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ABSTRACT
Deep learning methods can play an important role in satellite data
cloud detection. The number and quality of training samples directly
affect the accuracy of cloud detection based on deep learning.
Therefore, selecting a large number of representative and high-
quality training samples is a key step in cloud detection based on
deep learning. For different satellite data sources, choosing sufficient
and high-quality training samples has become an important factor
limiting the application of deep learning in cloud detection. This
paper presents a fast method for obtaining high-quality learning
samples, which can be used for cloud detection of different satellite
data with deep learning methods. AVIRIS (Airborne Visible Infrared
Imaging Spectrometer) data, which have 224 continuous bands in
the spectral range from 400–2500 nm, are used to provide cloud
detection samples for different types of satellite data. Through visual
interpretation, a sufficient number of cloud and clear sky pixels are
selected from the AVIRIS data to construct a hyperspectral data
sample library, which is used to simulate different satellite data
(such as data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Landsat Operational Land Imager
(OLI) satellites) as training samples. This approach avoids selecting
training samples for different satellite sensors. Based on the Keras
deep learning framework platform, a backpropagation (BP) neural
network is employed for cloud detection from Landsat 8 OLI, National
Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) and Terra MODIS data. The results are compared with
cloud coverage results interpreted via artificial vision. The results
demonstrate that the algorithm achieves good cloud detection
results for the above data, and the overall accuracy is greater than
90%.
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1. Introduction

Statistical analysis shows that clouds cover approximately 67% of the Earth’s surface
(King et al. 2013). Optical sensors cannot effectively receive information from the surface
due to cloud coverage, which greatly impacts the interpretation of ground objects and
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the quantitative inversion of the physical parameters of the land, ocean and atmosphere
(Harshvardhan, Randall, and Corsetti 1989; Jedlovec, Haines, and Lafontaine 2008; Li et
al. 2017). Clouds are an important climatic and meteorological element that can help
identify weather phenomena such as rainstorms and hurricanes and track and forecast
meteorological changes. Therefore, the study of cloud detection methods has attracted
the attention of remote sensing researchers.

Methods of cloud detection can be divided into two categories: threshold methods
and statistical learning methods. Threshold methods use the high reflectivity of clouds in
the visible and near-infrared bands and the low temperature in the thermal infrared
band to detect clouds. Because of their simplicity and fast calculation speed, threshold
methods have been widely used in cloud detection in remote sensing images, such as
the APOLLO (AVHRR Processing scheme Over cLouds, Land, and Ocean) algorithm and
the CLAVR (Clouds from the Advanced Very High Resolution Radiometer) algorithm used
for AVHRR (Advanced Very High Resolution Radiometer) data cloud detection (Saunders
and Kriebel 1988; Stowe et al. 1999), the MODIS (Moderate Resolution Imaging
Spectroradiometer) cloud mask algorithm (Ackerman et al. 2015) used for the cloud
product generated from MODIS 1B data (MODIS Characterization Support Team 2009),
and the Fmask cloud mask algorithm used for Landsat-series data cloud detection (Zhu
and Woodcock 2012, 2014). The band selection and threshold determination depend on
analysis of the spectral differences between clouds and typical surfaces. However, due to
the complexity of surface structures and cloud states, it is usually difficult to consider the
influencing factors comprehensively. Therefore, threshold-based methods usually have
low accuracy and are unstable, especially in some areas with high reflectivity, in addition
to areas covered by thin and fragmentary clouds.

Based on sample data, the cloud detection method of statistical learning includes
cluster analysis, support vector machines (SVMs), artificial neural networks (ANNs) and
other pattern recognition methods to achieve cloud detection. Such methods can
automatically learn the features of clouds and the typical land types directly from the
input samples and train the cloud detection method using training samples. Richard
(1994) uses a 16 × 16-pixel matrix as the unit area and uses the calculated spectrum,
texture and other physical features as the input to the probabilistic NN (PNN). AVHRR
data are divided into 10 categories, including convolution clouds, cirrus clouds and
other clear sky through training (Richard 1994). Liou, Azimi-Sadjadi, and Reinke et al.
(1994) extracts the texture features of clouds based on the singular value decomposition
(SVD) method and uses a self-organizing map network to classify the features and
perform cloud detection.

Cloud detection methods based on statistical learning are based on spectral and
texture information provided by sample data. Cloud detection is performed using
pattern recognition methods such as clustering analysis, SVMs and ANNs. Generally,
the accuracy and stability of cloud detection methods based on statistical learning are
better than threshold method, but such methods are still limited by people’s under-
standing of the spectral and texture differences of different objects and clouds.

Deep learning based on ANNs is currently widely used in satellite image cloud
detection. A neural network (NN) usually involves more than two hidden layers; thus,
it is a deep learning method. Like shallow NNs, deep NNs use features that are
specifically learned from data rather than manual features designed based on specific

1350 L. SUN ET AL.



knowledge. Deep learning, as an alternative to NNs, has been rapidly developed due to
advances in algorithms, high-performance computing and big data. It has been applied
to computer vision, speech recognition and natural language processing. Additionally,
there are many tasks in remote sensing data processing and information extraction that
use deep learning, including target detection, land cover and land-use classification, and
change detection (Papadomanolaki et al. 2016).

