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Abstract Conventional cloud detection methods are easily affected by mixed pixels, complex surface
structures, and atmospheric factors, resulting in poor cloud detection results. To minimize these problems,
a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a priori surface
reflectance database is proposed in this paper. A monthly surface reflectance database is constructed using
long-time-sequenced MODerate resolution Imaging Spectroradiometer surface reflectance product
(MOD09A1) to provide the surface reflectance of the underlying surfaces. The relationships between the
apparent reflectance changes and the surface reflectance are simulated under different observation and
atmospheric conditions with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) model,
and the dynamic threshold cloud detection models are developed. Two typical remote sensing data with
important application significance and different sensor parameters, MODIS and Landsat 8, are selected for
cloud detection experiments. The results were validated against the visual interpretation of clouds and
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation cloud measurements. The results showed
that the UDTCDA can obtain a high precision in cloud detection, correctly identifying cloudy pixels and
clear-sky pixels at rates greater than 80%with error rate andmissing rate of less than 20%. The UDTCDA cloud
product overall shows less estimation uncertainty than the current MODIS cloud mask products. Moreover,
the UDTCDA can effectively reduce the effects of atmospheric factors and mixed pixels and can be applied to
different satellite sensors to realize long-term, large-scale cloud detection operations.

1. Introduction

Clouds pose a difficult challenge in the extraction of atmospheric or surface information using remote
sensing satellite data [Greenhough et al., 2005; Nakajima et al., 2011]. Clouds affect the radiation energy
transmission between land objects and the satellite sensors, seriously decreasing the retrieval accuracy of
atmospheric or surface parameters [Li et al., 2011; Kazantzidis et al., 2011, 2013]. In addition, themultiple types
of clouds and the complexity of land structures hinder the detection of clouds using remote sensing images
with high precision [Jedlovec et al., 2008; Hagolle et al., 2010].

Currently, the threshold method, statistical method, artificial neural network method, and object-oriented
method are four primary methods that have been widely used for different satellite sensors. The threshold
method uses the difference between clear and cloudy pixels to detect clouds, and several cloud detection
algorithms have been developed and applied to various projects based on it, such as the ISCCP
(International Satellite Cloud Climatology Project) cloud mask algorithm, the APOLLO (AVHRR Processing
scheme Over cLouds, Land, and Ocean) cloud mask algorithm, the CLAVR (Clouds from the Advanced Very
high Resolution Radiometer) cloud mask algorithm, the CO2 slicing cloud mask algorithm, and the MODIS
(MODerate resolution Imaging Spectroradiometer) cloud mask algorithm.

The ISCCP cloud mask algorithm utilizes the visible narrow band (0.6μm) and infrared window (11μm)
channels. A pixel is classified as cloudy only if at least one radiance value is distinct from the inferred clear
value by an amount larger than the uncertainty in that clear threshold value. The uncertainty can be caused
both bymeasurement errors and by natural variability. The algorithm is constructed to be cloud conservative,
minimizing false cloud detections but missing clouds that resemble clear conditions [Rossow and Schiffer,
1991; Sèze and Rossow, 1991; Rossow and Garder, 1993]. The APOLLO cloud mask algorithm uses the first
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through the fifth AVHRR channels at full spatial resolution and is based on five threshold tests. A pixel is
defined as clear if all spectral measures fall on the “clear-sky” sides of the various thresholds or is defined
as cloud contaminated if the pixel fails any single test; thus, this algorithm is clear-sky conservative
[Saunders and Kriebel, 1988; Kriebel et al., 2003]. The CLAVR cloud mask algorithm uses a series of spectral
and spatial variability tests to detect clouds with the Cloud and Surface Parameter Retrieval, focusing on
the polar areas. The CLAVR algorithm characterizes the variability of scenes, utilizing the fact that uniform
scenes are less likely to contain partial or subpixel clouds that other tests fail to detect [Stowe et al., 1991;
Liu and Wu, 2004]. CO2 slicing has been used to distinguish transmissive clouds from opaque clouds and clear
sky using infrared radiances in the carbon dioxide-sensitive portion of the spectrum [Wylie and Menzel, 1989;
Wylie et al., 1994; Hutchinson and Hardy, 1995; Turner et al., 2001; Gao et al., 2003]. The MODIS cloud mask
algorithm benefits from an extended spectral coverage coupled with high spatial resolution and radiometric
accuracy. In this algorithm, an established effective method has been adapted to create a high-quality cloud
mask project for the global data obtained from MODIS and mitigate some difficulties experienced by pre-
vious algorithms, such as thin cirrus, fog and low-level stratus at night, and small-scale cumulus, which are
difficult to detect because of insufficient contrast with the surface radiance. This algorithm uses 22 of the
36 channels from visible to thermal infrared ranges to detect cloudy pixels [Ackerman et al., 2010].

The statistical methods detect clouds with regression equations established utilizing statistics and analysis
of the difference in the apparent reflectance or brightness temperature among the clear and cloudy pixels
in the satellite data. This method can effectively detect clouds in specific data. However, this method is not
widely used because the sample data used for the regression model are historical; thus, the application is lim-
ited to a specific time and area [Molnar and Coakley, 1985; Kärner, 2000]. The artificial neural network methods
attempt to identify the proper network weights and best thresholds from training samples to achieve cloud
detection. This method can achieve automatic cloud detection and great accuracy with self-organizing and
self-adapting capabilities. However, because the principle of such amethod is unclear, training and validation
samples are required to cover most conditions of land surface and cloud type. Because the conditions are not
specified during training, this method is less accurate [Karlsson, 1989; Clark and Boyce, 1999; Walder and
Maclaren, 2000]. The object-oriented method is designed to segment the images into meaningful “objects,”
which can be described as a set of features, and realizes the “object” classification by the established relations
or differences between the object and class structure. This method can achieve multiscale image segmenta-
tion and achieve a high level of cloud detection by making full use of related features, including color, shape,
texture and level, and multiscale information. However, the object-oriented method is more appropriate for
feature extraction of high-resolution images with rich texture features and is slow in feature selection,
possibly missing the optimal eigenvalues [Zhu and Woodcock, 2012; Fisher, 2014; Zhang et al., 2014; Zhu
et al., 2015].

The threshold method is the most popular method used for cloud detection because of its high accuracy and
stable results. These algorithms aim to obtain a series of proper thresholds of apparent reflectance or
brightness temperatures via certain channels for different sensors and achieve cloud detection with reliable
accuracy. However, for complex land surface composition and cloud types, it is difficult to identify proper
thresholds from any wavelength to accurately detect a cloud. In fact, the threshold to separate the clear pixel
from the cloudy is closely related to surface features. Thus, this paper proposes a Universal Dynamic
Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database. A
monthly synthesis surface reflectance database was created using the 8 day synthetic MODIS surface reflec-
tance product (MOD09A1) to provide the surface reflectance for cloud detection, and a dynamic thresholds
model related to the land surface reflectance, observation geometry, and other parameters was developed
based on the simulated relations between the apparent reflectance and the surface reflectance using the 6S
(the Second Simulation of the Satellite Signal in the Solar Spectrum) model [Vermote et al., 1997; Kotchenova
et al., 2006]. Thismethod effectively improved cloud detection accuracy, particularly for the detection of broken
and thin clouds.

