-sky obser-
vations due to a reduced value of Fd (τa, μs). However,
when semitransparent clouds are present, the reflectances
of cloud shadows over bright surfaces (e.g., snow) at visi-
ble wavelengths or vegetation at near-infrared (NIR) wave-
lengths can still be highly affected by the penetration of
solar radiation. Therefore, it is not easy to accurately dis-
tinguish shadow-covered from clear-sky observations, espe-
cially when the shadows are cast by thin clouds. However,
if we know the prior LSR for each observation, the pos-
sible TOA reflectance range for clear observations can be
estimated via (1) under common atmospheric conditions.
The clear-sky/shadow-covered status for each observation is
determined by a comparison with this possible range. If
an observation exhibits a TOA reflectance that is lower
than the possible range, the observation is more likely
shadow-covered.

III. METHODOLOGY

A. Construction of the Prior Land Surface
Reflectance Data Sets

MODIS surface reflectance products (MOD09) provide
ground-level surface spectral reflectance measurements that
exclude the impacts of atmospheric scattering and absorption.
Each pixel in the MOD09A1 product, which is an 8-day
gridded level-3 surface reflectance product with 500-m spatial
resolution, contains the best possible level-2 gridded obser-
vation selected on the basis of high observational coverage,
low viewing angle, absence of clouds or cloud shadows, and
aerosol loading [10].

Bands 1–4 from MOD09A1 surface reflectance observations
in 2013–2016 were selected to construct global monthly data
sets as inputs for the cloud shadow detection. The second
lowest surface reflectance value among all of the images in
a given month was chosen to further reduce the impacts of
clouds and cloud shadows. Fig. 1 displays the Red-Green-
Blue (RGB) composition of channels 2, 1 and 4 for January,
April, July, and October in 2014.

Fig. 2. (a) MODIS and Landsat 8 OLI spectral response functions.
(b) Comparison of the surface reflectances in the blue band between MODIS
and Landsat 8 OLI.

TABLE I

TRANSFORMATION PARAMETERS FOR EACH CHANNEL

B. Transformation of the MODIS LSR to the
Landsat 8 OLI LSR

Fig. 2(a) shows the spectral response function for each
Landsat 8 OLI and MODIS band used for the detection
of cloud shadows. Significant differences that might cause
differences in the LSRs for the same target are detected among
each band. Therefore, to identify cloud shadows with a high
precision, it is necessary to convert the MODIS LSR to the
Landsat 8 OLI LSR.

To transform the MODIS LSRs into Landsat 8 OLI LSRs,
the spectral curves of 18 plants, 14 artificial materials,
9 liquids, and 13 soils with wavelengths ranging from 400 to
1000 nm were obtained from the United States Geological Sur-
vey (USGS) spectral library [11]. The relationships between
individual measured spectra and the corresponding surface
reflectance of each sensor were analyzed based on the fol-
lowing equation [12]:

ρ =
∫ λ2
λ1

S(λ) × ρr (λ)dλ
∫ λ2
λ1

S(λ)dλ
(2)

where ρ is the surface reflectance for each band used for the
detection of cloud shadows; S(λ) is the spectral response func-
tion; and ρr (λ) is the observed spectral reflectance obtained
from the USGS spectral library. As shown in Fig. 2(b),
the derived MODIS LSRs agree well and exhibit an obvious
linear relationship with the Landsat 8 OLI LSRs in the blue
channel. Thus, the Landsat 8 OLI LSRs can be retrieved from
the MODIS LSRs accordingly

ρL = a · ρM + b (3)

where ρL and ρM are the Landsat 8 OLI and MODIS LSRs,
respectively, and a and b are two coefficients.

Table I illustrates the linear transformation results. The
surface reflectance correction results reveal the root mean
square error (RMSE) was effectively reduced, indicating that
the error was properly corrected.
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C. Threshold Calculation for the Detection
of Cloud Shadows

In the absence of the effects of clouds and cloud shad-
ows, the TOA reflectance for a known LSR has a definite
range under normal atmospheric and observational conditions.
Accordingly, the Second Simulation of the Satellite Signal in
the Solar Spectrum (6S) model was used to simulate the vari-
ability in TOA reflectance values under different atmospheric
and observational conditions over surface targets [13].