However, the application of deep learning to remote sensing still has many chal-
lenges. John Ball, Anderson, and Chan (2017) listed some of the unsolved challenges and
opportunities; the first problem is the inadequacy of learning samples. Many deep
learning systems have thousands or millions of parameters, and they require a large
amount of training data (Sun et al. 2017). When using a deep learning algorithm for
cloud detection with specific satellite data, a large number of representative training
samples must be selected from the data, which requires expert knowledge and signifi-
cant amounts of time, energy and money.

To reduce the work associated with sample identification in cloud detection using
satellite data, this paper proposes to use hyperspectral AVIRIS (Airborne Visible Infrared
Imaging Spectrometer) data with continuous spectral coverage in the spectral range
between 360 and 2500 nm to identify samples. A large number of AVIRIS data are
selected to mark training samples and construct a cloud detection pixel sample data-
base based on the AVIRIS data. According to the spectral response function of the sensor
from which the data are obtained (such as MODIS, Landsat Operational Land Imager
(OLI), etc.), labelled samples from the AVIRIS data are simulated to mimic data from the
sensor under consideration, which are then used as the training samples of the sensor
for cloud detection in the deep learning method. Different sensors can use the same
training samples; thus, users can focus on increasing the quality of the training samples
using AVIRIS data. The number and quality of training samples can be greatly improved,
and the time and cost required to create training samples can be greatly reduced.

Based on the Keras deep learning framework platform, a deep backpropagation (BP)
NN for cloud detection is designed (Graziotin and Abrahamsson 2013). The multispectral
sample data are input into the network, and multispectral sensor cloud detection rules
based on spectral characteristics are obtained.

The technical flowchart is shown in Figure 1.

2. Construction of cloud detection training sample dataset based on
AVIRIS

2.1. AVIRIS data introduction

AVIRIS is an instrument developed and owned by the National Aeronautics and Space
Administration (NASA)/Jet Propulsion Laboratory (JPL). The instrument measures 224
continuous spectral bands of solar energy with a spectral range of 360–2500 nm (Green
et al. 1998). AVIRIS is now an operational instrument with reliable radiation and spectral
calibration. Typically, images with a 20 m pixel size are obtained from the NASA Er-2
aircraft at an altitude of 20 km. The ground width is approximately 12 km. AVIRIS can
also obtain images of low-altitude aircraft with a spatial resolution of 1–4 m. AVIRIS
radiation spectroscopy is used to identify, measure and monitor the composition of the
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Earth’s surface and atmosphere based on molecular absorption and particle scattering
characteristics. AVIRIS has flown and acquired a large amount of data in North America,
including Canada, southern Mexico and parts of the United States.

2.2. Establishment of the training sample dataset

To obtain a high-quality training sample dataset, 32 different AVIRIS images from
different regions and at different times between 2007 and 2011 were selected. The
data contain different types of land surfaces, such as vegetation, buildings, water bodies,
and rocks, and clouds of different shapes, such as thin, cirrus, and fragmentary clouds.
The selection of samples relies on manual visual interpretation experience. To improve

Figure 1. Technical flowchart.
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the accuracy of sample determination, false-colour synthetic images and cirrus bands are
used to enhance the surface and cloud information. A total of 305,485 cloud pixels in
398 regions and 461,829 clear-sky pixel samples in 370 regions were selected.

Studies have shown that differences in the thickness and morphology of clouds can
lead to large differences in spectral reflectance characteristics (Yuan and Hu 2015; Xu,
Wong, and Clausi 2017). Considering the influence of the cloud height and sensor
observation angle on variations in the cloud pixel reflectivity, thick clouds, thin clouds,
fragmentary clouds and cloud edge regions are included in the cloud pixel sample
dataset. In particular, the choice of thin clouds should consider the influence of different
underlying surfaces on the cloud reflectance, and thus cloud pixels above vegetation,
water bodies, towns, and bare land were selected.

Figure 2 is a typical sample of cloud pixels in a pixel sample dataset, including thick
clouds, thin clouds, and fragmentary clouds. The reflection spectrum curves of the three
cloud types show that the thick clouds have obviously higher reflectivity than the thin
clouds and fragmentary clouds, which is because in the thick cloud occlusion area, the
energy received by the optical sensor mainly comes from the reflection of the sun
spectrum by clouds. Therefore, there is little difference in thick cloud reflectance on
different underlying surfaces. Observing and comparing the thin cloud spectrum curves
under different underlying surfaces reveals that the different types of surface cover have
a greater influence on thin cloud reflectivity. In the thin cloud region, the energy
received by the sensor mainly originates from the partial contribution superposition of
the cloud layer and surface reflection. Water bodies have lower reflectivity in the visible
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Figure 2. Example sample of cloud pixels.
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and near-infrared bands than other typical surfaces, resulting in the thin cloud reflectiv-
ity above water being lower than the thin cloud reflectivities on other underlying
surfaces.

