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A New Cloud Detection Method Supported by
GlobeLand30 Data Set
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Tingting Chen, Yulei Chi, and Wenhua Zhang

Abstract—In terms of traditional threshold methods, uniform
thresholds are used for cloud detection based on remote sensing
images; however, due to complex surface structures and cloud con-
ditions, such an approach is typically difficult to effectively imple-
ment for high-precision cloud detection. To solve this problem, a
new cloud detection algorithm is proposed based on global land
cover data. Specifically, a high spatial-resolution at 30-m Global
Land Cover Data set with global coverage was employed as back-
ground data for image inversions, which further supported cloud
detection in remote sensing images. Notably, threshold settings can
be varied for different land cover types. Such an algorithm can ef-
fectively improve the accuracy of cloud pixel identification for thin
and broken clouds, even over bright areas. Moreover, Landsat 5
data are used to perform cloud detection experiments based on this
algorithm. The thresholds are considering land cover variations.
The thresholds of land cover types spatiotemporally vary, such as
vegetation, differed by latitude and over time. In addition, six com-
mon land cover types are selected for cloud detection experiments.
Then, validations analyses are conducted through visual interpre-
tation and the results indicated that the algorithm is capable of
achieving a high cloud detection accuracy. Specifically, the overall
RMSE of cloud cover is 4.44%, and the accuracies of cloud and
clear-sky pixel identifications is 86.5% and 98.7%, respectively.

Index Terms—Cloud detection, GlobeLand30, land cover prod-
uct, Landsat, threshold method.

I. INTRODUCTION

A S AN important climate change factor, clouds alter the
energy transfer process of solar radiation and affect the

radiation budget between the surface of Earth and the atmo-
sphere. Therefore, clouds play a critical role in the radiation
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energy balance [1], [2]. Although satellite remote sensing tech-
nology is currently a crucial means of Earth monitoring, clouds
can blur remote sensing images and even block ground infor-
mation, which leads to incorrect information expression and
the accurate inversion of atmospheric and surface parameters
[3]–[6]. Therefore, cloud detection is essential for remote sens-
ing image processing and is significant for the improvement of
both the quality and utilization ratio of remote sensing data.

Among the numerous cloud detection methods, the thresh-
old method, statistical methods (Markov random fields, sup-
port vector machine, etc.) [7]–[11], and artificial neural network
methods [12]–[14] are the major detection method categories.
In detail, the threshold method has been extensively applied to
the preprocessing of various remote sensing images due to its
simple algorithm, user-friendly control, and high accuracy; in
most cases, this method is used for vocational operations to pro-
duce cloud products. Saunders and Hunt used single channel
thresholds for cloud detection without any auxiliary data at the
beginning, which was referred to as a “gross cloud check” [15].
Multichannel thresholds were also applied for early cloud detec-
tions [16]–[18]. Rossow and Rossow [19], [20] developed the
International Satellite Cloud Climatology Project (ISCCP) algo-
rithm in 1983. It is assumed that radiation only originates from
two atmospheric conditions: clear sky and clouds. The main
thoughts regarding this algorithm are that clear-sky images are
less variable than those with cloud cover and that clear skies are
also darker and hotter in the visible and infrared bands. More-
over, when the radiation value is significantly greater than the
variations in a clear-sky pixel, the pixel is identified as a cloud
pixel. Developed by Saunders and Kriebel [21], the advanced
very high resolution radiometer (AVHRR) processing scheme
over cloud land and ocean algorithm used five tests formed by
bands one to five of the AVHRR to perform cloud detection,
and when all test objects are clear-sky pixels, the corresponding
pixel is determined to be a clear-sky pixel; otherwise, the pixel
is cloud pixel. Presently, the moderate resolution imaging spec-
troradiometer (MODIS) cloud mask is one of the commonly
used cloud models. The relevant algorithm primarily utilizes
multiple bands, and the mutual operations of the bands are used
to conduct a series of threshold tests, which are divided into
five groups. The test results of the diverse confidence values are
combined in a particular way to form the final cloud mask prod-
uct [22], [23]. Vittorio and Emery [24] adopted AVHRR data
to automatically generate a threshold algorithm known as dy-
namic threshold cloud-masking (DTCM) and these data include
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the reflectance at the central wavelength is 0.68 μm, bright-
ness temperature difference between the third and fourth bands
(central wavelengths are 3.83 and 10.50 μm, respectively), and
brightness temperatures of the fourth and fifth bands (central
wavelength is 12.20 μm). Moreover, DTCM can be used for
cloud detection over land. To improve the MODIS cloud mask
algorithm for polar nights, Liu et al. [25] introduced a new
testing method based on the physical foundation of testing and
radiation transfer simulations. Zhuge et al. proposed a visible
cloud index based on the reflectance of three bands at cen-
tral wavelengths of 0.46, 0.640, and 0.86 μm for the advanced
Himawari imager [26]. With improvements in remote sensing
satellite sensors and cloud detection technology, cloud detection
in higher spatial resolution images was developed. The Fmask
[27] algorithm utilizes the physical characteristics of clouds and
a series of threshold tests to extract potential clouds and further
isolate clouds, cloud shadows, and snow. As a cloud detection
algorithm, the universal dynamic threshold cloud detection al-
gorithm (UDTCDA), which was proposed by Sun et al. [28]
supported by the land surface reflectance database, uses the 6S
model to simulate atmospheric impacts and acquire the associ-
ated dynamic thresholds. Li et al. [29] proposed an automatic
multifeature combined method for cloud and cloud shadow de-
tection in GaoFen-1 wide field of view imagery using spectral
features, guided filtering, and geometric features to produce the
cloud and cloud shadow masks.

However, although the traditional threshold methods of cloud
detection are based on simple principles and can be easily im-
plemented, some problems remain with these methods. For ex-
ample, the threshold method is utilized to identify cloud pixels
according to spectral characteristic differences between surface
features and clouds. However, surface conditions are compli-
cated, and spectral characteristic differences exist for different
types of surface features and clouds or between dramatically dif-
ferent bands. For example, the reflectance of thin clouds above
water bodies can be much lower than that of bare land. There-
fore, an identical threshold for the same band is inapplicable
to an entire remote sensing image with complex surface fea-
tures. Although computer-assisted unsupervised classification
can be performed with the DTCM algorithm, the correspond-
ing classification accuracy is limited due to the complexity and
the relevant classification procedure can be very sophisticated
if a high classification accuracy is obtained. In recent years,
cloud detection studies on Landsat series satellite images have
been conducted continuously using the Fmask cloud detection
algorithm [26], [27], UDTCDA [28], and multitemporal cloud
detection [30]. Although high levels of accuracy have been
obtained by these algorithms, the associated process can be
very complicated. For example, dynamic thresholds such as
UDTCDA are used to eliminate errors incurred by the Earth
surface complexity and gain a high accuracy, and a minimum
value composite, clipping, mosaic should be performed, which
is targeted at MODIS surface reflectance products, to establish
a surface reflectance database for different bands. Considering
a heavy preparation workload in early stages, the database is
applicable to long-term cloud detection batch processing and
product manufacturing. Nevertheless, for processing a few or-

Fig. 1. Spectral curves of typical surface features.

TABLE I
MAJOR PARAMETERS OF THE LANDSAT-5 TM SENSOR

dinary remote sensing images, cloud detection only serves as
a preprocessing step. Thus, such an algorithm is relatively so-
phisticated.