With respect to the parameters of simulated processes, dif-
ferent types of atmospheric and aerosol models are considered.
Changes in the TOA reflectance according to the LSR are
simulated from the AOD variations (varying from 0.1 to 0.6
with a step of 0.1) and various geometrical conditions (the
SZA varying from 10° to 55° with a step of 15° and the VZA
varying from 10° to 40° with a step of 10°). The presence
of cloud shadows will drastically reduce the observed TOA
reflectance. Therefore, the minimum value of the derived TOA
reflectance distribution can be simulated as a function of the
surface reflectance and observational geometry to differentiate
shadow-covered observations from clear-sky observations:

Tblue = 0.6410 × ρL + 0.0336 · cos α cos β + 0.0299 (4)

Tgreen = 0.6555 × ρL + 0.0187 · cos α cos β − 0.0079 (5)

Tred = 0.7289 × ρL + 0.0121 · cos α cos β − 0.0201 (6)

TNIR = 0.8324 × ρL+0.0059· cos α cos β−0.0930 (7)

where Tblue, Tgreen, Tred, and TNIR are the minimum TOA
reflectances for the blue, green, red, and NIR bands, respec-
tively; ρL is the transformed surface reflectance; and α and β
are the SZA and VZA, respectively.

Due to differences in the spatial resolution, a search is
conducted for the surface reflectance of a Landsat 8 OLI pixel
within the corresponding monthly surface reflectance data set
according to the geographic coordinates of the pixel center.
In the SRCSD algorithm, if the TOA reflectance of a pixel
is below the minimum possible range of the TOA reflectance
calculated with the surface reflectances under different obser-
vational and atmospheric conditions, the pixel is identified
as a potentially shadow-covered observation, and a shadow-
covered observation is identified only if it contains a cloud
shadow in all four band tests

Ri = Ro < Ti (i = blue, green, red, NIR) (8)

R = Rblue ∩ Rgreen ∩ Rred ∩ RNIR (9)

where Ri is the result in a given channel; Ti denotes the
minimum TOA reflectances for the blue, green, red, and NIR
bands; Ro is the observed value; R is the output result; and
Rblue, Rgreen, Rred, and RNIR are the results in the blue, green,
red, and NIR bands, respectively.

IV. EXPERIMENT AND VERIFICATION

A. Comparison with the Fmask Method

A total of 125 Landsat 8 OLI images over different surface
types within the 2013–2016 period were selected for experi-
mentation to evaluate the feasibility of the SRCSD algorithm.
Furthermore, cloud shadows cast by thin, thick, and broken
clouds over several typical surface types (i.e., soil, vegetation,
desert, soil, and water) were selected to validate the accuracy
of the proposed approach.

To highlight the superiority of the SRCSD method,
the SRCSD results were compared with those obtained by

Fig. 3. Comparison of the SRCSD and Fmask results for Landsat
tiles over vegetated areas. (Left) Standard false color composite images.
(Middle) SRCSD results. (Right) Fmask results. Black: clear sky. White:
clouds. Gray: cloud shadows. (a) Thick cloud shadows over densely vegetated
area. (b) Thin cloud shadows over cropland.

the Fmask algorithm, in which cloud shadows are initially
extracted based on a flood-fill transformation and then con-
firmed based on an object-based cloud and cloud shadow
matching approach [2], [7]. For each comparison shown,
the Fig. 3 (left) displays the standard false color composite
Landsat image, while the Fig. 3 (middle) and (right) are the
results of the SRCSD and Fmask algorithms, respectively
(black: clear sky; white: clouds; and gray: cloud shadows).