The selection of the clear-sky pixel dataset mainly considers the difference in
reflection characteristics caused by different underlying surface types, and therefore,
it is necessary to select a sufficient number of samples, such as cultivated land, forest,
grassland, bare land, water bodies, artificial surfaces, cloud shadows and other areas.
The spectral reflectance characteristics of some underlying surfaces exhibit large
differences over time, including differences in the vegetation growing area, and
thus the clear-sky pixel sample dataset is based on multitemporal images. Due to
the accumulation of urban populations, urban land surface utilization types are
complex, including buildings, hardened roads, and vegetation cover. The spectral
reflectance characteristics of these features are different, and the construction sur-
faces of different materials also exhibit large differences. When the dataset is used,
the data are no longer subdivided and are considered to be urban areas. Cloud
shadows are another major factor causing differences in surface reflection. The
projections of clouds with different thicknesses on the surface is quite different.
Combined with the difference in the underlying surface, the reflection characteristics
of the cloud shadow area vary widely, and therefore, the clear-sky surface pixels also
include a variety of cloud shadows. Figure 3 is a typical area selected by clear-sky
pixels and its reflection spectrum curve. Clear-sky pixels are divided into four classes:
vegetation, water, town, and cloud shadow according to the type of surface cover-
age. Based on the reflection spectrum curve, the reflectivities of water and cloud
shadow areas are low, and the reflection characteristics are also different due to the
different characteristics of water depth and water suspension content. The differences
in the types of underlying surface greatly influence the reflection spectrum of the
cloud shadow area. The high reflectivity of the artificial surface has a certain similarity
with the reflection characteristics of the cloud, which is the main reason for
misjudgement.

2.3. Simulation of multispectral remote sensing data

To use the training samples of hyperspectral data to support the deep learning method
to detect cloud pixels of multitype sensors, training samples of different remote sensing
data must be simulated.

From the perspective of energy, optical remote sensing imaging is actually a sensor
process that uses the photoelectric conversion device to quantify and sample received
energy. In terms of wide-band multispectral sensor data, the energy of each band is
a weighted synthesis of the energy over a range of wavelengths. Hyperspectral remote
sensing data have many relatively narrow bands. By simulating the imaging process of
optical sensors, multispectral image data can be obtained by weighted synthesis of
hyperspectral bands over the wavelength coverage (Verhoef and Bach 2003; Knudsen
2005; Jia et al. 2014; Ting, Li, and Fei 2010). Figure 4 shows a spectral response function
comparison of the red, green and blue bands of the AVIRIS and multispectral data. As
can be observed from the figure, the band ranges of Landsat 8 OLI, VIIRS and MODIS
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covers a continuous narrow band of multiple AVIRIS data, and therefore, multispectral
data can be simulated using hyperspectral data.

The spectral response characteristics of the sensor to the target depend on the
spectral range and response weight of the band. Based on the spectral response
function of the multispectral sensor, AVIRIS apparent reflectivity and band spacing,
multispectral wide-band data simulation can be performed using the following formula:

LMSI
i ¼

PNHSI

j¼1
ρðλi;jÞΔjLHSIj

PNHSI

j¼1
ρðλi;jÞΔj

i ¼ 1; :::;NMSI (1)
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Figure 3. Typical examples of clear-sky pixels in the pixel dataset.
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where NHSI is the number of hyperspectral sensor channels contained in the broad
band spectrum to be simulated, NMSI is the number of channels to be simulated for
multispectral sensors, LMSI

i is the apparent reflectance of multispectral data, LHSIj is the

apparent reflectance of AVIRIS data, ρðλi;jÞ is the spectral response of the multispectral
sensor corresponding to the centre wavelength of one AVIRIS band, and Δj is the width
of the AVIRIS data single band.

3. Deep learning theory and method

Cloud detection is actually a binary segmentation of remote sensing images that realizes
the classification of cloud and clear-sky pixels. Deep learning has a good self-learning
ability and fault tolerance, which allows for remote sensing image cloud detection. In
this chapter, the theoretical knowledge of deep learning algorithms will be introduced.

3.1. BP algorithm

The BP algorithm was proposed by Paul Werbos (1974). BP is a pivotal algorithm in
multilayer NN training and is the most commonly used and most effective method in
deep learning networks. Figure 5 shows an NN structure consisting of an input layer, an
output layer, and an implicit layer.

Figure 4. Spectral response function comparison of the visible spectrum between the AVIRIS and
multispectral sensors.
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Let a set of training datasets of the NN be ðX; YÞ, where X ¼ ðx1; x2:::xiÞT is the set of input
feature vector and i is the dimension of the feature vector and also the number of nodes of
the input neuron. Y ¼ ðy1; y2:::ymÞ is the set of expected value of the output, that is, the goal
of learning training. Scalar variable Ij is the j-th input value of the hidden layer node; scalar
variable Oj is the j-th output value of the hidden layer node, and the j-th threshold is scalar
variable θj. Scalar variableWi;j is the connection weight between the input layer and hidden
layer, scalar variable Im is the m-th input value of the output layer neurons, and the m-th
threshold is scalar variable θm. Scalar variable Wj;m is the connection weight between the
hidden layer and output layer, and fðÞ is the activation function. The BP algorithm training NN
includes two main steps of forward propagation and backward feedback:

3.1.1. Forward propagation
In an NN structure, a neuron has multiple inputs and one output, and each neuron input
can be a linear combination of the output’s upper neuron. Starting from the input layer,
the input of the next neuron layer is calculated layer by layer until the output is
obtained. This technique is the forward propagation process of the NN. The calculation
process of a three-layer NN is as follows.