The data obtained from MODIS and Landsat 8 OLI (Operational Land Imager) were used for the cloud detec-
tion experiment with the UDTCDA method in this paper. The MODIS sensor operates on both the Terra and
Aqua spacecraft, which were successfully launched in December 1999 and May 2002, respectively. The
MODIS has a viewing swath width of 2330 km and monitors the surface of the Earth every 1 to 2 days. Its
detectors measure 36 spectral bands between 0.4 and 14μm, and the MODIS acquires data at three spatial
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resolutions: 250m, 500m, and 1000m.
Many parameters can be derived from
MODIS observations to describe fea-
tures of the land, oceans, and the
atmosphere, and these parameters
can also be used for studies of pro-
cesses and trends on local and global
scales. The Landsat 8 satellite is the
eighth satellite of the land survey
satellite series of the United States,
successfully launched by NASA in
February 2013. Landsat 8 OLI is one
of two sensors on Landsat 8 and
images the entire Earth every 16days.
Landsat 8 OLI has eight multispectral
bands with a spatial resolution of
30m and has been widely used in dif-
ferent fields, including agriculture,

water management, forest monitoring, and disaster monitoring. The following chapters successively detail
the principles and methodology of the cloud detection algorithm, evaluation methods and the results.

2. Principles

Figure 1 shows the spectra of typical features, including vegetation, soil, rock, water, and snow/ice, which
were collected from the ASTER spectral library. The ASTER spectral library is a compilation of over 2400 spec-
tra of natural and manmade materials and was released on 3 December 2008. The library includes data from
three other spectral libraries: the Johns Hopkins University Spectral Library, the Jet Propulsion Laboratory
Spectral Library and the United States Geological Survey Spectral Library [Baldridge et al., 2009]. Moreover,
the spectra of urban areas and clouds were collected from the Airborne Visible Infrared Imaging
Spectrometer, a hyperspectral data sensor with 224 spectral bands covering a spectral range of 0.4–2.5μm
with a spectral resolution of 10 nm [Wei et al., 2015].

Figure 1 shows that the reflectance of the cloud is much higher for most typical objects, including vegetation,
water, soil, rock, and urban areas, except snow/ice, particularly in short wavelengths. The reflectance in the
visible wavelength of vegetation, soil, and water is less than 0.2; however, because the cloud reflectance is
greater than 0.6, the traditional methods of cloud detection have generally used a fixed threshold in such
wavelengths to differentiate the cloudy pixels from the clear sky, such as the ISCCP, APOLLO, and the
CLAVR. In addition to the visible bands, the bands of near infrared and short-wave infrared were used to
detect clouds because of differences in the reflectance of clouds and other objects. To separate the clouds
from other objects, a combination of two or more bands was also used for cloud detection, such as the
Sand Dust Index [Hai et al., 2009] to differentiate sand from clouds and the Difference Snow Index or Ratio
Snow Index [Lin et al., 2012] to separate snow from clouds.

Figure 1 shows that the reflectance is much different between a cloud and typical land objects at certain
wavelengths; thus, traditional methods separate the cloudy pixels from the clear pixels. In fact, the reflectance
of the satellite data is much more complex than the reflectance of the data shown in Figure 1. In Figure 1, the
reflectance only represents the component reflectance in one pixel; however, it is well known that mixed
pixels are ubiquitous in remote sensing images. Mixed pixels are a combination of more than one distinct
substance. If a pixel is pure pixel, having only one object, the reflectance is nearly identical to the reflectance
of the identical object measured on land, as shown in Figure 1. A mixed pixel may comprise water and vege-
tation or soil and snow; a mixed pixel may also comprise water and broken or thin clouds. The reflectance of a
mixed pixel is determined by all of the components in the pixel and can be described by a linear equation
[Keshava and Mustard, 2002]:

P ¼
XN

i¼1

ciei þ n ¼ Ec þ n;
XN

i¼1

ci ¼ 1 (1)

Figure 1. Spectra of typical objects.
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where P is the reflectance of the pixel, N is the number of the components in it, ei is the reflectance of each
component, ci is the ratio of the area of ei, and n is the value of uncertainty.

The difference between the cloud and the land objects shown in Figure 1 only represents a thick cloud and a
pure land object. However, in most cases, the cloudy pixels are covered by thin or broken clouds instead of
thick clouds. Thus, the reflectance of the pixel results from the cloud and the land objects together, which can
be calculated using equation (1). The reflectance difference between the cloudy pixels and the land object is
not as obvious as in Figure 1. In the visible wavelengths, the reflectance of a pixel covered by thin cloud over
soil may be lower than the reflectance of the rock pixel, as occurred in the short-wave infrared bands when
differentiating pixels of cloud over water from vegetation. The complex land structures rendered it impossi-
ble to obtain a proper threshold to separate the cloudy pixels from the clear sky. Traditional methods of cloud
detection can accurately detect a thick cloud yet often fail to detect thin or broken clouds, particularly in low
reflectance areas. Even for a satellite with many bands, such as MODIS, which uses 22 selected bands from a
total of 36 bands for cloud detection, the uncertainty remains.

The traditional method uses a fixed threshold to identify all thin or broken clouds but occasionally misses the
cloudy pixels of thin or broken clouds over the low surface reflectance areas or falsely identifies high-
reflectance land objects as clouds. The surface reflectance of water, rock, and clouds are 0.05, 0.35, and 0.6
in the red band (approximately at 0.66μm), respectively (Figure 1). According to equation (1), when the area
ratio of the thin or broken clouds over a water pixel reaches approximately 40%, the reflectance is approxi-
mately 0.27, which is lower than the reflectance of rock. If the threshold is set at greater than 0.35, the pixels
with an area ratio of thin or broken clouds of less than 40% over water areas will be missed; however, if the
threshold is set lower than 0.35, the clear pixels covered by rock will be mistaken for cloud.

The difficulty in differentiating real land surface from clouds is a primary reason for the failure of thin or bro-
ken cloud detection with high precision from satellite data. In such circumstances, it is difficult to determine
the appropriate threshold with which to identify clouds. If the reflectance is known prior to cloud detection,
the component of underlying surfaces in mixed pixels can be determined and the thresholds can be estab-
lished according to the real land surface reflectance. Thus, thin or broken clouds over water can be differen-
tiated from clear pixels with relatively high accuracy with a threshold of reflectance greater than 0.05, and the
rock pixel will be identified as a clear pixel even if the reflectance reaches 0.35.

Focusing on the above problem, a new dynamic threshold cloud detection algorithm with prior surface
reflectance support was proposed to improve the accuracy of cloud detection. The surface reflectance is
created using the current MODIS surface reflectance products to provide the real surface reflectance for
the image to be detected, and then dynamic thresholds related to surface reflectance for cloud detection
can be estimated based on the radiative transfer model.

3. Methodology
3.1. Surface Reflectance Database Construction

MOD09A1 data were selected to represent the land surface reflectance supply for the database. The
MOD09A1 data set is the 8 day gridded Level 3 product of the MOD09 series of surface reflectance and
includes seven bands covering the visible to near-infrared wavelengths at a spatial resolution of 500m.
The MOD09A1 product provides the best possible L2G observations during an 8 day period, and the observa-
tions are selected on the basis of high observation coverage, low view angle, absence of clouds, or cloud
shadows and aerosol loading, which effectively reduces the effect of surface and cloud contamination. The
atmospheric correction accuracy is ±(0.005 + 0.05 × ρ) under favorable conditions [Vermote and Vermeulen,
1999; Vermote and Kotchenova, 2008].