Fig. 3(a) and (b) shows a comparison of the cloud shadow
masks over vegetated areas generated by the SRCSD and
Fmask algorithms. According to Fig. 3(a), both the SRCSD
algorithm and the Fmask algorithm can accurately detect
thick cloud shadows due to their relatively darker reflectances,
as the spectral characteristics of the cloud shadows differed
significantly from those of the vegetation. However, the Fmask
method may erroneously identify cloud shadows as clouds,
because it expanded all of the clouds by three pixels in all eight
connected directions. Fig. 3(b) shows that the SRCSD algo-
rithm can also accurately identify the thin cloud shadows over
cropland using short-period references; that is, the changes in
the cropland reflectance during the growth season are much
slower than those of cloud shadows. However, the Fmask
technique cannot match the shadows of thin, high clouds.
Moreover, the incredibly thin cloud shadows located within
the blue rectangle (Fig. 3) are too thin; therefore, the TOA
reflectance does not differ significantly from the model-
estimated values. Unfortunately, this omission is usually not
avoidable in the SRCSD algorithm.

Fig. 4 shows the cloud shadow masks generated by the
SRCSD and Fmask algorithms for broken and thin clouds
over desert and bare soil. The reflectances of the clear-sky
observations over bright surfaces were much larger than those
of the shadow-covered observations; the reflectances decreased
dramatically when cloud shadows were present, and therefore,
it was easy to find an extreme point to differentiate the image
[Fig. 4(a)]. In addition, when the clouds are semitranspar-
ent, the darkening effects of the cloud shadows are subtle;
consequently, the reflectances of the thin cloud shadows over
bright surfaces were higher than those of general objects and
similar to the surroundings [Fig. 4(b)]. The SRCSD method is
a pixel-based algorithm, and thus, it identified very small and
thin cloud shadows that are often misidentified by object-based
algorithms (Fmask).
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Fig. 4. Comparison of the SRCSD and Fmask results for Landsat tiles over
a bright area. (a) Broken cloud shadows over desert. (b) Thin cloud shadows
over desert.

Fig. 5. Comparison of the SRCSD and Fmask results for Landsat tiles over
vegetated and water areas. (a) High cloud shadows over a sparsely vegetated
area. (b) Thin cloud shadows over a water area.

Fig. 5 shows the cloud shadows identified using the SRCSD
and Fmask algorithms over sparse vegetation and water.
Although slight differences existed between the water and
shadow-covered observations, the SRCSD algorithm was able
to effectively distinguish most of the cloud shadows over water
using a single blue band [Fig. 5(b)]. The Fmask algorithm
assumes that a maximum match similarity exists between
clouds and their shadows. However, dark objects that exist
between the clouds and their shadows can complicate the
matching of clouds with their associated cloud shadows in
the Fmask algorithm, and consequently, cause errors in the
cloud shadow identification (Fig. 5).

The Fmask algorithm failed to identify shadow-covered
observations due to false matches in some regions, especially
on the edges of scenes in which the clouds were absent
[Fig. 6(a)] or where the cloud results were incorrect [Fig. 6(b)].
However, the pixel-based SRCSD algorithm successfully dis-
tinguished these kinds of shadows using the differences in the
TOA reflectances between the clear-sky and shadow-covered
observations.

B. Accuracy Assessment of SRCSD

Forty-one tiles covering several typical land types were
chosen to quantitatively analyze and demonstrate the perfor-
mance of the SRCSD algorithm. Two pairs of comparisons

Fig. 6. Comparison of the SRCSD and Fmask results for Landsat tiles over
bare soil. (a) Thin cloud shadows at the edge of the scene. (b) Thick cloud
shadows over a bare soil area.

are presented to illustrate the accuracy: one pair comprises
SRCSD results and manual cloud shadow masks, and the sec-
ond pair is composed of cloud shadow masks from the
SRCSD and Fmask algorithms. Each observation from each
pair of masks was labeled as belonging to one of seven cate-
gories: shadow-covered by both methods (hereafter referred
to as ShadowBoth); clear sky by both methods (hereafter
referred to as ClearBoth); clear sky by the manual mask and
SRCSD algorithm (hereafter referred to as ClearM and ClearS,
respectively); shadow covered by the manual mask (hereafter
referred to as ShadowM); shadow covered by the SRCSD
algorithm (hereafter referred to as ShadowS); and shadow-
covered by the Fmask algorithm (hereafter referred to as
ShadowF). Five indices (10)–(13) were chosen as indicators
for the accuracy assessment

PA = ShadowBoth

ShadowM
= 1−Omission Error (10)

UA = ShadowBoth

ShadowS or ShadowF
= 1−Commission Error

(11)

SumPro = ShadowM·ShadowS+ClearM · ClearS

(12)

KHAT = Total Pixels · (ClearBoth+ShadowBoth)−SumPro

Total Pixels2−Sumpro
(13)

where Total Pixels is the total number of pixels in the tile,
KHAT is an estimate of kappa analysis.