The input of the hidden layer node is as follows:

Ij ¼
X

j

Wi;jxi (2)

The output of the hidden layer node is as follows:

Oj ¼ fðIj � θjÞ ¼ fð
X

j

Wi;jxi � θjÞ (3)

Figure 5. ANN model.
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The output of the output layer node is as follows:

yj ¼ fðOj � θmÞ ¼ fð
X

j

Wi;jOi � θmÞ (4)

3.1.2. Backward feedback
The BP process of the error is based on the gradient descent method. By correcting the
connection weights of the neurons in the network and the node threshold, the specific
calculation process is as follows.

The error of the output node is as follows:

E ¼
P
m
ðym � OmÞ2

2
(5)

Calculate the output layer and hidden layer node errors separately.
The output layer is as follows:

δm ¼ @E
@Wj;m

¼ @E
@Om

@Om

@Wj;m
(6)

The hidden layer is as follows:

δj ¼ @E
@Wi;j

¼ @E
@Oj

@Oj

@Wi;j
(7)

Then, the connection weights and node thresholds are corrected based on the gradient
descent method, where scalar variable k is the number of layers.

The weight of the hidden layer is as follows:

Wi;jðk þ 1Þ ¼ Wi;jðkÞ þ ΔWi;j ¼ Wi;jðkÞ þ ηj
X

δmWj;mf 0ðxÞxi (8)

The weight of the output layer is as follows:

Wj;mðk þ 1Þ ¼ Wj;mðkÞ þ ΔWj;m ¼ Wj;mðkÞ þ ηmðym � OmÞf 0ðxÞOj (9)

The threshold of the hidden layer is as follows:

θjðk þ 1Þ ¼ θjðkÞ þ Δθj ¼ θjðkÞ þ ηj
X

m

δmWj;mf 0ðxÞ (10)

The threshold of the output layer is as follows:

θmðk þ 1Þ ¼ θmðkÞ þ Δθm ¼ θmðkÞ þ ηmðym � OmÞf 0ðxÞ (11)

The forward propagation and backward feedback steps are iteratively performed until
the network error reaches a predetermined target range or the number of trainings
reaches the predetermined upper limit.

3.2. Logistic classifier

The logistic classifier is modelled by the Bernoulli distribution and is a two-class method.
The logistic classifier can divide the data into 0 and 1 and is suitable for the output layer
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in the cloud detection NN. The logistic classification process is simple and mainly
includes linear summation, sigmoid function activation, error calculation, and parameter
modification. The first two steps are used for judgement, and the last two steps are used
for parameter correction. Suppose that there is a training sample set X ¼ X1; X2:::Xmf g,
and the sample expects Y ¼ Y1; Y2; :::; Ymf g, where Xi ¼ ðx1; x2; :::; xnÞT is the feature
vector of the sample; the sample expects that Ym only belongs to category 0 or category
1. b is the offset for the n-dimensional weight vector w.

3.2.1. Linear summation
Linear summation is the weighted summation of eigenvectors, where Z is a set of results
of linear summation, and W is a set of n-dimensional weight vector w:

Z ¼ WTX þ b (12)

3.2.2. Calculate the activation function
The result of the linear summation Z range is ½�1;þ1�, and the category of sample Xi
cannot be judged based on the Z value; thus, the Z value must be mapped between
[0,1], which is the activation function. The sigmoid function is used here as the activation
function, and the formula is as follows:

δðxÞ ¼ 1
1þ e�z

(13)

Substituting the summation result into the activation function, the larger the value of Z,
the closer δðxÞ is to 1, and the other value is closer to 0. When δðxÞ is greater than 0.5,
the sample is judged to belong to class 1. If the value is less than 0.5, the sample is
judged to be class 0. The accuracy of the logistic judgement depends on the weight
vector w and the offset amount b. Initially, the value of w is randomly selected, and the
value of b is 0, which must be iteratively modified to achieve a better classification
effect.

3.2.3. The error calculation
The actual value of the sample and the expected output error are calculated using the
loss function, where C is a scalar variable:

C ¼ ðδðxÞ � yÞ2=2 (14)

3.2.4. The parameter correction
Similar to the parameter correction method of the NN, the correction of the weight and
offset here uses the gradient descent method to obtain the optimal solution via
iteration:

The weight correction is as follows:

w ¼ w � η
@C
@w

(15)

The offset correction is as follows:
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b ¼ b� η
@C
@b

(16)

Where scalar variable η represents the learning rate.

4. Implementation of deep learning cloud detection algorithm based on
keras

Keras can be backed by Computational network toolkit (CNTK), TensorFlow or Theano,
has a highly modular advantage and supports existing common network structures;
additionally, Keras is easy to expand. Based on the included NN layer, activation func-
tion, initialization, loss function, regularization and other modules, users can build their
own networks simply and efficiently in Keras. Thus, a cloud detection BP NN is built in
this paper based on Keras, with Theano as the background.