In UDTCDA, we assumed that the surface reflectance of most features remains unchanged during a certain
period [Levy et al., 2013; Sun et al., 2016]. Therefore, a monthly surface reflectance database was created using
the Minimum Synthesis Technology for cloud detection for that month. The lowest surface reflectance for
each pixel of four images from a given month was chosen to be the pixel for the 1month series to reduce
the effects of cloud and surface contamination,

I i; jð Þ ¼ Min I1 i; jð Þ; I2 i; jð Þ; I3 i; jð Þ; I4 i; jð Þð Þ (2)
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where I represents the synthetic image; I1, I2, I3, and I4 represent four MOD09A1 images in a month; and i and j
represent the row and column, respectively, in an image.

MOD09A1 products for the entire year from 2013 to 2014 were collected and processed to construct the prior
surface reflectance database. The surface reflectance images included the blue (0.459–0.479μm), green
(0.545–0.565μm), red (0.620–0.670μm), and near-infrared (0.841–0.876μm) bands with a spatial resolution
of 500m for Landsat 8 OLI and resampled to 1 km spatial resolution using the bidirectional linear interpola-
tion method for MODIS. Figure 2 shows the false standard color composite image (RGB: band2-band1-
band-3) of a partial surface reflectance image in Asia (30°–45°N, 100°–125°E) from the synthetic surface
reflectance database in July 2014 for demonstration. The surface reflectance images can better reflect the
land cover type changes and show an overall high quality with less cloud cover, which can provide the actual
surface reflectance for underlying surfaces.

3.2. Estimation of Dynamic Thresholds for Cloud Detection

The estimation of the dynamic thresholds is a key step for cloud detection. Unlike the fixed thresholds in
traditional cloud methods, the thresholds used here are related to the real land surface reflectance; thus,
the thresholds are called dynamic thresholds. The following work is included in the thresholds estimate:
(1) band selection for the cloud detection, (2) analyzing the factors that may affect the relation between cloud
and clear pixels, and (3) estimation of dynamic thresholds for cloud detection.
3.2.1. Band Selection
The greatest difference between the cloud and most land objects is in the wavelengths of visible to near
infrared (NIR) (Figure 1). Thus, the visible-to-NIR bands—bands 1, 2, 3, and 4 of the MODIS and bands 2, 3,
4, and 5 of Landsat 8 OLI—were chosen for cloud detection of the two satellite data. To differentiate
snow/ice from cloud, short-wave infrared bands—bands 7 of MODIS and band 6 of Landsat 8 OLI—were
also chosen for the obvious reference difference between cloud and snow/ice. Table 1 shows the detailed
parameters for the chosen bands.

Figure 2. False standard color composite image (RGB: 214) of a surface reflectance image in July 2014.

Table 1. Detailed Parameters of the Chosen Bands for MODIS and Landsat 8

MODIS Landsat 8

Bands Channel Wavelength Bands Channel Wavelength

Band 1 Red 0.620–0.670 Band 2 Blue 0.450–0.515
Band 2 NIR 0.841–0.876 Band 3 Green 0.525–0.600
Band 3 Blue 0.459–0.479 Band 4 Red 0.630–0.680
Band 4 Green 0.545–0.565 Band 5 NIR 0.845–0.885
Band 7 SWIR 1.628–1.652 Band 6 SWIR 1.560–1.660
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3.2.2. Affecting Factors
In the land surface-atmosphere sys-
tem, the cross radiation among
different terrain and atmospheric
conditions is relatively complex. The
apparent reflectance received at the
satellite sensor is a combination of
atmospheric path reflectance and
surface reflectance based on the
radiative transfer theory [Levy et al.,
2013; Sun et al., 2016]. Therefore, to
develop the relations between the
apparent reflectance change and
the surface reflectance, the effects
of aerosols, geometric parameters,
and atmospheric and aerosol models
were first simulated using the 6S
model. The 6S code is a basic radiative

Figure 3. Relationship between apparent reflectance and AOD under differ-
ent surface reflectances.

Figure 4. Relationships between apparent reflectance and AOD with respect to different geometric parameters.
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transfer code used for simulations of satellite observation under clear-sky conditions that carefully considers
elevated targets, molecular and aerosol scattering, and gaseous (including H2O, O3, O2, and CO2) absorption
[Vermote et al., 1997; Kotchenova et al., 2006]. Observation parameters such as spectral response function, obser-
vation, and geometric parameters; and atmospheric parameters such as observation, geometric, atmospheric,
and aerosol models; and AOD were input into the simulations using the 6S model. Therefore, the relations
between apparent reflectance and surface reflectance under different conditions can be simulated. In this
paper, the red band (0.65μm) of Landsat 8 was selected to perform simulation experiments for demonstration.
3.2.2.1. Aerosol Optical Depth
Figure 3 shows the simulated relation between apparent reflectance and the AOD with different surface
reflectance values of 0.0 and 0.1. The solar and satellite zenith angles were set to a fixed value of 10°. The
simulated results showed the apparent reflectance clearly increasing with the increase in the AOD and
saturation when the AOD reached 6. In the current study, the maximum AOD was set at 0.8 in the simulation
experiments of parameters under most clear-sky conditions except in extreme weather such as fog or dust
[Remer et al., 2006].
3.2.2.2. Geometric Parameters
The observation geometry that affects the reflectance includes the solar zenith angle, the view zenith angle,
and the relative azimuth angle between the Sun and the satellite. Figure 4 shows the simulated relations

Figure 5. Relationships between apparent reflectance and AOD under different atmospheric models.
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between apparent reflectance and the AOD with the changes in solar and satellite zenith angles. The surface
reflectance was 0.2; the solar and satellite zenith angles were 0°, 10°, 20°, and 30°; and the AODs ranged from
0.0 to 0.8 with an interval of 0.1. As shown in Figure 4, the apparent reflectance decreased with an increasing
AOD, although there were certain differences between the apparent reflectance and the AODwithin different
geometric parameters.
3.2.2.3. Atmospheric Model
Figure 5 shows the simulated relation between apparent reflectance and the AOD in different atmospheric
models. The two typical atmospheric models—middle-latitude summer and middle-latitude winter—were
selected for simulation experiments. The surface reflectance was 0.2, 04, 0.6. and 0.8; the solar and satellite
zenith angles were 30° and 20°; and the AODs ranged from 0.0 to 0.8 with an interval of 0.1. The simulated
results show that the apparent reflectance presented a clear decreasing trend with an increasing AOD and
that the difference in apparent reflectance decreased when surface reflectance increased in different
atmospheric models (approximately 0.01–0.03), which may explain why atmospheric models exhibit little
effect on apparent reflectance.
3.2.2.4. Aerosol Model
Figure 6 shows the simulated relation between apparent reflectance and satellite zenith angles in different
aerosol models. The surface reflectance was set to 0.01 and 0.1, the AODs were set to 0.2 and 0.8, and the

Figure 6. Relationships between apparent reflectance and geometric parameters under different aerosol models.
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sun zenith angle was set to a fixed
value of 30°. Three aerosol models—
the urban model, the maritime model,
and the continental model—were cho-
sen for the simulation experiment.