Hence, a threshold-based cloud detection algorithm, which is
supported by the 30-m global land cover type product, is pre-
sented in this study to improve the universality of fixed threshold
values for a complex surface of Earth, as well as more effec-
tively utilize relatively accurate surface classification and realize
convenient and rapid cloud detection. This algorithm is called
land-cover-based cloud detection (LCCD). Moreover, accuracy
validation was performed for the cloud detection results of
diverse underlying surfaces.

II. PRINCIPLES

Cloud identification is conducted according to spectral differ-
ences between the clouds and typical surface features or bright-
ness temperature differences [31]–[33]. Fig. 1 shows the spectral
curves of various, typical surface features. Among the features,
the spectral characteristics of surface features are obtained from
the United States Geological Survey (USGS) spectral library
[34], and the cloud features are acquired from a cloud pixel
library established with airborne visible infrared imaging spec-
trometer hyperspectral data. In addition, the main parameters
of Landsat 5 are listed in Table I. In the visible near-infrared
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TABLE II
APPARENT REFLECTANCE OF THIN CLOUDS ABOVE TYPICAL SURFACE FEATURES

band, except for snow, the reflectance difference between typical
surface features and clouds is very high. As a result, the thresh-
old method can be adopted to achieve a favorable detection
effect for thick clouds, especially those over a dark surface.
However, thin cloud detection is of the same importance, be-
cause thin clouds combine with the underlying surface to form
mixed pixels.

Different typical Earth surfaces are selected in this study to
obtain the statistics of the apparent reflectance of thin clouds.
The corresponding statistical results are given in Table II, in
which the reflectance of thin clouds above water bodies, vege-
tation, and bare land are presented. Notably, the thin clouds in
the selected images (a), (b), and (c) tend to become increasingly
thinner. Dependent on three categories of surface feature spectral
curves, the underlying surface has a dramatic influence on the re-
flectance of thin clouds. The apparent reflectance of thin clouds
is typically consistent with the spectral characteristics of the un-
derlying surface. For an identical surface feature, the thinner the
cloud is, the closer the apparent reflectance will be to the spec-
tral surface feature. In the figure, the apparent reflectance of thin
clouds above water bodies ranges approximately between 0 and
0.2 in six bands. By contrast, in terms of bare land, the surface

feature reflectance is higher than 0.2. In this case, if clouds over
bare land must be detected, the corresponding threshold should
be set to 0.2 and above; otherwise, misjudgment may occur for
bright surfaces, and thin clouds with an apparent reflectance less
than the threshold above water bodies (or even vegetation) could
result in a false negative. Likewise, the visible band is optimal
for the detection of cloud pixels above vegetation. The red band
(Band 3) can be used as an example. Since the reflectance of
bare land itself is close to 0.3, which is higher than the apparent
reflectance of thin clouds above vegetation (<0.25), preferable
cloud detection results cannot be obtained for both in the red
band. In addition, cloud pixel identification above water bodies
achieves a good effect in the near-infrared (Band 4) and short-
wave infrared (Bands 5 and 7) bands. However, vegetation and
bare land also have high reflectance values in Band 4 and Band 5.
Consequently, the corresponding threshold should be relatively
lower to ideally detect cloud pixels above water bodies, which
may result in bare land being misjudged as clouds. Such a phe-
nomenon signifies that the traditional threshold method cannot
comprehensively consider the complex spectral characteristics
of the Earth’s surface. Additionally, land cover type data must be
used to define a reasonable threshold range for cloud detection.
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Fig. 2. Apparent reflectance variation simulation of thin clouds over water
bodies and bareland.

Taking water bodies and bare land as examples, the mixed
pixel decomposition principle [35] (refraction of thin clouds
is equivalent to the proportion occupied by pixels) is utilized
to perform simulated calculations for the apparent reflectance
of thin clouds above water bodies. According to the spectral
curves, we select the reflectance values of clouds, water, and
reddish brown, sandy loam for the simulation. The correspond-
ing determination and calculation results are given in Fig. 2,
in which (a) and (b) represent the outcomes of the visible and
infrared bands. In the figure, the solid line refers to the appar-
ent reflectance of bare land at a certain band, and the apparent
reflectance variation tendencies of mixed pixels, which corre-
spond to the water bodies along with the increase in cloud cover,
are denoted by dashed lines. When the proportion occupied by
the clouds above water bodies in the pixels is 0, this is the ap-
parent reflectance of the water bodies. As this proportion rises,
the apparent reflectance tends to change linearly until it reaches
1 (pure cloud pixel), and thus, the apparent reflectance of the
cloud appears. In Fig. 2(a), when the proportion taken by the
cloud is 0.23 (Blue), 0.40 (Green) or 0.44 (Red), the reflectance
of mixed pixels formed by water bodies and clouds reaches a
value identical to that of bare land. In Fig. 2(b), in the case
where the proportion of clouds is 0.49 (NIR), 0.90 (SWIR1) or
0.92 (SWIR2), the reflectance of mixed pixels is also the same
as that of bare land. Such simulation indicates that the apparent
reflectance of bare land can be higher than that of the mixed
pixels combined with thin clouds and water bodies under cer-
tain circumstances, in which case, thin clouds over water bodies
still cannot be identified if the cloud detection threshold of bare
land is adopted.

In summary, the LCCD algorithm uses the global land cover
data set as a basis to support the underlying surface types of
remote sensing images and to improve both the classification
efficiency and accuracy. In addition, a rational threshold is also
given according to the classification.

III. 30-M GLOBAL LAND COVER DATA SET

The 30-m global land cover data set (GlobeLand30) is a
global land cover product generated from 30-m multispectral
images, including those obtained from Landsat TM5, ETM+
multispectral images, and multispectral images from the Chi-
nese Environmental Disaster Alleviation Satellite (HJ-1). This
data set is also used in combination with large quantities of
auxiliary and reference data (e.g., global ecological and ge-

TABLE III
BRIEF INTRODUCTION TO THE LAND TYPES OF GLOBELAND30

ographical division data, global basic geographic information
data and global DEM data, etc.). Data are selected for this
product based on being cloudless or partly cloudy. Images ac-
quired during the vegetation growing season are preferentially
chosen as the classified images. Concerning most of the images,
the acquisition time is within the year 2010 ± 1, and regarding
areas where it is difficult to collect images, the time condition of
image acquisition is properly less restrictive. GlobeLand30 [36]
uses the WGS-84 coordinate system, the UTM projection, and
6 degree zoning. It contains ten surface features, which include
cultivated land, forest, grassland, shrubland, wetland, water bod-
ies, tundra, artificial surfaces, bare land, and permanent snow
and ice. The assignment and color for each type are shown in
Table III.

The GlobeLand30 product was derived using a hierarchical
extraction method. Each land cover type was classified indi-
vidually, with mask constraints for other land cover types. The
workflow is to extract only one land cover type at a time, and
then, the class is masked after extraction. The classification is
conducted for the next land cover type and then masked until all
classes are derived. According to a third-party accuracy assess-
ment, the classification accuracy of GlobeLand30 was evaluated
using a spatial data two-level sampling scheme. The first level is
frame sampling, which uses map tiles as the sampling unit. The
second level is feature sampling, which uses a selected pixel in
the tile as the sampling unit. In total, 9 types and over 150 000
test samples were evaluated in terms of accuracy. The over-
all accuracy of GlobalLand 30–2010 can reach 83.51% [36].
The relevant Kappa indicator is 0.78. The accuracies of diverse
types are shown in Fig. 4. Thus, this land cover type classifi-
cation product achieves high accuracy, which provides an ac-
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Fig. 3. Introduction of GlobeLand30.