To reduce the influence of human subjective factors on the cloud detection algorithm
as much as possible, there is no artificial input feature in this paper. Instead, the
apparent reflectance of each band of multispectral data pixels is used as the feature
vector, and the inductive ability of the NN is utilized to learn cloud detection rules.
Studies have shown that a three-layer (including one hidden layer) NN can approximate
any continuous function from n-dimensional to m-dimensional space (Vivone et al.
2014). It is generally believed that increasing the number of hidden layers can enable
the network to learn deeper data features, reduce network errors, and improve accuracy,
but increasing the number of hidden layers also complicates the network and increases
training time. Considering the training efficiency, a deep BP NN with three hidden layers
is used in this paper to construct a cloud detection network framework. Currently, there
is no scientific, universal determination method for setting the network parameters.
A cross-validation method is used in this paper to optimize network parameters, thus
ensuring accuracy and improving the training efficiency. Parameter optimization mainly
involves the number of neurons, batch values, dropout values, and momentum values.

4.1. Neuron number optimization

Generally, the capacity of the common NN increases with an increase in the number of
hidden layer neurons in the network, and more complex NNs can express more complex
mapping functions. However, more neurons can classify more complex data but may
also result in overfitting of training data; that is, there is a strong classification ability for
data noise. The model error during training is low, but the actual classification effect of
the network is poor, and as the number of neurons increases, the network training time
will also increase significantly. Currently, there is no definitive method to determine the
number of neurons in the network. In this paper, we use the cross-validation method to
determine the optimal number of nodes in the hidden layer through many experiments.

During the process of cross-validation, 20% of the sample data are randomly selected
as verification data. Table 1 reports the variation in the data error with the number of
neurons in the network training process using Landsat 8 OLI simulation data. The
dropout value in the network is 0.5, the batch is 128, and the momentum is 0.9. The
iteration of the network is stopped when the training error is less than 0.01 or the
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number of iterations is greater than 1000. As shown in Table 1, when the number of
neurons changes from 2 to 10, the verification data error rate drops sharply. When the
number of neurons in each hidden layer is greater than 10, the network error changes
slightly, but the change is very minor, and thus in the optimization of other parameters,
the number of neurons in the three hidden layers is taken to be 10.

4.2. Batch value optimization

The NN usually stops training when the loss error or the training number reaches
a predetermined threshold. In NN training, the sample data are usually randomly divided
into small datasets of size batches before each iteration and then input into the network as
a small dataset to complete the training (Deng et al. 2009; Sato, Nishimura, and Yokoi 2015).
There are three advantages to this method: training of small datasets synthesized by multiple
samples can effectively suppress the sample noise influence; this method results in improved
memory utilization efficiency, making full use of calculating resources, reducing the number
of backward feedback required for all training samples to iterate once, and immediately
improving the network training speed; as the batch increases, the direction of the gradient
decreases and becomes more accurate, resulting in only minor training oscillation.

Notably, when the batch value is increased to a certain extent, the ability to suppress
noise is no longer improved, and with an increasing batch value, the memory space is
occupied, resulting in a decline in training efficiency. In this paper, different batch values are
used for training. The number of hidden layer neurons in the network is 10, the dropout is
0.5, the momentum is 0.9, and when the training error is less than 0.01 or the number of
iterations is greater than 1000, the network iteration is terminated. As reported in Table 2,
when the batch value changes from 100 to 600, the test error variation is small; after 600, the
error slowly increases, and the network convergence speed also increases.

4.3. Dropout value optimization

When training the network model, the prediction results may be far from the training
results, which is the model overfitting phenomenon. In practical applications, a network
with overfitting cannot be used normally. Typically, during NN training, dropout is

Table 1. Verification error for different numbers of neurons.
Number of neurons 2 3 4 5 6 7 8 9 10 11
Error 0.16 0.147 0.13 0.105 0.081 0.064 0.051 0.039 0.03 0.029
Number of neurons 12 13 14 15 16 17 18 19 20 21
Error 0.029 0.027 0.023 0.024 0.024 0.02 0.019 0.024 0.029 0.026
Number of neurons 22 23 24 25 26 27 28 29 30
Error 0.02 0.018 0.017 0.016 0.016 0.018 0.02 0.019 0.018

Table 2. Verification error for different batch values.
Batch 100 200 300 400 500
Error 0.028 0.027 0.020 0.037 0.025
Batch 600 700 800 900 1000
Error 0.033 0.056 0.061 0.129 0.17

INTERNATIONAL JOURNAL OF REMOTE SENSING 1361



introduced to solve this problem. The principle of dropout is that in the training process
of the NN, the hidden layer temporarily ignores the neurons from the network according
to a certain probability, but these weights are saved in the network. When the next
sample dataset is trained, all the neurons will be randomly enabled. As a network with
n neurons, if you dropout with a probability of 0.5, then there will be 2n sparse networks
(Srivastava et al. 2014), which can greatly increase the speed of the network training
efficiency when other parameters are unchanged. The dropout mechanism makes it
unnecessary for two neurons to be activated simultaneously in a single dropout net-
work, reducing the complex coadaptation between neurons and improving the general-
ization ability of the model (Russakovsky et al. 2014; Szegedy, Liu, and Jia 2015). This
method is simple to implement and is widely used because the method is effective in
practical applications.

In this paper, the proportion of neurons in dropout is 0.5. In theory, the generalization
ability of the NN is the strongest, and the effect is better (Wilson et al. 2017).