The simulated results showed that
the differences between the appar-
ent reflectance and the zenith angles
are smaller when the AOD is small in
different aerosol models. The mean
absolute error (MAE) of apparent
reflectance between continental and
urban aerosol was less than 0.005,
and the MAE between the continen-
tal and maritime aerosols was less
than 0.01. However, when the AOD
increased, the MAE of apparent
reflectance in different aerosol
models clearly increased. The MAE

between the continental and urban aerosols exceeded 0.03, and the MAE between the continental and
maritime aerosols exceeded 0.02. Therefore, aerosol models can cause a large difference and greatly affect
apparent reflectance.
3.2.2.5. Sensitivity Analysis
To quantitatively analyze the effects of the above parameters on apparent reflectance, the EFAST (Extended
Fourier Amplitude Sensitivity Test) method was selected and adopted for parameter sensitivity. The EFAST is
a global and quantitative sensitivity analysis algorithm that can be applied to complex nonlinear and nonmo-
notonic models [Saltelli et al., 1999, 2010]. The EFAST adopts the idea of model variance analysis and consid-
ers that the variance of model output is caused by interaction among input parameters, which can reflect the
sensitivity of model output to input parameters. The first-order sensitivity index is the sensitivity of a single
parameter independent of the model results, and the total sensitivity index also includes the effect of the
coupling of different parameters on the results of the model. The total- and first-order sensitivity indices of
each parameter are obtained via an analysis of the impacts of the input factors on the output variance.
Because of its robust and efficient characteristics, the EFAST is used to analyze global sensitivity via variance
decomposition and is widely used in quantitative evaluation and uncertainty analysis in hydrological, ecolo-
gical and meteorological modeling [Cukier et al., 1973; Varella et al., 2010;Miao et al., 2011; Saltelli et al., 1999;
Pandya et al., 2012]. Five parameters—aerosol optical depth, solar zenith angle, satellite zenith angle, the
atmospheric model, and the aerosol model—were selected to evaluate the contribution to apparent
reflectance using the EFAST method.

Figure 7 shows the sensitivity analysis of the effects of observation and atmospheric factors on apparent
reflectance. Sensitivity analysis results showed that aerosol optical depth has a greater effect on apparent
reflectance with higher first-order and total-order indices. The aerosol model also has a great effect on appar-
ent reflectance because the aerosol model is one of the primary factors affecting regional aerosol. In addition,
the atmospheremodel and geometric parameters indicate relatively small but certain effects on the apparent
reflectance. Therefore, atmospheric and observational factors can cause obvious differences between the
surface reflectance and the apparent reflectance and must be carefully considered when establishing cloud
detection models.
3.2.3. Estimation of Dynamic Thresholds
The 6Smodel was used to simulate the influence of the above factors on the apparent reflectance. Figure 8 shows
the simulated relations of the apparent reflectance changing according to the land surface reflectance variation in
an AOD of 0.2, 0.4, 0.6, and 0.8 and a satellite zenith of 0°, 10°, 20°, and 30°, respectively. The aerosol model was set
to the continental model, and the atmospheric model was middle-latitude summer. The results indicate that the
apparent reflectance exhibits certain differences with different AODs, and the changing speeds are much differ-
ent; when the land surface reflectance is lower than 0.05 or greater than 0.4, the difference is greater.

Figure 7. First-order and total-order indices of the sensitivity analysis
(1 = aerosol optical depth, 2 = solar zenith angle, 3 = satellite zenith angle,
4 = atmospheric model, and 5 = aerosol model).
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Using dynamic thresholds based on the prior surface reflectance database is the primary characteristic of the
UDTCDA to detect a cloud. In the new algorithm, we assumed that if the apparent reflectance of a pixel
exceeded the maximum of the changing simulated apparent reflectance calculated with the changing surface
reflectance under different observation and atmosphere conditions, this pixel would be identified as a cloudy
pixel. The possible satellite apparent values of the four bands of MODIS and Landsat 8 OLI, with different land
surface reflectance values, were calculated with the 6S model. Solar and satellite zenith angles covered all pos-
sible values of the two types of satellite sensors used in this work. The maximum values of apparent reflectance
distribution can be simulated and the dynamic thresholds of simulated apparent reflectance can be determined
as a function of surface reflectance and observation geometry under possible atmospheric conditions without
clouds. Equations 3–10 show the corresponding dynamic threshold cloud detection models for MODIS and
Landsat 8 OLI data. The cloud detection rules for the MODIS data are as follows:

ρ�B′ ¼ 0:793 · ρB þ 0:004 · cosα cosβ þ 0:158 (3)

ρ�G ′ ¼ 0:807 · ρG þ 0:025 · cosα cosβ þ 0:125 (4)

ρ�R′ ¼ 0:843 · ρR þ 0:017 · cosα cosβ þ 0:112 (5)

ρ*′TIR ¼ 0:928 · ρNIR þ 0:010 · cosα cosβ þ 0:099 (6)

Figure 8. Simulated relationships between apparent reflectance and surface reflectance.
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The cloud detection rules for the Landsat 8 OLI data are as follows:

ρ�B′ ¼ 0:834 · ρB þ 0:025 · cosα cosβ þ 0:143 (7)

ρ�G ′ ¼ 0:882 · ρG þ 0:040 · cosα cosβ þ 0:097 (8)

ρ�R′ ¼ 0:912 · ρR þ 0:049 · cosα cosβ þ 0:108 (9)

ρ*′TIR ¼ 0:940 · ρNIR þ 0:010 · cosα cosβ þ 0:189 (10)

The dynamic threshold method cloud detection rules are as follows:

Ri ¼ ρ�i � ρ�i ′ > 0; i ¼ B;G; R;NIR (11)

R ¼ RB ∪ RG ∪ RR ∪ RNIR (12)

where ρ�i ′ represents the simulated apparent reflectance of different channels, ρi represents the surface
reflectance, α represents the solar zenith angle, β represents the satellite zenith angle, ρ�i represents the
apparent reflectance, Ri represents the corresponding cloud detection results for each channel, and R repre-
sents the final cloud detection result.

3.3. Snow/Ice Identification

For similar spectral characteristics, snow/ice is difficult to differentiate from cloud with the four bands from
visible to NIR channels used above. The greatest difference between these two types of objects lies in the
wavelength of the short-wave infrared band (approximately at 1.6μm), in which, although clouds still have
a higher reflectance, the reflectance of ice and snow is nearly 0 (Figure 1). Therefore, the short-wave infrared
band was selected to identify clouds and snow/ice. The Normalized Difference Snow Index (NDSI), calculated
from a visible and a short-wave infrared band, was selected to distinguish and mask the snow/ice from the
cloud. The NDSI is defined as

NDSI ¼ ρG � ρSWIRð Þ= ρG þ ρSWIRð Þ (13)

where ρG represents the apparent reflectance of the green band (0.56μm for Landsat 8 and 0.55μm for
MODIS) and ρSWIR represents the apparent reflectance of the short-wave infrared band (1.61μm for
Landsat 8 and 1.64μm for MODIS [Salomonson and Appel, 2006]. When the NDSI> 0.4, the pixels are deemed
snow or ice covered [Hall et al., 1995, 2002; Klein and Barnett, 2003].