Fig. 4. Accuracies of GlobeLand30 for all land cover types.

curacy guarantee for its application in cloud detection in this
study.

IV. METHODOLOGY

Because the Landsat-5 TM data are consistent with the years
that correspond to the GlobeLand30 land cover type database
temporal distribution, the algorithm was applied to the TM data.
Landsat-5 is a satellite in the sun-synchronous orbit, which was
launched by NASA on March 1, 1984. The satellite’s orbital alti-
tude and revisiting period are 705 km and 16 days, respectively.
In addition, the satellite’s TM sensor has seven bands, which
can cover visible and thermal infrared. Moreover, the LCCD
algorithm utilizes 1–7 bands of this sensor.

In this study, surface feature types except areas covered by
snow/ice are primarily selected to perform cloud detection based
on the land cover type classification product. Six surface fea-
tures, which include wetland, water bodies, tundra, artificial sur-
face, bare land, and ocean, have reflectance values that slightly

Fig. 5. Spectral reflectance of wetland and water bodies.

Fig. 6. Spectral reflectance of typical soil.

change as the season varies, and thus, these surface features
are deemed constant attribute surfaces. Therefore, cloud detec-
tion can be conducted for these features using a fixed threshold
value. However, the reflectance values of cultivated land, forest,
grassland, and shrubland are dramatically different from each
other at different latitudes, in different seasons and for different
vegetation types. As Earth’s attribute surfaces change, spatial-
temporal changes should be comprehensively considered to de-
termine the cloud detection threshold. In this study, the USGS
spectral library is employed to statistically analyze the spectral
characteristics of the typical surface features of diverse land
cover types. Additionally, a reasonable cloud detection thresh-
old is obtained, which is based on the global land cover data.

A. Constant Attribute Surfaces

In Figs. 4–6, typical spectral curves of water bodies, wetland,
soil, and urban material are presented. Considering that the
overall reflectance of water bodies is relatively low (see Fig. 5)
and the reflectance values of the blue and green bands are slightly
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high and gradually decreases until close to 0 in the infrared band,
the blue, green, red, and near-infrared bands are employed to
identify cloud pixels over the ocean. In addition, due to the
influence of phytoplankton and sediments in inland rivers and
lakes, their reflectance can rise somewhat in the near-infrared
band. Considering this, only the blue, green, and red bands are
utilized to perform cloud identification for pixels over water
bodies. For example, if the reflectance values of underlying
surfaces of ocean or water bodies satisfy discriminant (1) or (2),
respectively, the corresponding pixel is a cloud pixel; otherwise,
the pixel is a clear-sky pixel.

Band 1 > 0.13 ∪ Band 2 > 0.15 ∪ Band 3 > 0.1 (1)

Band 1 > 0.12 ∪ Band 2 > 0.12 ∪ Band 3

> 0.1 ∩ Band 4 > 0.1. (2)

Wetlands dominated by aquatic organisms have a moist soil
layer, rich vegetation species, and stable ecological systems. The
material underlying of a wetland is moist soil or shallow wa-
ter, the reflectance is very low, and the influence of seasonable
variations on the reflectance change in mixed pixels is insignif-
icant. Therefore, the impact of mixed pixels has been disre-
garded in this study. When the underlying surface is wetland, the
bands with a corresponding apparent reflectance that satisfies the
following condition are identified as clouds

Band 1 > 0.13 ∪ Band 2 > 0.15 ∪ Band 3 > 0.13. (3)

For bare land, brown-red, sandy loam soil, brown to dark
brown sandy soil, grayish brown soil, and brown sandy loam
soil are selected as the typical bare land types in this study.
As revealed by the reflectance spectral curves in Fig. 6, the re-
flectance of different types of soil increases in the visible band.
Between 1.0 and 2.7 μm is a high-reflection region with a slight
reflectance difference from clouds. Hence, the blue, green, red,
and near-infrared bands are adopted to identify whether pixels
over bare land can be classified as cloud pixels. Additionally,
the reflectance in the bare land brightness temperature band
is quite different from that of clouds, although they both have
high reflectance values in the visible band. In detail, the cloud
brightness temperature is low, whereas bare land has a high
brightness temperature. For this reason, pixels meeting discrim-
inant (4) are identified as cloud pixels. Otherwise, the pixels are
clear-sky pixels

(Band 1 > 0.15 ∪ Band 2 > 0.15 ∪ Band 3

> 0.2) ∩ BT6 < 298. (4)

In Fig. 7, the spectral curves of typical artificial materials
in urban areas are presented. There is a large difference in the
reflectance values of different artificial materials; however, they
have a consistent rule in general. That is, the spectral difference
between artificial materials and clouds is the largest in the visible
range. Therefore, the visible band is selected in this study to
conduct cloud identification for pixels over artificial surface.
The following discriminant has been established according to
the low brightness temperature characteristic of clouds, and

Fig. 7. Spectral reflectance of artificial surface.

those up to conditions of this discriminant can be identified as
cloud pixels

(Band 1 > 0.2 ∪ Band l2 > 0.25 ∪ Band 3 > 0.3)

∩ BT6 < 296. (5)

B. Changing Attribute Surfaces

For cultivated land, forest, grassland, and shrubland, different
seasons and geographical locations may lead to different vege-
tation growth states and such differences further induce changes
in their reflectance values. For example, boreal forest is com-
monly predominated by coniferous forest, whereas temperate
forests are predominated by deciduous forest and broad-leaved
forest evergreen during all four seasons, which can be seen in
the tropics in most cases. During summer, vegetation has plenti-
ful leaves, which is a vegetation characteristic; however, during
winter, most leaf falling phenomena are considered to be a bare
land feature. Therefore, when the threshold method is used to
identify cloud pixels, the effects of spatiotemporal variations
and mixed pixels on reflectance should be considered. In this
study, the mixed pixel effects of vegetations across diverse sea-
sons and latitudes can be used to obtain the corresponding cloud
detection thresholds. Furthermore, latitudes were divided into
the tropical zone (0°–23.5°), temperate zone (23.5°–66.5°), and
frigid zone (66.5° ∼ 90°).

1) Cultivated Land: Actual cultivated land situations are
complex. As different crops are planted on different plots, the
plant growth cycle fails to exhibit an obvious wholeness law
such as forest or grassland. Therefore, regions with low re-
flectance (vegetation cultivated regions) in cultivated land are
first removed from the visible band (blue, green and red bands)
to extract clouds and bare land with reflectance thresholds of 0.2,
0.25, and 0.2. Subsequently, a low cloud brightness temperature
in the infrared band is employed as a criterion to distinguish
bare land from cloud pixels. Brightness temperature thresholds
in different temperature zones and seasons are shown in Table IV

Band 1 > 0.2 ∪ Band 2 > 0.25 ∪ Band 3 > 0.2 ∩ BT6

< TBT6 . (6)
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TABLE IV
TM6 BRIGHTNESS TEMPERATURE THRESHOLD T BT6 (K) IN THE

CULTIVATED LAND AREA

Fig. 8. Spectral curves of various grasslands.