4.4. Momentum value optimization

The NN usually uses the gradient descent method to correct the weights, minimizes the loss
function, and achieves the network training purpose. Stochastic gradient descent (SGD) is
a popular method at present. The SGD method is combined with the batch processing
method; that is, each time theweight is updated, the data of the batch number is used instead
of the entire dataset (Besada-Portas et al. 2010). When there are more training data, the
pressure of the computer can be reduced, and when the training data have greater redun-
dancy, the convergence of the random gradient can increase the speed of the network
convergence. Although the SGD method can improve the training efficiency to a certain
extent, there is also a disadvantage. The network weight update is based on the current
sample data of a batch.When the sample data fluctuate greatly, theweight update has a large
fluctuation, which reduces the network training efficiency. To improve this situation, momen-
tum is introduced into the NNmodel, which ensures the weight update direction inherits the
previous sample direction; this increases the stability to some extent and can effectively solve
the problem that the training model falls into local optimal. Momentum values are usually
between 0.5 and 0.9. In this paper,momentumvalues are verified at intervals of 0.1. The results
are reported in Table 3; it can be observed that the verification error varies little with the
momentum.

5. Cloud detection optimization based on a markov random field

Markov random fields (MRFs) (Geman andGeman 1987) are based on the theory of probability
and stochastic processes, and MRFs are one of the commonly used statistical learningmodels
in the fields of computer vision, natural language processing, and pattern recognition. Remote
sensing image is actually discrete sampling by a sensor of the real world. The image is

Table 3. Verification error for different momentum values.
Momentum 0.5 0.6 0.7 0.8 0.9
Error 0.036 0.035 0.03 0.035 0.04
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represented in the formof a two-dimensionalmatrix. The attributeof thepixel is only related to
the several pixels adjacent to the pixel. This correlation is very important for the image analysis.
As a probabilistic graph model for modelling image space structure, the MRF model has few
parameters and strong spatial constraints (Dosovitskiy, Fischery, and Ilg et al. 2015), which has
incomparable advantages in remote sensing image classification. In this paper, theMRFmodel
is used to optimize the cloud detection results of the BP NN.

Image segmentation based on the MRF has twomain features. First, full use is made of the
spatial correlation between image pixels, and this correlation is reflected in the form of energy
in the model; second, the label assignment process of images is usually expressed as the
minimizing global energy process. As a solution to the optimization problem of discrete sets,
image segmentation cannot be solved by solving the analytic function. It is necessary to
search for the optimal solution or a local optimal solution by means of an iterative optimiza-
tion algorithm. In this paper, the optimization of cloud detection results based on an MRF is
implemented based on the iterated conditional mode (ICM). The ICMwas proposed by Besag
(1986) in 1986 and can be used to calculate the maximum posterior probability when
performing image segmentation. The ICM optimizes the target with the minimum global
energy and iteratively updates the classification label to achieve local energy reduction and
point-by-point estimation of the image to complete image segmentation. The algorithm is
simple to calculate and has a fast convergence speed. However, before estimating the global
energy parameters, ICM requires original classification label data as the initial value, and the
final result has a great relationship with the initial segmentation result.

6. Results and analysis

To verify the accuracy of the proposed algorithm, cloud detection applications are
conducted for multiple landscapes of Landsat 8, MODIS and NPP VIIRS in different
regions from 2013 to 2017. The cloud coverage area is selected by visual interpretation,
and the cloud detection accuracy of this method is evaluated according to four indica-
tors: cloudy pixel correct rate (CCR), cloudy pixel omission error (COE), clear-sky pixel
correct rate (SCR), and clear-sky pixel omission error (SOE).

6.1. Landsat 8 OLI cloud test results

Figure 6 shows the cloud detection results for Landsat 8 OLI images, which contain various
types of land surface, including water (samples b, f), vegetation (samples a, d, h), artificial
surface (samples b, c) and bare ground (samples e, f, g), part of each the image are covered
by thick clouds, thin clouds, or fragmentary clouds. The images in the left column are the
false-colour image composed of bands 5, 4 and 3 of the Landsat 8 OLI data. The images in
themiddle column are the results of cloud detection from Fmaskmethod developed by Zhu
and Woodcock (2012), and the right column are from the method in this paper. Cloudy
pixels are marked white, and clear pixels are marked black.

Comparedwith Fmaskmethod, themethod presented in this paper shows higher accuracy
in cloud detection over most surface types. For the traditional threshold method, cloud
detection over bright surface and thin cloud detection over dark surface usually have low
accuracy. Figure 6 shows that there are much large artificial surface areas (samples b, c) are
misjudged as cloud pixels by the Fmaskmethod for such kind of areas have high reflectance in
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Sample (e) 

Date: 2 March 2018 

Central latitude and 

longitude: 

119°E, 35°N 

Surface coverage: 

Bare land 
   

Sample (f) 

Date: 2 March 2018 

Central latitude and 

longitude: 

120°E, 36°N 

Surface coverage: 

Bare land, water    

Sample (g) 

Date: 2 March 2018 

Central latitude and 

longitude: 

120°E, 36°N 

Surface coverage: 

Bare land    

Sample (h) 

Date: 7 August 2018 

Central latitude and 

longitude: 

115°E, 37°N 

Surface coverage: 

Vegetation    

Image information Standard false tlusertsetduolCksamFruoloc

Sample (a) 