3.4. Spectral Correction for Landsat 8 OLI

Radiometric calibration is required for Landsat 8 OLI data, and the digital number can be converted to
apparent reflectance using the reflectance rescaling factor coefficients in the header file [Sun et al., 2016].
To conduct cloud detection experiments using Landsat 8 data with MOD09 surface reflectance product sup-
port, the spectral differences between the two sensors must be considered. Figure 9 shows the filter response
function for MODIS and Landsat 8 OLI data from visible to near-infrared bands. The center wavelength of the
four bands of Landsat 8 (0.483, 0.563, 0.655, and 0.865μm) is close to the corresponding bands of MODIS
(0.469, 0.555, 0.645, and 0.859μm), although their bandwidths differ with the spectral responses.

Vegetation, water, and soil spectra ranging from 400 to 2500 nm with a spectral resolution of 1 nm were col-
lected from the ASTER spectral library. The band reflectance was computed with the filter response functions
of Landsat 8 OLI and MODIS according to equation (14):

R ¼ ∫
λ2

λ1S λð ÞR λð Þdλ
∫
λ2

λ1S λð Þdλ
¼ ∑N�1

i¼0 S λið ÞR λið ÞΔλ
∑N�1
i¼0 S λið ÞΔλ (14)

where S(λi) is the filter response function and R(λi) is the spectral reflectance at the wavelength λi.

Figure 10 compares the surface reflectance between MODIS and Landsat 8 in different channels. Although
the surface reflectance of Landsat 8 is more consistent with the surface reflectance of MODIS, certain differ-
ences between them remain. Therefore, the errors caused by the different filter response functions must
be corrected.
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The linear relation between the
surface reflectance of MODIS and
Landsat 8 in different channels can
be acquired in the form of equation
(15). Thus, the errors from the filter
response functions can also be cor-
rected and analyzed (equation (16)):

rL8 ¼ a · rMODIS þ b (15)

MD ¼ rL8 � rmodisj j
N

(16)

where a and b are two linear fitting
coefficients, rL8 is the surface reflec-
tance of Landsat 8, rMODIS is the
surface reflectance of MODIS, MD is
the mean difference, and N is the
total number of samples.

Table 2 shows the linear analysis of
the surface reflectance between the

Figure 10. Comparison of land surface reflectance in different channels between Landsat 8 and MODIS.

Figure 9. Spectral response curve comparison between MODIS and Landsat
8 data.
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MODIS and Landsat 8 OLI data. Statistical results show that the mean difference was greatly reduced; the
errors resulting from the spectral response functions were properly corrected. Figure 11 shows the flowchart
of the UDTCDA.

4. Data Sources and Evaluation Methods

In this paper, Landsat 8 OLI and MODIS Level 1 calibrated radiance data at a 1 km spatial resolution (MOD021KM)
were obtained and used to perform cloud detection experiments using the UDTCDA. Moreover, the visual
interpretation of clouds, the CALIPSO cloud product, and two MODIS cloud mask products, the MOD35
daily cloud mask product and the MOD04 daily aerosol product, were obtained for validation and compar-
ison purposes.

4.1. Visual Interpretation of Clouds

To examine the evaluation of cloud detection results quantitatively, the actual cloud information was
extracted using remote sensing visual interpretation method. Based on the standard false-color composite
image, the cloud distribution in the images was extracted via artificial quantification using the ArcGIS soft-
ware. Then, the reference and estimated cloud mask products were generated through the vector to raster
tool, resulting in a binary cloud mask (0 = cloud, 1 = clear) at a 1000m spatial resolution. To reduce the effects
of subjective or accidental errors, the cloud information from a total of 36 images from all the Landsat 8 and
MODIS data we used in this paper was extracted. Figure 12 shows the visual interpretation results for broken,
thick, and thin clouds extracted from the Landsat 8 OLI image as an example.

Table 2. Linear Analysis of Land Surface Reflectance Values Between Landsat 8 and MODIS

Bands R2 a b
Mean Difference
(Before Correction)

Mean Difference
(After Correction)

Blue band 0.9984 0.9389 0.0011 0.0042 0.0037
Green band 0.9912 0.9790 0.0042 0.0053 0.0018
Red band 0.9989 0.9864 0.0026 0.0023 0.0014
NIR band 0.9992 0.9956 0.0004 0.0018 0.0004

Figure 11. Flowchart of the UDTCDA.
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4.2. CALIPSO Cloud Product

CALIPSO is an environmental satellite constructed by the Cannes Mandelieu Space Center and was launched
on 28 April 2006. CALIPSO follows a 705 km, circular polar orbit as part of the Aqua constellation and has a
good collocation with the MODIS Aqua Satellite [Poole et al., 2002; Winker et al., 2010]. CALIPSO determines
the cloud phase based on polarization information derived from ground-based depolarization Lidar. It provides
nearly continuous, highly accurate measurements of the vertical structure and optical properties of clouds
and aerosols and has substantially increased the understanding of the climate system and climate change.
The Lidar level 2 cloud products are produced at three horizontal resolutions—1/3 km, 1 km, and 5 km—and
have a temporal resolution of 16 days [Powell, 2005; Powell et al., 2009, 2013; Hu, 2007; Hu et al., 2009; Sassen
et al., 2008; Chepfer et al., 2010]. In this paper, the Lidar level 2 cloud layer products with a spatial resolution
of 1 km are selected for validation purposes.

4.3. MODIS Cloud Mask Products

MOD35 is the MODIS Level 2 daily cloud mask product generated at 1 km and 250m (at nadir) spatial resolu-
tions. The MOD35 data are generated with the MODIS cloud mask algorithm and employs a series of visible
and infrared thresholds and consistency tests to specify confidence that an unobstructed view of the Earth’s
surface is being observed [Ackerman et al., 2010; Remer et al., 2012]. The data set of “CloudMask: MODIS Cloud
Mask and Spectral Test Results” at 1 km spatial resolution was selected for this paper.

MOD04 is the MODIS Level 2 daily aerosol product and has been updated to the Collection 6 (C6) version. The
MOD04 C6 provides an overland cloudmask product that is a combination of tests using absolute magnitude
and spatial variability at 0.47μm (500m resolution) and 1.38μm (1 km resolution). The final result is a binary
cloud mask at 500m resolution used to filter pixels for final aerosol retrieval [Levy et al., 2013]. The data set of

Figure 12. Visually interpreted cloud results for (a) broken and (b) thick and thin clouds.

Table 3. A Summary of the Research Data

Products Version Parameter Original Resolution Used Resolution Time Series

MOD/MYD021KM C6 Radiance 1000m 1000m 2013 to 2014
Sensor Zenith
Solar Zenith

MOD09A1 C6 Surface reflectance 500m 500m 2013 to 2014
Surface reflectance 500m 1000m 2013 to 2014

MOD/MYD35 C6 Cloud mask 1000m 1000m 2013 to 2014
MOD/MYD04 C6 Cloud mask 500m 1000m 2013 to 2014
Landsat 8 OLI - Radiance 30m 500m 2013 to 2015
CALIPSO - Cloud 1000m 1000m 2013 to 2014
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“Aerosol Cloudmask Land Ocean: Aerosol Cloud Mask 500 m resolution 0 = cloud 1= clear” at 500m spatial
resolution was selected and resampled into a 1 km resolution using the bidirectional linear interpolation
method in this paper. Detailed research data are shown in Table 3.