Fig. 9. Spectral reflectance of various tree and vegetation types.

Equation (6) is a threshold discriminant for cloud detection
over cultivated land, where BT6 refers to the brightness tem-
perature of the thermal infrared band (Band 6) and TBT6 is the
brightness temperature threshold. The pixels that satisfy such a
condition are identified as cloud pixels.

2) Forest, Grassland, and Shrubland: Unlike cultivated
land, forest, grassland, and shrubland growth rates are uniform
within a relative range. In Figs. 8 and 9, the reflectance fea-
ture curves of grasslands and trees in diverse types and clouds
are given. Dependent on these figures, the reflectance values of

vegetation types in the visible band are significantly different
from those of clouds, despite only slightly different reflectance
curves. As a result, the blue, green, and red bands are selected to
identify clouds over grassland and forest areas. For cloud detec-
tion over shrubland areas, blue, green, and shortwave infrared
bands (Band 7) are adopted.

In terms of forest, toyon, deciduous, and coniferous trees
are the major vegetation types in tropical, temperate, and frigid
zones, respectively. The spectral curves of the above three typi-
cal vegetation types are used as references to set the forest cloud
detection thresholds. Due to the latitudinal influence of tropical
and frigid zones, the temperatures in those locations are rela-
tively stable year round, and the four seasons in two of the zones
are not distinctive. In contrast, tropical forests are hot and hu-
mid throughout the year and predominated by evergreen forests
with wide and flourishing leaves. On this basis, the proportions
of pixels occupied by bare land and vegetation are assumed
to be 0 and 1, respectively. In the frigid zone where the tem-
perature is perennially low, coniferous forests with evergreens
and needle-like leaves are distributed during all four seasons.
Hence, the percentage occupied by bare land and vegetation are
supposed to be 0.2 and 0.8, respectively. In the temperate zone
with four distinctive seasons, most areas are deciduous forests.
In this study, different bare land and vegetation mixing ratios
are used according to various degrees of leaves falling in forests
during spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February) to
acquire cloud detection thresholds in all four seasons.

Grassland was not classified because it is less susceptible to
altitude. The grassland reflectance thresholds in the blue, green,
and red bands are set to 0.2, 0.23, and 0.3, respectively, in
this study. For temperate zone grassland, different thresholds
are given for different grass-bare land proportions according to
spring, summer, autumn, and winter. Due to climatic factors,
grassland decay in autumn and winter is neglected for the trop-
ical zone, and the ratio between grass and bare land is set to 1.
Vegetation is sparse in the frigid zone where the temperature is
low year round, but the temperature during the summer in this
zone is similar to that during spring in the temperate zone. As
a result, the threshold established for summer in the frigid zone
should be consistent with that of spring in the temperate zone.
In the remaining cold periods, the temperature conformed with
the winter thresholds of the temperate zone.

There is a wide variety of shrubs, leaf colors, flower colors,
and growth cycles, which indicates poor uniformity. Further-
more, the red reflectance of some shrub varieties is higher than
that of other species, due to the influence of leaves or flowers,
and fruits. Therefore, cloud detection in this study is conducted
over shrubland based on the blue, green, and shortwave infrared
(Band 7) bands, which have reflectance thresholds of 0.16, 0.18,
and 0.25, respectively. Additionally, the shortwave infrared band
has a relative reflectance difference from that of clouds. In the
temperate zone, different thresholds were determined according
to the four distinctive seasons of spring, summer, autumn, and
winter. In the tropical zone where shrubs are thick and evergreen,
threshold settings should be defined similarly to those of sum-
mer in the temperate zone. Compared with shrubs in warmer
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TABLE V
THRESHOLDS FOR FOREST, GRASSLAND, AND SHRUBLAND AREAS

regions, shrubs in the frigid zone are more cold-resistant.
Moreover, because the temperature variation range is small in
the frigid zone, the growth conditions of shrubs are stable. As a
result, the spring threshold in the temperate zone is selected as
the cloud detection threshold for shrublands in the frigid zone.

In Table V, the forest column refers to reflectance values based
on spectral characteristic curves of major vegetation, the grass
column gives the reflectance values of grass, the bush column is
those of typical shrubs, and the soil column lists the reflectance
values of bare land. In addition, TBand1 , TBand2 , TBand3 , and
TBand7 are the reflectance thresholds of the blue, green, red,
and the near-infrared, which are worked out after mixed pixel
calculations. Also, Ns, Nf, Ng, and Nb are the proportions of bare
land, forest cover, grass, and shrub pixels. The discriminants
of forest and grassland cloud pixels are expressed in (7). In
addition, the discriminant for shrubland cloud pixels is presented
in (8)

Band 1 > TBand 1 ∪ Band 2 > TBand 2 ∪ Band 3 > TBand 3
(7)

Band 1 > TBand 1 ∪ Band 2 > TBand 2 ∪ Band 7 > TBand 7 .
(8)

C. Snow/Ice Surfaces

In this study, cloud detection identification for permanent
snow and ice and tundra regions is not considered. Regarding
areas covered by snow year round, such as the summit of a
mountain, the snow coverage degrees during diverse periods
can be considerably different due to the influences of the air
temperature, sun exposure, etc. However, GlobeLand30, which
only reflects the coverage in a single state, fails to support data
detection based on multitemporal data sets. In most cases of tun-
dra affected by snow and ice coverage, it is difficult to perform
accurate cloud detection, because various, complex landforms at
the same latitude have dramatically different reflectance values.
Moreover, the practical significance of cloud detection in large
areas of snow and ice at high altitudes and in polar regions,
etc. are also limited. Hence, no cloud detection identification
method is suggested in this study for areas of permanent snow
and ice cover.

For temporary winter snow/ice coverage in nonpermanent
snow and ice areas of a remote sensing image, the NDSI [37],
[38] is utilized in this study to distinguish these areas from
clouds and then to remove them. The clouds to be detected in
the image may be ice clouds [39] with high NDSI values, and
thus, the threshold of NDSI is set at 0.7 to eliminate the effects
of ice clouds. In the case that the NDSI value is greater than 0.7,
snow/ice can be identified.

D. Supplementary Test

1) Fragmented Pixel Removal: Due to the complex re-
flectance distribution of the ground surface and edge deviations
caused by the land type database, some small misidentifica-
tions are generated that result in inaccurate cloud detection.
Therefore, after the above cloud detection steps are completed,
fragmented pixel removal is performed. The method traverses
all pixels identified as clouds. When the number of cloud pixels
in the eight neighborhoods of one cloud pixel is less than or
equal to 2, the pixel is determined to be a fragmented pixel and
is removed.

2) Correction of Artificial Surface: Bright urban areas and
clouds are difficult to separate in terms of reflectance due to
their similar spectral properties (high reflectance). In addition,
the spectra of high-reflectance artificial surfaces vary for dif-
ferent materials. Therefore, it is easy to identify the artificial
surface as a cloud pixel by extracting cloud pixels only based
on the reflectance information. Notably, temperature informa-
tion is a significant parameter for cloud detection. Although the
cloud brightness temperatures all show a high level of bright-
ness in the images, they will be much lower than that of an
artificial surface. However, there are also large uncertainties in
the brightness temperature. For example, in the middle or high
latitudes, the surface itself will have lower brightness temper-
atures (especially in winter), and it is difficult to meet global
conditions with a fixed brightness temperature threshold. We
assume that the artificial surface brightness temperature values
in a certain image range are relatively uniform. Based on the de-
tection results above an artificial surface with a reasonably broad
thresholds, the procedure uses a dynamic brightness tempera-
ture threshold to remove urban pixels that have been mistakenly
recognized as clouds from previous results.