Date: 16 June 2014 

Central latitude and 
longitude: 

120°E, 49°N 

Surface coverage: 

Vegetation 

Sample (b) 

Date: 17 January 2014 

Central latitude and 
longitude: 

130°E, 33°N 

Surface coverage: 

Water, town 

Sample (c) 

Date: 12 October 2016 

Central latitude and 
longitude: 

116°E, 39°N 

Surface coverage: 

Town 

Sample (d) 

Date: 16 June 2014 

Central latitude and 
longitude: 

121°E, 50°N 

Surface coverage: 

Vegetation  

Figure 6. The cloud detection results for Landsat 8 OLI images. The image in the left column is the
false colour image composed of bands 5, 4 and 3. The image in the middle column is the result of
cloud detection from Fmask method, and the right column is from the method in this paper. Cloudy
pixels are marked white, and clear pixels are marked black.
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the visible and near infrared wavelength. Similar problems also occur in bare ground areas
(samples e, f, g), which also showbright features in visible and near-infrared bands. In contrast,
these problems have not been evidentwith themethod proposed in this paper. The proposed
method is also superior to Fmask cloud detectionmethod in detecting thin clouds over bright
surface. Most of the thin clouds that cover thewater (samples b, f) have been omitted from the
Fmask method, but they can be effectively identified by the method in this paper. For cloud
detection over vegetation, bothmethods have high detection capability, and the detection of
thick, thin and fragmented clouds shows high accuracy. (samples a, d, h).

6.2. VIIRS and MODIS data cloud detection results

The results of cloud detection using VIIRS data and MODIS data are shown in Figures 7 and 8.
The left column is a false colour images of two types of images, for VIIRS is composed of bands

tlusertsetduolCOLCCVruoloceslafdradnatSnoitamrofniegamI

Sample (a) 

Date: 1 June 2015 

Central latitude and longitude: 

106°E, 40°N 

Surface coverage: 

Vegetation, bare land 

Sample (b) 

Date: 1 June 2015 

Central latitude and longitude: 

121°E, 44°N 

Surface coverage: 

Vegetation, bare land 

Sample (c) 

Date: 2 June 2015 

Central latitude and longitude: 

122°E, 31°N 

Surface coverage: 

Water, vegetation 

Sample (d) 

Date: 3 June 2015 

Central latitude and longitude: 

118°E, 43°N 

Surface coverage: 

Vegetation 

Figure 7. Cloud detection results of VIIRS images.
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7, 5, and 4, andMODIS is composedof bands 2, 1, and4. It canbe seen that imageswith various
land types, include vegetation, bare land, water, covered by thick, thin and fragmentary clouds
are selected to verify the effectiveness of the method. The cloud products provided by NASA
(National Aeronautics and Space Administration) are used for comparison. The middle col-
umns of Figures 7 and 8 are the VIIRS Cloud Cover Layers Environmental Data Record (EDR)
data (VCCLO), and MODIS cloud mask product (MOD 35), respectively. The right columns of
both Figures 7 and 8 are the cloud detection results from themethod of this paper. MODIS has
36 bands in visible to thermal infrared bands and VIIRS has 22 bands in the same wavelength
range, reflectance difference and brightness temperature difference in multiple bands are
used in the process of cloudproducts generation, so the clouddetection inmost of the surface
coverage areas can achieve high accuracy. However, due to the limitations of the threshold
cloud detection method itself, there are still obvious cloud detection errors in some bright
areas, aswell as in the areas of thin cloud coverage, fragmentary cloud coverage or cloud edge
area. As can be observed fromFigures 7 and 8, comparedwith the cloud detection results with
themethod proposed in this paper, in cloud detection products of VCCLO andMOD 35, there
are obvious phenomena of thin cloud, broken cloud and cloud edge leaking over various
surface types, such as in the areas of covered by bare land, water, vegetation, etc. The above
problems have been significantly improved in the methods proposed in this paper.

6.3. Quantitative evaluation

To accurately evaluate the applicability of the algorithm for different sensor data, the
results of the test are quantitatively analysed in this paper. The images in Figure 6–8 are
visually interpreted to select the cloud coverage area, which is compared with the cloud
detection results of the algorithm, and the CCR, COE, SCR, and SOE values are calculated.
There are four groups of classifications for each pixel in Table 4.

The calculation formulas of the four detection accuracy indicators are as follows:

CCR ¼ TP
TPþ FN

(17)

SOE ¼ FP
FPþ TN

(18)

SCR ¼ TN
FPþ TN

(19)

COE ¼ FN
TPþ FN

(20)

CCR and SCR reflect the performances of cloud detection algorithms. COE indicates the
ratio of cloud pixels that are misjudgements regarding the total number of cloud pixels,

Table 4. Contingency table.

Recognition as cloud
pixel in algorithm

Recognition as clear-
sky

pixel in algorithm

Cloud pixel in verify image TP FN
Clear-sky pixel in verify image FP TN
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reflecting the algorithm’s underestimation of the cloud. SOE indicates the ratio of the
clear-sky pixels in the gap to the total number of clear-sky pixels, reflecting the degree
of cloud overestimation by the algorithm.