4.4. Evaluation Methods

In the current study, the cloud amount (CA, equation (17)) was selected to reflect the total cloud content in
the remote sensing image, and the cloud amount error (CAE, equation (18)) shows the error difference
between the reference and estimated cloud amounts. A CAE greater than 0 indicates an overestimation,
and a CAE less than 0 indicates an underestimation. In addition, the correct rate of cloudy pixels (CR, equation
(19)), the correct rate of clear-sky pixels (SR, equation (20)), the error rate (ER, equation (21)), and the missing
rate (MR, equation (22)), four typical evaluation indices, were selected to evaluate the cloud detection results
at the pixel level:

CA ¼ Ncloud

N
(17)

CAE ¼ CAproduct � CAreal (18)

CR ¼ TP
Nreal-cloud

(19)

SR ¼ TN
Nreal-clear

(20)

ER ¼ FP
Nreal-clear

(21)

MR ¼ FN
Nreal-cloud

(22)

where Ncloud represents the total cloudy pixels and N represents the total pixels of the image; CAproduct
and CAreal represent the cloud amount of cloud mask product and the reference cloud mask, respectively;
Nreal - cloud represents the total cloudy pixels; Nreal - clear represents the total clear-sky pixels in the reference
cloud mask data; TP (true positive) represents the total number of pixels identified as cloudy pixels in both
reference data and cloud detection results; TN (true negative) represents the total pixels identified as clear-
sky pixels in both reference data and cloud detection results; FP (false positive) represents the total number
of pixels identified as clear-sky pixels in reference data but cloudy pixels in cloud detection results; and FN
(false negative) represents the total number of pixels identified as cloudy pixels in reference data but
clear-sky pixels in cloud detection results.

5. Results and Discussion

MODIS and Landsat 8 OLI data cover different cloud types over different land use types in the years 2013 to
2015 were collected and utilized in cloud detection experiments using the UDTCDA. For evaluation and com-
parison purposes, cloud detection results covering different cloud types, including broken, thick, and thin
clouds over different surface types (e.g., vegetation, water, bare land, and desert), as determined using
Google Earth with areas of interest 400 × 400 pixels in size, were randomly selected from both MODIS and
Landsat 8 OLI data.

5.1. Evaluation of the UDTCDA Cloud Mask for Landsat 8 OLI

Figure 13 shows the UDTCDA cloud detection results of Landsat 8 data for demonstration, in which
Figures 13a–13d represent the broken cloud detection results, Figures 13e–13h represent the thick and thin
cloud detection results, and Figures 13i–13l represent the cloud detection results of different cloud types
over bright areas. Table 4 shows the corresponding evaluation of the cloud detection results of Landsat 8
shown in Figure 13.

Broken clouds are generally small plaques covered with a small quantity of cloud with a clear fixed edge in
the image. Fixed threshold methods demonstrate poor detection accuracy on edges and the scattered
punctate of broken clouds with large omission errors. However, broken clouds over different surfaces
(including vegetation and water areas) are better detected with the UDTCDA (Figures 13a–13d).
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Figure 13. UDTCDA cloud detection results for different cloud types over different regions based on Landsat 8 data.
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Evaluation results showed that the UDTCDA had better cloud detection accuracy with lower CAE (~0.58 to
1.29%), a higher correct rate of cloudy pixels (CR> 80%), and a higher correct rate of clear-sky pixel
(SR> 92%) rates compared with the real cloud account (CA). In addition, the UDTCDA detected the edge
of a broken cloud more accurately with a lower Error Rate (ER ~ 0.31–7.46%) and Missing Rate (MR< 20%)
(Table 4).

Thick clouds exist in large patches with greater cloud content in the image and are easily identified. Unlike
the blurred boundaries of thick clouds, thin clouds are not obvious and are identified with difficulty using tra-
ditional threshold methods. However, the UDTCDA presents generally higher detection accuracy for both
thick and thin clouds over vegetation and water areas (Figures 13e–13h). The evaluation results showed that
the UDTCDA cloud masks are more consistent and have lower CAE (~0.19 to 1.85%), higher CR (>92%), and
higher SR (>91%) values than the real reference cloud mask. Moreover, the UDTCDA can detect most thin
clouds and the edges of thick clouds more accurately with lower ER and MR values of less than 9% and
8%, respectively (Table 4).

Bright areas refer to land use types (bare land, deserts with little vegetation cover, etc.) with higher surface
reflectance and exhibit spectral characteristics similar to those of clouds, which are difficult to distinguish
from clear sky. However, the UDTCDA presents better overall cloud detection results over desert and bare
land areas covered with broken, thick, and thin clouds (Figures 13i–13l). Evaluation results indicate that the
UDTCDA cloud mask has greater consistency with lower CAE (~0.60 to 2.74%), higher CR (>82%), and higher
SR (>97%) values compared with the reference cloud mask. The UDTCDA can better detect both thick and
broken clouds and has good detection accuracy for thin clouds with a lower ER and MR of less than 3%
and 18%, respectively (Table 4).

5.2. Evaluation and Comparison of the UDTCDA Cloud Mask for MODIS
5.2.1. Evaluation of the UDTCDA Cloud Mask
Figure 14 shows typical UDTCDA cloud detection results for broken clouds (Figures 14a–14d) and thick and
thin clouds (Figures 14e–14h) over different land use covers (Figures 14i–14l for bright areas) for MODIS data.
Table 5 shows the corresponding evaluation of cloud detection results for the MODIS data shown in Figure 14.
Evaluation results indicate that the UDTCDA can identify most broken clouds irregularly distributed in the
image (Figures 14a–14d) with higher CR (>91%) and higher SR (>94%) rates and overall lower CAE (<4%),
ER (<6%), and MR (<9%) values compared with the reference cloud mask. The UDTCDA has excellent detec-
tion accuracy for thick clouds and can also detect most thin clouds as well as the edges of thick clouds over
different areas (Figures 14e–14h). The new algorithm shows overall higher CR (>80%) and SR (>96%) values
and lower CAE (~0.25 to 3.26%), ER (<4%), and MR (<20%) values. For bright areas, the UDTCDA can correctly
differentiate thick clouds from clear sky and effectively detect broken and thin clouds (Figures 14i–14l) with
overall higher CR (~73–93%) and SR (>92%) values and relatively lower CAE, ER, and MR values. Validation
results show that the UDTCDA has an overall higher cloud detection accuracy with higher SR (>92%) and
lower CAE (~0.12 to 3.26%) values for broken, thick, and thin clouds over different land uses, particularly
for bright areas.