In this correction, the previously completed cloud detection
results are used as input data to exclude the urban pixels that
have been misidentified as clouds in the detected results over
an artificial surface. This test is only conducted when the ratio
of the number of “clear artificial surface” (CAS) pixels to that
of the total effective observation pixels was greater than 0.1%,
which ensures that there are enough clear-sky pixels to calculate
the statistics. For the completely clear-sky pixels, the pixels
that have been identified as clouds are removed from all urban
pixels. In addition, pixels with reflectance values of less than 0.1
in the red and near-infrared bands are also removed to remove
the effects of vegetation and cloud shadows, respectively, from
the artificial surface, which will result statistically in a lower
brightness temperature.
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The brightness temperature of the CAS pixels is summed
from the minimum to maximum values at intervals of 0.1 K,
counting the number of pixels in each interval and calculating
the frequency. The formula to exclude misidentified cloud pixels
using the brightness temperature is as follows:

Tcor arti =

⌈
Tm a x −Tm in

0.1

⌉
∑
i = 1

(
Ni

Ntotal

)
× (Tmin + 0.1 × i) (9)

where Tcor arti is the dynamic brightness temperature correc-
tion threshold, Tmax and Tmin are the maximum and minimum
brightness temperatures in the CAS pixels, respectively; Ntotal
is the total number of pixels, and Ni is the number of pixels in
the ith interval.

V. CLOUD DETECTION RESULTS AND ACCURACY EVALUATION

To maintain temporal consistency between the detected data
and the GlobeLand30 product, the experimental data acquired
for this study are from 2009 to 2011. For details, please refer
to Table VI. For the Landsat TM data, the DN value of the
image should be converted to the apparent radiance with definite
physical meanings to correspondingly figure out the apparent
reflectance or brightness temperature (10–12). Subsequently, the
image to be detected could be further processed. The relevant
conversion formulas are as follows [40]:

Lλ = Gain · Qcal + Bias (10)

ρ =
π · Lλ · D2

ESUNλ cos θS
(11)

T =
K2

ln
(

K 1
Lλ

+ 1
) (12)

where Gain refers to the gain value, Bias is the bias value, Qcal
is the DN value, Lλ is the apparent radiance (unit: W · m−2 ·
sr−1 · μm−1), ρ is the apparent reflectance of the top of the
atmosphere, D is the Earth–Sun distance, ESUNλ is the mean
solar exoatmospheric irradiance in band λ, θS is the solar zenith
angle, T is the brightness temperature (units: K), and K1 and
K2 are calibration constants. Regarding Landsat 5, the values
of K1 and K2 are 607.76 W·m−2 ·sr−1 · μm−1 and 1260.56 K,
respectively.

In this study, Landsat TM remote sensing images from 2009
and 2012 are selected. During preprocessing and cloud detection
for these images, two scene images are chosen from the detec-
tion results, which is according to diverse land cover types, to
perform visual interpretations for general and local results and
false color images (RGB, Bands: 432). This approach yields an
intuitive and clear contrasting effect. Then, 60 sample areas are
selected from all the images listed in Table VI to map cloud ar-
eas based on the false color images. Subsequently, quantitative
validation is conducted for the LCCD results. Ultimately, the
LCCD results, Fmask products, and false color images are visu-
ally compared at a local scale, and the associated uncertainties
are analyzed.

TABLE VI
DATA SOURCE INFORMATION

A. Cloud Detection Results

1) Constant Attribute Surfaces: The cloud detection results
over constant attribute surfaces are presented in Fig. 10. On
the left in each figure is a false color image, and the LCCD
results are shown on the right. To clearly visualize the effects
of the LCCD algorithm, images of two scenes are selected for
each type of underlying surface type to comparatively analyze
the general results and local details between cloud detection
and the false color images, respectively. Fig. 10(a), (b), (c), and
(d) represents the underlying surfaces of water bodies, wetland,
bare land, and artificial surfaces, respectively.
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Fig. 10. Cloud detection results over constant attribute surfaces underlying
surface type. (A) Water bodies. (B) Wetland. (C) Bareland. (D) Artificial surface.

Both water bodies and wetlands are underlying low re-
flectance surfaces. Specifically, water bodies with low overall
reflectance values show dark colors in the image; furthermore,
almost no attribute variation occurs in water bodies, and thus,
the reflectance curves are relatively stable and suffer little sea-
sonal or latitudinal influence, except during the freezing period.

Wetland areas are covered by aquatic plants in most cases, and
the ground in their growing regions is usually wet and soft or
may even be water bodies. In addition, wetland ecological sys-
tems are very stable and lack dramatic internal change. Hence,
the long-term overall wetland reflectance is relatively low. Ac-
cording to Fig. 10(a) and (b), favorable detection effects are
achieved for thick and thin clouds over water bodies and wet-
land. The corresponding detection results are also consistent
with the tendencies revealed by false color images. For ordinary
cloud detection threshold methods, thresholds for clouds over
dark surfaces may be subjected to the impacts of other land
cover types in images, which may result in an excessively high
value and cause the omission of pixels composed of thin clouds
and water bodies from mixed pixel identification. However, the
LCCD algorithm can be adopted to establish a proper cloud
detection threshold for dark surfaces, which is in line with the
classification of underlying surfaces, to avoid the occurrence
of the phenomena described above. The local results given in
Fig. 10(a) and (b) indicate that good LCCD-based detection ef-
fects can be acquired for thick, thin, and broken clouds, which
as shown by the dotted line circle in these results.

Fig. 10(c) and (d) presents the cloud detection results over
bare land and artificial surfaces, both of which have relatively
high and stable reflectance values. Bare land and artificial sur-
faces are characterized by stability, as their reflectance values
remain within an extremely small range over time and lati-
tude changes. Similar to dark areas, the threshold set for bright
surfaces through traditional cloud detection threshold methods
may also be inappropriate. For example, although a synthesized
threshold can be used to achieve a good effect in dark areas by
considering various surface reflectance features, the threshold
may be slightly lower in bright areas. As a result, there could
be some false detection because of the inappropriate thresh-
old. However, the LCCD algorithm can set particular thresholds
for bright areas of bare land and artificial surfaces to reduce the
misidentification rate, provided that the LCCD algorithm is sup-
ported by known land cover types. In these figures, the detection
results obtained using the LCCD algorithm remained consistent
overall with the cloud distribution, as shown on the false color
image, and favorable detection effects are also achieved accord-
ing to the corresponding thresholds of thick clouds over bare
land. The local detection results also show that thin cloud iden-
tification over bare land is also very accurate because the LCCD
algorithm has been employed. As indicated by the dotted line
circle, thin clouds and even edges of clouds in this area can be
clearly detected. Moreover, for clouds and their edges can also
be accurately identified over artificial surfaces. Nevertheless,
excessively bright areas of artificial surfaces may occasionally
be misidentified as clouds.