Table 5 presents a quantitative evaluation of the results of three satellite data clouds
in Figure 6–8. Based on the accuracy confusion matrix, the algorithm has high detection
accuracy for Landsat 8 OLI, NPP VIIRS and MODIS. The recognition rate of cloud pixels is
nearly greater than 0.9, and the false positive rate in clear-sky is also at a lower level. By
separately analysing the accuracy indicators of each group of data, the shape of the
cloud and type of underlying surface are known to have a certain influence on the
accuracy of cloud detection. In the data with more thin clouds, the detection accuracy is
lower overall, and the accuracy values for thick clouds and fragmentary clouds are
greater. The type of underlying surface also has a certain impact on the results of
cloud detection. The urban area has a higher false judgement rate of cloud pixels
than high vegetation coverage areas, such as farmland and forests. Based on the
accuracy verification, the cloud detection method proposed in this paper has achieved
good detection results for Landsat 8 OLI, NPP VIIRS and MODIS.

7. Conclusion and discussion

Based on AVIRIS hyperspectral data, automatic cloud detection of multiple multispectral
sensors is realized in this paper, and Landsat 8 OLI, Terra MODIS and NPP VIIRS data are
used to verify the detection accuracy of the proposed algorithm. The results demon-
strate that the cloud detection algorithm proposed in this paper has better detection
results, and the overall accuracy of cloud detection is greater than 90%. The main
research contributions of this paper are summarized as follows:

(1) Training samples are constructed based on AVIRIS data to support cloud detection
with a deep learning method for multiple satellite data. Through visual interpretation,
different types of cloud pixels and clear-sky pixels are manually selected from 32
different AVIRIS images. The cloud and clear-sky pixel dataset of the corresponding
sensor are simulated using the spectral response function of the multispectral sensor

Table 5. Quantitative evaluation of cloud detection results (%).
Sensor Table number Number CCR SCR SOE COE

Landsat 8
OLI

Figure 6 a 0.920 0.981 0.019 0.080
b 0.972 0.989 0.011 0.028
c 0.970 0.967 0.033 0.030
d 0.967 0.971 0.029 0.033
e 0.929 0.988 0.012 0.071
f 0.960 0.979 0.021 0.040
g 0.911 0.991 0.009 0.089
h 0.964 0.983 0.017 0.036

NPP VIIRS Figure 7 a 0.901 0.894 0.106 0.099
b 0.963 0.887 0.113 0.037
c 0.884 0.910 0.090 0.116
d 0.941 0.886 0.114 0.059

MODIS Figure 8 a 0.912 0.939 0.061 0.088
b 0.889 0.958 0.042 0.111
c 0.929 0.944 0.056 0.071
d 0.875 0.930 0.07 0.125
e 0.948 0.945 0.055 0.052
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and the band width of the hyperspectral sensor. This method greatly reduces the
workload of training sample selection for cloud detection using deep learning methods
with different satellite images. The method provides great convenience for fast applica-
tion of deep learning algorithms in different satellite data cloud detection methods.

(2) A deep BP NN is built based on the Keras deep learning framework. The simulated
reflectance values of the cloud and clear-sky pixel datasets of the multispectral sensor
are used as the feature vectors of the BP NN and input into the network for training. The
number of hidden layer nodes, batch value and momentum parameters of the NN are

tlusertsetduolC53DOMruoloceslafdradnatSnoitamrofniegamI

Sample (a) 

Date: 25 December 2017 

Central latitude and 

longitude

123°E, 40°N 

Surface coverage

Bare land, water 

Sample (b) 

Date: 6 February 2016 

Central latitude and 

longitude

10°E, 20°N 

Surface coverage

Desert 

Sample (c) 

Date: 10 August 2016 

Central latitude and 

longitude

38°E, 25°N 

Surface coverage

Water, bare soil 

Sample (d) 

Date: 26 February 2017 

Central latitude and 

longitude

128°E, 37°N 

Surface coverage

Water, vegetation 

Sample (e) 

Date: 15 July 2017 

Central latitude and 

longitude

53°E, 10°N 

Surface coverage

Vegetation

Figure 8. Cloud detection results for MODIS scenes.
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optimized to improve the generalization ability of the network model, and the training
time is reduced without reducing the training effect.

(3) The cloud detection results are optimized based on an MRF. The spatial constraint
relationship of the pixels in the image is introduced into the cloud detection algorithm.
In this paper, the MRF is implemented using the iterative conditional model algorithm to
optimize the cloud detection results.

Although the method presented in this paper has shown good accuracy and stability
in the preliminary cloud detection, the following problems still exist in this method,
which needs to be gradually improved in the follow-up work. 1) Data used as learning
samples for cloud detection with deep learning method are simulated using the same
hyperspectral data, the accuracy of simulated data will directly affect the accuracy of
cloud detection. Accurate evaluation of the difference between simulated data and real
data is of great significance to understand the potential error of this method.
Unfortunately, this work has not been carried out because airborne data are used to
simulate satellite data in this paper, there are many difficulties in assessing actual
radiation differences due to height differences and spatial matching of these two
kinds of data. Thus, this paper is only to choose the best simulation method to get
high credible simulated satellite data; 2) limited by the spatial and temporal distribution
of current AVIRIS data, the existing training data do not include all possible surface types
and cloud states, which will also introduce some errors and uncertainties into the cloud
detection results when using the deep learning method.
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