Table 4. Evaluation of UDTCDA Cloud Detection Results Based On Landsat 8 Data

Cloud Types No. CAreal (%) CAnew (%) MAE (%) CR (%) ER (%) MR (%) SR (%) Land cover

Broken cloud a 13.80 13.15 �0.66 97.62 7.46 2.38 92.54 Vegetation
b 6.05 5.45 �0.60 85.21 0.31 14.79 99.69 Vegetation
c 4.91 4.33 �0.58 80.48 0.40 19.52 99.60 Water
d 9.94 8.65 �1.29 80.10 0.76 19.90 99.24 Water

Thick and Thin cloud e 51.33 49.97 �1.36 96.70 0.68 3.30 99.32 Water
f 57.26 58.38 +1.12 95.20 8.83 4.80 91.27 Vegetation and Water
g 50.31 50.12 �0.19 92.19 7.53 7.81 92.47 Vegetation and Water
h 12.95 11.10 �1.85 95.07 0.04 4.93 99.96 Vegetation

Bright areas i 10.48 11.91 +1.43 90.26 2.74 9.74 97.26 Desert
g 6.48 6.62 +0.14 93.48 0.60 6.52 99.40 Desert
k 10.70 10.52 �0.18 85.75 1.51 14.25 98.49 Bare land
l 8.94 8.87 �0.06 82.65 1.63 17.35 98.37 Bare land
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Figure 14. UDTCDA cloud detection results for different cloud types over different regions based on MODIS data.
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5.2.2. Compared With MODIS Cloud Mask Products
For comparison purposes, the MOD04 andMOD35 cloudmask products corresponding to the same time and
area as the UDTCDA cloud mask retrieved from MODIS images were obtained. Figures 15–17 compare the
UDTCDA and MODIS cloud mask products covered with different cloud types over different areas. The

Table 5. Evaluation of UDTCDA Cloud Detection Results Based On MODIS Data

Cloud Types No. CAreal (%) CAnew (%) MAE (%) CR (%) ER (%) MR (%) SR (%) Land cover

Broken cloud a 4.71 5.13 +0.42 91.16 1.37 8.84 98.63 Vegetation
b 7.63 10.31 +2.68 98.08 3.06 1.92 96.94 Vegetation
c 25.76 28.88 +3.12 95.36 5.81 4.64 94.19 Bare land
d 43.90 45.24 +1.34 95.65 5.79 4.35 94.21 Vegetation

Thick and Thin cloud e 32.91 29.64 �3.26 84.85 2.57 15.15 97.43 Vegetation
f 31.64 28.95 �2.69 86.83 2.16 13.17 97.84 Vegetation and Water
g 17.08 17.33 +0.25 84.61 3.47 15.39 96.53 Water
h 10.52 7.50 �3.02 80.21 0.97 19.79 99.04 Vegetation

Bright areas i 8.27 8.33 +0.43 92.48 2.50 7.52 97.50 Bare land
g 21.30 21.45 +0.15 80.22 7.84 19.78 92.16 Desert
k 6.16 4.31 �1.85 76.85 0.40 23.15 99.60 Bare land and Desert
l 0.68 0.55 �0.12 73.47 0.13 26.53 99.87 Desert

Figure 15. Comparison of broken cloud detection results between different cloud mask products.
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horizontal groups comprise the MODIS standard false-color composite images, the UDTCDA cloud mask, and
MOD35 and MOD04 cloud masks. Table 6 compares their corresponding accuracy.

Figure 15 compares different cloud mask products for broken clouds. Evaluation results indicate that the
MOD35 cloud mask showed overall lower cloud detection accuracy with a lower CR less than 30% and ser-
iously underestimated the image cloud content (CAE~�0.76 to 4.95%). However, the MOD04 cloud mask
showed generally lower detection accuracy with lower SC values less than 53% and seriously overestimated
the image cloud content (CAE~ 1.64 to 19.36%). In addition, the UDTCDA cloud mask showed better cloud
detection results for broken clouds with higher CR and SR values greater than 82%; the UDTCDA cloud mask
also had a lower uncertainty rate (CAE ~�0.13 to 0.11%) with smaller ER and MR values of less than 1.2% and
18%, respectively.

Figure 16 compares the cloud detection results of different cloud mask products for thick and thin clouds.
Clearly, all cloud mask algorithms can better detect the thick clouds correctly in the images but show great
differences in detection accuracy for thin clouds. Evaluation results indicate that theMOD35 cloudmask algo-
rithm cannot identify most thin clouds and underestimates the image cloud content (CAE ~�0.13 to 18.63%),
resulting in generally poorer detection accuracy with higher MR (~16.54 to 97.11%) and lower CR values of
less than 83%. However, the MOD04 cloud mask algorithm seriously overestimated the cloud content of thin
clouds in the image (CAE ~ 4.72 to 35.96%), leading to an overall lower detection accuracy with a higher ER
(~11.91 to 55.42%) and lower SC values of less than 53%. However, the UDTCDA showed better cloud

Figure 16. Comparison of thick and thin clouds detection results between different cloud mask products.
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detection results for thick and thin cloudswith higher CR and SR values greater than 82% and lower estimation
errors (CAE~�3.26 to 0.34%) and ER and MR values of less than 5.79% and 17.6%, respectively.

Figure 17 compares different cloud mask products covered with different cloud types over bright areas. Both
the UDTCDA andMODIS cloudmask algorithms can detect most thick and thin clouds over bright areas more
accurately but show poorer detection results for broken clouds and the edges of clouds. Evaluation results
indicate that both MOD35 and MOD04 cloud masks seriously overestimated the image cloud content
(CAE~ 3.05 to 28.79% for MOD35 and CAE~ 6.32 to 28.32% for MOD04 cloud mask) with higher ER values,
leading to overall lower cloud detection accuracy. The estimation uncertainties are serious, particularly in
bright areas with higher surface reflectance. Overall, however, the UDTCDA shows better cloud detection
accuracy for broken, thick, and thin clouds over bright areas with higher CR and SR values greater than
80% and lower CAE (0 to 1.5%) values, which can effectively reduce the estimation uncertainty in bright areas.
5.2.3. Comparison With the CALIPSO Cloud Product
The UDTCDA cloud products were generated from the MODIS Aqua data from June to August in 2014 and
were compared and validated with the CALIPSO cloud product. The selected data covered a large area, with
a latitudinal range of 5 to 50°N and a longitudinal range of 75° to 135°E, and included different cloud types
over different land surfaces. The corresponding MODIS Aqua MYD35 (C6) and MYD04 (C6) cloud mask pro-
ducts were also collected and compared to the CALIPSO cloud product. Four evaluation indexes, i.e., CR,
SR, ER, and MR, were calculated, and the results are shown in Table 7.

Figure 17. Comparison of cloud detection results between different cloud mask products over bright areas.
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Table 7 shows that the MOD35 cloud products have an overall lower consistency with the CALIPSO cloud
products, with an average SR value of 61% and a higher MR value of 34.53%. The higher CR (75.36%) and
relatively smaller ER (19.98%) indicate that the MOD35 cloud products seriously underestimated the cloud
information in the images. The MOD04 cloud products showed an overall higher SR (92%), a smaller MR

Table 6. Evaluation and Comparison of Different Cloud Mask Products With Visual Interpretation of Clouds

Figure CAreal (%) Algorithm CAproduct (%) MAE (%) CR (%) ER (%) MR (%) SR (%)

Figure 15a 1.96 UDTCDA 1.83 �0.13 82.22 0.22 17.78 99.78
MOD35 0.01 �1.96 0.41 0.00 99.59 100.00
MOD04 21.33 +19.36 47.24 20.81 52.76 79.19

Figure 15b 4.73 UDTCDA 4.74 +0.01 86.07 0.71 13.93 99.29
MOD35 0.71 �4.02 13.56 0.07 86.44 99.93
MOD04 15.34 +10.61 71.98 12.53 28.02 87.47

Figure 15c 5.16 UDTCDA 6.27 +1.11 99.58 1.19 0.42 98.81
MOD35 0.21 �4.95 4.06 0.00 95.94 100.00
MOD04 6.80 +1.64 88.63 21.97 11.37 78.03