2) Changing Attribute Surfaces: Changing attribute sur-
faces are shown in Fig. 11 and Fig. 11 (a), (b), (c) and (d)
are the underlying surfaces of cultivated land, forest, grassland,
and shrubland. These underlying types are classified in the vege-
tation category. These surfaces change with seasons and climate
and exhibit different growing statuses, which further affects the
reflectance characteristics of surface features. Because the tra-
ditional threshold methods of cloud detection seldom consider



3638 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 10, OCTOBER 2018

Fig. 11. Cloud detection results over changing attribute surfaces underlying surface type. (A) Cultivated land. (B) Forest. (C) Grassland. (D) Shrubland.

the different reflectance characteristics of vegetation during var-
ious growing periods, four categories of vegetation surfaces are
subdivided in this study according to the season and latitude
to obtain the corresponding cloud detection thresholds. There-
fore, the application of cloud detection thresholds is improved
accordingly.

In Fig. 11(a), (b), (c), and (d), four scene images with dis-
tinctive latitudes and seasonal features, which are convenient
for verifying the threshold applicability for different seasons or

latitudes in detection areas, were selected for cloud detection.
The land cover type of cultivated land is shown in Fig. 11(a).
Due to little cultivated land surfaces in the frigid zone, this type
is mostly distributed in temperature and tropical zones. For this
reason, cultivated land is not utilized as a typical area to be
demonstrated. Furthermore, Fig. 11 also indicates that prefer-
able detection outcomes can be obtained for thick, thin, and
broken clouds over cultivated land in a variety of seasons or lat-
itudes if the LCCD algorithm is adopted. Even for areas where
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Fig. 12. Cloud detection results over complex surfaces.

city and cultivated land overlap each other, such as in Fig. 11(b)
and (c), the obtained detection results are still complete and
accurate. In Fig. 11(b), the cloud detection results over forest
areas are also very precise. For example, the LCCD algorithm
is used to identify thin sheet clouds presented in Fig. 11(a), (b),
and (c) as well as thin, sporadic, and broken clouds in Fig. 11(d),
which is within the range encircled by the yellow dotted line.
The sparsity of grassland and shrubs is closely correlated with
seasonal variations. In leaf withering or decaying periods, the
characteristics of bare land become much more obvious than
those of forest. As shown by the false color in the figure, the
more distinctive the red band is, the more vigorously the vegeta-
tion will grow. In Fig. 11(c) and (d) where vigorous vegetation
growth and sparsity periods are included, good detection re-
sults, which are consistent with cloud distribution presented by
the false color image, can be acquired using the LCCD algo-
rithm in different seasons and at different latitudes. Moreover,
for thick, thin, and broken clouds, the detection capacity is even
stronger, and the number of corresponding inaccurate and miss-
ing extractions is also very low. However, there is still a small
portion of thin cloud edges that have not been extracted (shown
by the yellow dotted line) in Fig. 11(d) and (c).

The LCCD is an algorithm based on land cover type sup-
port, and ideal cloud detection results have been achieved when
targeting a single land cover type. However, global land cover
types are diverse. In addition to large areas of identical sur-
faces, multiple land cover types can be adjacent, intersect, and
inlaid, which are commonly seen. Complex surfaces may com-
plicate the spectral characteristics of surfaces in such areas.
Thus, the land cover boundary problem is unavoidable. How-
ever, on the one hand, thresholds are set slightly higher instead
of selecting the spectral curve reflectance values as absolute
thresholds, which leaves room for uncertainties (such as surface
changes, atmospheric effects, and so on). On the other hand,
the reflectance fluctuation caused by a boundary change is far
less than the cloud influence. To verify the applicability of such
an algorithm to clouds over complex surfaces, the images in
Fig. 12 are selected for validation analysis. The results revealed
by these images show that the LCCD algorithm generates a high

Fig. 13. Diagram of the distribution of quantitative validation data.

level of accuracy for cloud identification over complex under-
lying surfaces regardless of the general or local cloud detection
results, and a favorable fitting degree exists among the diverse
land cover types. Such a phenomenon indicates high integrality.
Without a doubt, the LCCD algorithm is preferably applicable
to all types of underlying surfaces and exhibits a satisfactory
cloud detection capability.

B. Accuracy Evaluation

Images of 47 scenes are evenly selected around the world to
verify the accuracy of the LCCD algorithm in this paper and six
sample areas with 500 × 500 pixels are randomly chosen from
images corresponding to all types to perform visual interpreta-
tions for tasks conducted in the cloud region, and then the areas
judged to be clouds are mapped out. Data source information
related to the images adopted has been given in Table VI, and
their distributions are shown in Fig. 13. Because North America
and Asia have not only large areas but also diverse land cover
types, more images have been selected from these areas. Images
selected for each type should have a uniform distribution to the
greatest extent possible. For land cover types with vegetation,
latitudinal variations were considered in selecting the relevant
images. Then, the results of visual interpretation are regarded
as truth values to compare with cloud detection results obtained
through the LCCD algorithm.

In this study, six indexes, including the cloud proportion (CP),
correct rate of cloud (CRC), correct rate of clear-sky (CRS),
total correct rate (TCR), error rate (ER) and missing rate (MR)
are used to evaluate the accuracy of the LCCD algorithm. The
corresponding computational formulas are as follows:

CP =
TNC
NT

(13)

CRC =
NC

NCV
(14)

CRS =
NS

NSV
(15)

TCR =
NC + NS

NCV + NSV
(16)

ER =
NE
NSV

(17)

MC =
NM
NCV

(18)
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Fig. 14. Statistical regression diagram of the CP.

TABLE VII
RMSE OF THE CP OVER DIVERSE LAND COVER TYPES

where TNC refers to the number of cloud pixels; NT is the total
number of pixels; and NC and NS are the numbers of cloud and
clear-sky pixels, respectively, that are clouds in both the LCCD
algorithm and visual interpretation (true value) results. NCV and
NSV represent the numbers of cloud pixels and clear-sky pixels
in the visual interpretation results, respectively. Furthermore,
NE and NM are the numbers of cloud pixels with false or
missing identification information among the results obtained
by the LCCD algorithm.

In this paper, a regression analysis is conduct for CP, which
is shown the visual interpretation and the LCCD cloud results
in the sample area, to determine the RMSE of the LCCD cloud
results. Subsequently, the CRC, CRS, ER, and MR indexes
are used to perform a detailed statistical analysis and precision
evaluations of cloud and clear-sky pixels according to the cloud
detection results. Ultimately, the TCR values are calculated for
all sample points, i.e., the TCR values of accurate cloud and
clear-sky pixels are identified based on the LCCD algorithm.

1) Validation of the CP Index: A regression analysis of the
CP statistical results from the LCCD and visual interpretation
is given in Fig. 14, and Table VII reveals the RMSE calculation
results of the CP over various surfaces. According to Fig. 14,
when each surface type is compared with the true values, most
of the CPs obtained by the LCCD are underestimated. Although
the corresponding underestimation deviation is small, it has an
overall tendency to be consistent with the visual interpretation
results and is close to the reference line. The overall RMSE is
4.44%, which indicates a high correlation and a relatively high
accuracy. As shown in Fig. 14 and Table VII, the RMSE values of
shrubland, grassland, and bare land have substantially deviated
from the reference line and are significantly underestimated.