Fig. 7 shows the different indicators used for the accuracy
assessment of the SRCSD algorithm. The total counts of
ShadowM and ShadowS were calculated, and the percentage
distributions of the shadow-covered observations with both
the manual masks and the SRCSD algorithm are displayed.
The ShadowS observations were relatively smaller than the
ShadowM observations. The slope and intercept of the regres-
sion equation were 0.96 and 0.005, respectively. The R2 value
was 0.9111, and the RMSE was 0.0175, indicating that the
shadow-covered observations from the SRCSD algorithm are
reliable. The average KHAT was 0.8202. These results reveal
that the SRCSD algorithm results have good agreement with
the results of the manual masks. To further affirm the accuracy
of the SRCSD algorithm, the producer’s accuracy (PA) and
user’s accuracy (UA) from the SRCSD and Fmask results were
selected for comparison. The average PA from the SRCSD
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Fig. 7. Accuracy assessment for the SRCSD algorithm. (Top left) Agreement
between the SRCSD results and manual masks. (Top right) Kappa analysis of
the SRCSD algorithm. (Bottom) Comparison between the SRCSD and Fmask
algorithms in terms of the PA and UA.

results (0.8051) was significantly larger than that from the
Fmask results (0.4405), and the mean UA for SRCSD (0.8926)
was much higher than that for Fmask (0.5350), suggesting that
the clear-sky observations from SRCSD were misidentified
less often than those from Fmask. The bias distributions of
the PA and UA suggest that the cloud shadow masks from
the SRCSD algorithm are superior to those from the Fmask
algorithm.

V. CONCLUSION

An algorithm was developed to detect cloud shadows in
Landsat 8 OLI images supported by prior LSR data sets.
The minimum values of the Landsat 8 OLI TOA reflectance
for a certain LSR were simulated using the 6S model under
normal atmospheric conditions. On that basis, a threshold
calculation model was constructed and used to differentiate
shadow-covered and clear-sky observations.

The SRCSD algorithm was applied to Landsat 8 OLI images
to generate cloud shadow masks over different types of under-
lying surfaces and then compared with the Fmask method. The
results showed that the SRCSD algorithm performed better
than the Fmask algorithm, especially when used to identify
broken cloud shadows and thin cloud shadows over different
land types. The error matrix indicated that approximately
81% of the shadow-covered observations in the images were
correctly distinguished, while only approximately 11% of the
shadow-covered observations from the SRCSD algorithm were
misidentified.

There are three potential problems in the proposed approach.
First, sudden changes in the surface type could lead to a
mismatch in the surface type, thereby producing significant
changes in the LSR and leading to erroneous shadow recogni-
tion results. However, changes in surface types, such as urban
expansion and deforestation, are usually slow processes, and
in the future work, these errors can be reduced by shortening
the update period of the prior LSR data sets. Second, spatial
matching errors between the LSR data and Landsat 8 OLI TOA
reflectance data may lead to linear distributions of objects that

are misidentified as cloud shadows. Improving the matching
accuracy and the prerecognition of linear objects will help
reduce such errors. Third, complicated conditions, such as
extremely thin cloud shadows and heavy aerosols, may exist.
The SRCSD algorithm may not be able to identify some
extremely thin cloud shadows that are not sufficiently dark for
identification as cloud shadows; however, these cloud shadows
will not pose highly serious problems for most remote sensing
activities. Meanwhile, heavy aerosols will diffuse within cloud
shadows and cause them to exhibit reflectances that are even
higher than the minimum values. Unfortunately, this kind of
omission is usually not avoidable.
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