Figure 15d 1.55 UDTCDA 2.39 �0.84 98.17 0.88 1.83 99.12
MOD35 0.79 �0.76 30.25 0.32 69.75 99.68
MOD04 10.10 +8.55 94.88 8.74 5.12 91.26

Figure 16a 32.91 UDTCDA 29.64 �3.26 84.85 2.57 15.15 97.43
MOD35 14.28 �18.63 43.09 0.16 56.91 99.84
MOD04 37.83 +4.92 81.30 16.50 18.70 83.50

Figure 16b 43.90 UDTCDA 45.24 +1.34 95.65 5.79 4.35 94.21
MOD35 36.86 �7.04 83.46 0.39 16.54 99.61
MOD04 71.53 +27.63 99.24 49.85 0.76 50.15

Figure 16c 1.71 UDTCDA 1.10 +0.62 84.69 0.10 15.31 99.90
MOD35 0.58 �1.13 2.89 0.55 97.11 99.45
MOD04 12.77 +11.06 80.77 11.91 19.23 88.09

Figure 16d 24.32 UDTCDA 21.74 +2.58 82.40 2.24 17.60 97.76
MOD35 32.00 +7.68 70.40 19.66 29.60 80.34
MOD04 61.88 +37.56 81.98 55.42 18.02 44.58

Figure 17a 14.94 UDTCDA 16.44 +1.50 89.69 4.70 10.31 95.30
MOD35 43.74 +28.79 96.99 35.20 3.01 64.80
MOD04 43.38 +28.44 98.74 34.51 1.26 65.49

Figure 17b 21.30 UDTCDA 21.45 +0.15 80.22 7.84 19.78 92.16
MOD35 25.20 +3.90 75.98 13.44 24.02 86.56
MOD04 44.85 +23.55 91.98 33.93 8.02 66.07

Figure 17c 0.00 UDTCDA 0.00 0.00 100.00 0.00 0.00 100.00
MOD35 3.05 +3.05 0.00 3.05 100.00 96.95
MOD04 6.32 +6.32 0.00 6.32 100.00 93.68

Figure 17d 0.00 UDTCDA 0.00 0.00 100.00 0.00 0.00 100.00
MOD35 6.04 +6.04 0.00 6.04 100.00 93.96
MOD04 28.32 +28.32 0.00 28.32 100.00 71.68

Table 7. Evaluation and Comparison of Different MODIS Cloud Products to the CALIPSO Cloud Product

UDTCDA Cloud Product MYD35 Cloud Product MYD04 Cloud Product

CR (%) ER (%) MR (%) SR (%) CR (%) ER (%) MR (%) SR (%) CR (%) ER (%) MR (%) SR (%)

12 June 90.42 22.24 9(.58 77.76 77.05 0.00 14.00 79.97 97.40 50.07 2.60 49.93
17 June 82.84 15.71 17.16 84.29 41.52 1.83 43.53 95.81 96.40 85.74 3.60 14.26
23 June 83.28 12.50 16.72 87.50 72.32 21.58 26.96 72.98 96.40 85.74 3.60 14.26
5 July 81.28 13.08 18.72 86.92 66.43 23.84 33.57 76.16 93.28 61.69 6.72 38.31
10 July 83.68 10.00 16.32 90.00 60.42 68.31 39.58 31.69 83.91 62.94 16.09 37.06
16 July 81.68 19.44 18.32 80.56 60.58 0.53 32.90 79.68 81.93 57.99 18.07 42.01
26 July 78.90 28.80 21.10 71.20 35.81 16.08 46.20 80.23 89.08 61.53 10.92 38.47
7 August 78.14 18.97 21.86 81.03 64.38 17.51 35.62 82.49 92.53 67.15 7.47 32.85
12 August 72.80 22.48 27.20 77.52 59.22 20.68 40.78 79.32 89.11 67.66 10.89 32.34
20 August 81.65 28.28 18.35 71.72 65.07 15.62 34.94 84.38 95.78 88.53 4.22 11.47
25 August 75.75 27.01 24.25 72.99 68.23 33.76 31.77 66.24 96.22 80.13 3.78 19.87
Average 80.95 19.86 19.05 80.14 61.00 19.98 34.53 75.36 92.00 69.92 8.00 30.08
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(8%), an average CR of less than 40%, and a higher average ER of 69.92%, indicating that it seriously over-
estimated the cloud information in the images. Compared with the MOD35 and MOD04 cloud products,
the UDTCDA cloud products showed a better consistency with CALIPSO cloud products with CR and
SR values greater than 80% and ER and MR values less than 20%. The UDTCDA can identify clouds more
accurately, thereby effectively reducing the estimation uncertainty compared with the current MODIS
cloud products.

6. Conclusions

To reduce the influence of mixed pixels formed of cloud and ground features on cloud detection and
improve the cloud identification ability of land satellites with high spatial resolutions but low spectral resolu-
tions, a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) with a surface reflectance
database support is proposed in this paper. A monthly surface reflectance database was established based
on the long-time series of MODIS 8 day synthetic surface reflectance products (MOD09A1). The relation
between the apparent reflectance and the surface reflectance was simulated using the 6S model, carefully
considering different observation and atmospheric conditions. Then, the dynamic cloud detection models
were built and applied to two typical sets of selected data—MODIS and Landsat 8—to perform cloud
detection experiments. A visual interpretation of the clouds and the CALIPSO Lidar cloud estimates were
selected to verify the experimental results, and the results were also compared with the current MODIS
cloud products.

The evaluation and comparison results indicate that the MOD35 cloud products exhibited an overall low
cloud detection accuracy, with a low correct rate of cloudy pixels (CR) of less than 30%. These products ser-
iously underestimated the cloud content in the images. Similarly, the MOD04 cloud products had an overall
lower detection accuracy with a lower correct rate of clear-sky pixels (SR) less than 60% and seriously over-
estimated the cloud content in the images. The UDTCDA cloud products were considerably more consistent
with the visual interpretation and CALIPSO-derived cloud estimates and demonstrated overall better cloud
detection accuracy, with higher SR and CR values of greater than 80% and lower Error Rate (ER) and
Missing Rate (MR) values of less than 20%. Therefore, the UDTCDA products exhibit less uncertainty than
the MOD04 and MOD35 cloud mask products. The UDTCDA can effectively reduce the effects of mixed pixels
and atmospheric factors and can achieve cloud detection from a large-scale area and long-term sequence for
different satellite data. These capabilities make the products highly valuable for retrieval of atmospheric and
surface parameters.

This study found that the new algorithm shows better and more effective cloud detection results. However,
some problems still remain.

1. The UDTCDA with the prior monthly surface reflectance database support is established based on
the assumption that the surface reflectance of most features changes little within a certain period.
Thus, this algorithm can be limited in some areas where the surface reflectance changes obviously due
to snowfall/melt, forest fires, logging, urban expansion, etc.

2. The cloud detection accuracy may decrease due to the lack of terrain correction in the MODIS surface
reflectance products over areas of rugged terrain.

3. Due to the lack of ground measurements of clouds, the validation work was performed via comparisons
with the remote sensing visual interpretations of clouds, which is a more subjective approach.

Thus, more comprehensive and effective verification work needs to be performed in future studies.
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