Specifically, the RMSE values are 8.21%, 7.27%, and 5.52%,
respectively. Clearly, the deviation exhibited by shrubland is
the largest, and cultivated land, with an RMSE value of 5.05%,
ranks behind bare land. Additionally, the land cover type with
the minimum error for the CP index is ocean (RMSE of 1.75%).

These results indicate that the CP index error for shrubland is
at the maximum level, which reflects a significant underestima-
tion. The reason for this underestimation is that a giant difference
lies in the spectral information and growth cycles of shrubs in di-
verse varieties, and thus, it is difficult to cover all situations with
a uniform threshold criterion. Concerning the land cover type of
obviously changing shrubland, the LCCD algorithm generates
the maximum error of CP. Due to its low reflectance, the spectral
information of the ocean is tremendously distinguishable from
that of clouds. Therefore, the statistical value of CP is nearest
the true value for oceans.

2) Validation of Evaluation Indexes: In this section, the
CRC, CRS, ER, and MR indexes are selected for more spe-
cific accuracy evaluations. Fig. 15 presents the accuracies of the
indexes in six sample areas with various land cover types and
the accuracy distribution ranges for cloud detection. Different
land cover types can be observed in this figure. The sums of
both CRC and MR and CRS and ER are equal to 1.

The accuracy distributions of the CRC and MR indexes reveal
that the correct rate of detection for various cloud categories
ranges from 0.7 to 1.0, which represents a rather high cloud
identification accuracy. Simultaneously, the corresponding MR
range is between 0 and 0.3. Among them, the overall accuracy
of cloud pixel identification for oceans (255) is high which also
exhibit the minimum MR. Moreover, the accuracy distributions
of the six sample areas in the image are highly coincident with
each other. Overall, the cloud identification accuracy for wet-
lands is high, and the relevant MR is low. Conversely, the overall
cloud pixel identification accuracy is low and concentrated for
shrubland areas, which also exhibits a high MR. In addition,
the CRC and MR results conform to the verification trends
of CP.

Based on the accuracy distributions of CRS and ER, the CRS
pixel detection is high and lies between 0.9 and 1. Likewise, the
MR of clouds is also low (0–0.1). Among the land cover types,
forest is proven to have the highest correct rate of all clear-sky
pixels, and the accuracies of the six samples are also very close
to each other. In addition, both grassland and ocean give high and
correct clear-sky pixel identification accuracies and low MRs.
Moreover, these accuracies are similar to that for forests. This
illustrates that the above land cover types are highly stable under
the circumstances of high correct rates for clear-sky pixels. By
contrast, the clear-sky correct rate of wetland is relatively low
and the accuracies for all samples substantially differ and vary
in an unstable manner.

By investigating the six sample areas for all land cover types,
the overall accuracy of all indexes is obtained for each sur-
face (see Fig. 16). Notably, CRC pixel identification reaches
70% and higher. Specifically, the land cover type with the
highest cloud pixel identification rate and lowest MR is ocean
(93.96%), which is successively followed by artificial surfaces
(92.13%) and wetland (91.81%). Shrubland exhibits the min-
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Fig. 15. Statistical diagram of all sample evaluation indexes.

Fig. 16. Statistical diagram of the overall evaluation indexes for all land cover
types.

Fig. 17. Statistical TCR results for all land cover types.

imum cloud pixel identification rate (74.64%). All clear-sky
pixels have high correct rates, which are greater than 90%,
indicating that this algorithm can be adopted to very ac-
curately identify clear-sky and generate stable identification
effects.

Statistics are also obtained for TCR based on the LCCD, and
the relevant statistical results are given in Fig. 17. Combining
the cloud and clear-sky pixel identification details, the TCR is
obtained and shown in Fig. 17 of the statistical results. Based
on this figure, the TCR of the LCCD ranges from 90% to 100%.
As differences in growth cycles and vegetation colors are in-
curred by different varieties and scarcities, the identification of
shrubland is substantially uncertain, which further leads to the
minimum accuracy of 91.98%. As ocean and forest are dark
surfaces and the cloud spectral information over these areas can
be extremely distinctive, a high associated level of accuracy is
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TABLE VIII
TOTAL ACCURACY EVALUATION FOR THE LCCD ALGORITHM

Fig. 18. Comparison of the LCCD and Fmask results for thick clouds.

achieved. The two land cover types with the highest accuracy
are ocean and forest, and their TCRs are 97.88% and 96.69%,
respectively.

The cloud detection results for all land cover types are sum-
marized to perform a statistical analysis of all pixels. Then, the
overall accuracy of the LCCD algorithm is determined for fur-
ther calculations and evaluations. Table VIII presents the total
accuracy of the five evaluation indexes (CRC, CRS, TCR, ER,
and MR). These accuracies indicate that the CRS identification
is high, and the TCR for cloud identification can reach 86.50%.

C. Comparison With the Fmask Cloud Results

Fmask is an algorithm commonly used for the generation of
Landsat cloud and cloud shadow products at present. Fmask
cloud detection first uses a series of spectral thresholds to
identify obvious clouds and obtain the potential cloud pixel
layer. Subsequently, probability statistics are utilized to perform
the cloud probability parameter computation for the remaining
clear-sky pixels. In combination with the potential cloud pixel
layer acquired during the first step, the potential cloud layers
can be obtained. In this section, the cloud detection results from
the LCCD algorithm are compared with those obtained using
the Fmask algorithm.

A comparison of the cloud detection results based on the
LCCD and Fmask for both thick and thin clouds is performed.
The results of the Fmask are dilation processed, and those of
the LCCD are not. Therefore, no dilation results for the Fmask
are selected to compare with those of the LCCD algorithm.
Moreover, the quantitative validation data are obtained by visual
interpretation.

Good results are obtained for thick clouds, as shown in
Fig. 18, since thick clouds and the surface exhibit a large dif-
ference in reflectance values. According to the statistics, the TR
and SR accuracies are both higher than 0.9, whereas most of
the accuracies are higher than 0.95. Additionally, CR displays
satisfactory results, as illustrated in Fig. 19.

Compared with thick clouds, which are easy to identify be-
cause of their high reflectance values, thin clouds have always
been difficult to identify in cloud detection due to their much
lower reflectance values (simultaneously includes the surface

Fig. 19. Statistical comparison of the LCCD and Fmask for thick clouds.

Fig. 20. Comparison of the LCCD and Fmask results for thin clouds.

information) than thick clouds and have less influence on re-
flectance increasing than thick clouds, making extraction diffi-
cult. For thin clouds, the LCCD cloud results are more accurate
than those of the Fmask, which can detect more thin clouds.
Fig. 20 shows the thin clouds over different land types, includ-
ing vegetated, bare soil, artificial surface, and water areas.

As the figure illustrates, the LCCD algorithm yields better
results in thin clouds areas. The Fmask algorithm performs a
series of spectrum-based tests (including single-band and multi-
band combinations). These tests are usually based on the dif-
ference between clouds and general surface features. However,
thin clouds over different objects have different sensitivities to
these tests, which leads to inaccuracies for thin clouds. For
example, the brightness temperature in the basic test and the
HOT test may lead to false negatives. Subsequently, the Fmask
performs brightness temperature based tests based on statistical
conditions. Although the brightness temperature is an important
parameter for cloud detection, when using a single-band bright
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Fig. 21. Statistic comparison of the LCCD and Fmask for thin clouds.

temperature, there are still some uncertain factors linked to dif-
ferent land types. The Fmask algorithm calculates the brightness
temperature and performs a series of operations to obtain the
threshold according to the image, and thus, there will be some
errors. Then, the brightness temperature tests will affect the
cloud detection results.

The LCCD algorithm distinguishes the judgment conditions
according to different surface conditions and reduces the in-
fluence from the consideration of various surface complexities;
therefore, thin clouds can be better identified. In addition, in
the LCCD algorithm, the brightness temperature is only used in
areas where there is a bright surface or is counted for one kind
land type, and the brightness temperature is used as an auxiliary
parameter. Thus, there are fewer errors related to the brightness
temperature.

In Fig. 21, quantitative validation of the thin cloud detection
results is conducted. Only thin clouds are selected in the inter-
pretation for validation. Both algorithms have high accuracies
in SR, which is higher than 0.95 for each land type. However,
Fig. 21(a) shows that the LCCD algorithm yields better results
than the Fmask for CR, although neither of them has a high
CR due to the objective difficulty of thin cloud detection. The
better LCCD cloud results mainly due to the establishment of
appropriate and specific thresholds for each type of land sur-
face. Therefore, the LCCD algorithm performs generally better
for thin clouds.

D. Uncertainty Analysis

The LCCD algorithm is a cloud detection algorithm proposed
based on 30-m land cover data. Although the algorithm is sup-
ported by prior land cover data and yields satisfactory detection
effects, the detection results still occasionally deviate from the
true values. The uncertainties associated with the LCCD algo-
rithm can be described as follows.

1) Formed by thin clouds and shadows generated by nearby
clouds, the mixed pixels have lower reflectance values,
which does not match the characteristics of clouds. In this
case, some cloud pixels may be occasionally missed by
the LCCD algorithm.

2) Despite considering the effects of seasonal and latitudi-
nal variations in vegetation on thresholds in this study

and despite the fact that ideal cloud detection results can
be acquired in most cases, some deviation may exist in
the thresholds in a few areas where vegetation conditions
are special, e.g., shrubs of diverse species with various,
characteristics and growth cycles.

3) Excessively bright areas of small rivers that are dry or
contain high concentrations of suspended solids can be
falsely extracted as clouds because the surface properties
are not consistent with those in the land type database.

VI. CONCLUSION

A simple cloud detection algorithm (LCCD) supported by
GlobeLand30 land cover type data is proposed in this study.
Based on the surface classification products, this algorithm clas-
sifies surfaces into constant attribute surfaces and changing at-
tribute surfaces. With respect to the former, a surface feature
is assigned a fixed threshold, which is dependent on spectral
characteristics in the spectral library. For the vegetation type,
variable thresholds are established according to different lati-
tudes and seasons based on the mixed pixel principle.

By comparing cloud pixels with false color images and con-
ducting visual interpretations of Fmask cloud products, these
pixels are shown to be accurately extracted by the LCCD al-
gorithm, which suggests that the cloud detection results are
satisfactory. As demonstrated via quantitative validation, the
LCCD algorithm reaches a high level of accuracy overall. In
detail, while the overall RMSE of the CP is 4.44%, the over-
all accuracies of CRC, CRS, TCR, ER, and MR are 0.8650,
0.9870, 0.9508, 0.0130, and 0.1350, respectively. Among all
the land cover types, the highest accuracies are linked to for-
est and ocean areas. By contrast, shrubland exhibits the lowest
accuracy. Moreover, the LCCD algorithm is preferably applica-
ble to complex surfaces to obtain ideal cloud detection results.
By comparison with the Fmask results, it is obvious that the
LCCD algorithm has advantages in thin cloud detection. In gen-
eral, the LCCD algorithm can obtain accurate detection results,
especially for thin clouds.

In addition to the clear principle and ease of implementation
of the proposed method, basing the algorithm on previously
obtained land cover data provides a guarantee for reasonable
threshold accuracy in cloud detection. This approach can be
applied for various domains with the GlobeLand30 product and
offers a new method of cloud detection.

ACKNOWLEDGMENT

The Landsat data were made available from the Earth
Resources Observation and Science Center (http://glovis.
usgs.gov/). The authors also thank Z. Zhu and C. E. Woodcock
for providing the codes for the Fmask algorithm.

REFERENCES

[1] Harshvardhan, D. A. Randall, and T. G. Corsetti, “Earth radiation budget
and cloudiness simulations with a general circulation model,” J. Atmos.
Sci., vol. 46, no. 13, pp. 1922–1942, Jul. 1988.

[2] A. Kazantzidis, K. Eleftheratos, and C. S. Zerefos, “Effects of cir-
rus cloudiness on solar irradiance in four spectral bands,” Atmos. Res.,
vol. 102, no. 4, pp. 452–459, Dec. 2011.

http://glovis.usgs.gov/
http://glovis.usgs.gov/


3644 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 10, OCTOBER 2018

[3] Q. Li, W. Lu, and J. Yang, “A hybrid thresholding algorithm for cloud
detection on ground-based color images,” J. Atmos. Oceanic Technol.,
vol. 28, no. 10, pp. 1286–1296, May 2011.

[4] A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and
G. Economou, “Cloud detection and classification with the use of whole-
sky ground-based images,” Atmos. Res., vol. 113, pp. 80–88, Sep. 2012.

[5] K. S. Carslaw, R. G. Harrison, and J. Kirkby, “Cosmic rays, clouds, and
climate,” Science, vol. 94, nos. 1/2, pp. 1732–1737, 2000.

[6] J. Yang, W. Lu, Y. Ma, and W. Yao, “An automated cirrus cloud detection
method for a ground-based cloud image,” J. Atmos. Oceanic Technol.,
vol. 29, no. 4, pp. 527–537, Feb. 2012.

[7] C. Papin, P. Bouthemy, and G. Rochard, “Unsupervised segmentation
of low clouds from infrared METEOSAT images based on a contextual
spatio-temporal labeling approach,” IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 1, pp. 104–114, Jan. 2002.

[8] G. Vivone, P. Addesso, R. Conte, M. Longo, and R. Restaino, “A class of
cloud detection algorithms based on a MAP-MRF approach in space and
time,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 5100–5115,
Aug. 2014.

[9] P. Addesso, R. Conte, M. Longo, R. Restaino, and G. Vivone, “MAP-MRF
cloud detection based on PHD filtering,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 5, no. 3, pp. 919–929, Jun. 2012.

[10] L. Xu, A. Wong, and D. A. Clausi, “A novel bayesian spatial-temporal
random field model applied to cloud detection from remotely sensed im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 4913–4924,
Sep. 2017.

[11] L. Gomez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semi-
supervised cloud screening with Laplacian SVM,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2007, pp. 1521–1524.

[12] M. R. Azimi-Sadjadi, M. A. Shaikh, B. Tian, K. E. Eis, and D. Reinke,
“Neural network-based cloud detection/classification using textural and
spectral features,” in Proc. Geosci. Remote Sens. Symp., 1996, vol. 2,
pp. 1105–1107.

[13] O. Slawinski, J. G. Kowalski, and P. C. Cornillon, “A neural network
approach to cloud detection in AVHRR images,” in Proc. IJCNN-91-
Seattle Int. Joint Conf. Neural Netw., 1991, vol. 1, pp. 283–288.

[14] J. Jang, A. A. Viau, F. Anctil, and E. Bartholomé, “Neural network appli-
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