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Abstract: Gaofen 4 (GF-4) is a geostationary satellite, with a panchromatic and multispectral sensor
(PMS) onboard, and has great potential in observing atmospheric aerosols. In this study, we devel-
oped an aerosol optical depth (AOD) retrieval algorithm for the GF-4 satellite. AOD retrieval was
realized based on the pre-calculated surface reflectance database and 6S radiative transfer model. We
customized the unique aerosol type according to the long time series aerosol parameters provided
by the Aerosol Robotic Network (AERONET) site. The solar zenith angle, relative azimuth angle,
and satellite zenith angle of the GF-4 panchromatic multispectral sensor image were calculated
pixel-by-pixel. Our 1 km AOD retrievals were validated against AERONET Version 3 measurements
and compared with MOD04 C6 AOD products at different resolutions. The results showed that our
GF-4 AOD algorithm had a good robustness in both bright urban areas and dark rural areas. A total
of 71.33% of the AOD retrievals fell within the expected errors of ±(0.05% + 20%); root-mean-square
error (RMSE) and mean absolute error (MAE) were 0.922 and 0.122, respectively. The accuracy of
GF-4 AOD in rural areas was slightly higher than that in urban areas. In comparison with MOD04
products, the accuracy of GF-4 AOD was much higher than that of MOD04 3 km and 10 km dark
target AOD, but slightly worse than that of MOD04 10 km deep blue AOD. For different values of
land surface reflectance (LSR), the accuracy of GF-4 AOD gradually deteriorated with an increase
in the LSR. These results have theoretical and practical significance for aerosol research and can
improve retrieval algorithms using the GF-4 satellite.

Keywords: aerosol optical depth (AOD); GF-4 PMS; MOD04; AERONET

1. Introduction

Atmospheric aerosols are dispersed particles suspended in air, and include pri-
mary aerosols (emitted into the atmosphere directly in the form of particles) and sec-
ondary aerosols (converted from primary pollutants in the atmosphere). They include
suspended liquid droplets, dust, PM10, and PM2.5, with particle sizes ranging from 0.001 to
100 µm [1–3]. Atmospheric aerosols can be from either natural or anthropogenic sources,
and their composition can affect air quality, human health, productivity, and transporta-
tion [1,3,4]. Aerosol particles affect the transmission of solar radiation through the scat-
tering and absorption of electromagnetic waves, thus impacting the energy balance of
environments on all scales; they are an influential factor in climate change as well [1,3–5].
Aerosol optical depth (AOD) is an important parameter used to quantitatively describe
aerosols, represented by the integral of the extinction in solar radiation over a transport
path due to aerosol absorption and scattering [6]. The traditional method for monitoring

Remote Sens. 2021, 13, 3752. https://doi.org/10.3390/rs13183752 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8803-7056
https://doi.org/10.3390/rs13183752
https://doi.org/10.3390/rs13183752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183752
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183752?type=check_update&version=2


Remote Sens. 2021, 13, 3752 2 of 14

AOD uses a sun photometer. Here, the AOD of various bands in different aerosol envi-
ronments can be monitored over time by comparing the solar constant with the radiation
energy reaching the ground, in combination with the Beer–Lambert law. The limited
distribution and number of monitoring sites make it difficult to monitor AOD on a large
spatial scale; thus, continuous aerosol spatial distribution characteristics remain elusive.
With the continuous development of satellite remote sensing technology, particularly the
application of panchromatic multispectral sensors (PMS), wide-field-of-view sensors and
other wide-width cameras on stationary satellites, AOD retrieval in multi-temporal and
large-scale geographic space can compensate for the deficiency of onsite monitoring.

The earliest aerosol retrieval method is the dark target (DT) algorithm proposed by
Kaufman 1988 [7], but it is only applicable to dense vegetation and dark soil areas with low
land surface reflectance (LSR) values. At the same time, the LSR of the near infrared (NIR,
2.12 µm), red (0.66 µm), and blue wavelengths (0.47 µm) have constant linear relationships
in densely vegetated regions. Thus, the LSR of red (0.66 µm) and blue (0.47 µm) bands can
be estimated by 2.12-µm bands, which are less affected by the atmosphere, and the radiative
transfer equation can be employed to estimate AOD [8–10]. This preliminary algorithm
was introduced into the MOD04 C4 product. However, there is still some contribution to
the radiance by aerosols in the 2.12 µm band, and the precise relationship between the red,
blue, and NIR bands is affected by the observation angle and surface vegetation coverage,
all of which can decrease the accuracy of the DT preliminary algorithm [11]. MOD04 C5 [11]
was improved to solve the above problems. The normalized difference vegetation index
(NDVI), shortwave infrared radiation (SWIR), and observation angle were introduced
as parameters affecting the empirical relationship between LSR2.12µm, LSR0.66µm, and
LSR0.47µm in densely vegetated areas and significantly improved the accuracy of the DT
algorithm [11]. Regional differences in aerosol type greatly affect the radiation transmission
process; thus, the classification of aerosol types is another important source of error. After a
more detailed classification of global-scale aerosol types and an improvement of the cloud
mask algorithm [12], the improved algorithm was introduced into the MOD04C6 product,
and the DT algorithm achieved a more reliable accuracy; however, this algorithm is still
only applicable to dark regions, and thus, is not useful in deserts, high reflection areas
of cities, or other high-LSR regions. An alternative that addresses these limitations is the
Deep Blue (DB) algorithm, proposed by Hsu et al. [13]. Because the LSR of the deep blue
band of a bright surface is relatively low, the radiation entering the sensor contains more
aerosol information. LSR information is therefore obtained by establishing a database of
deep blue bands, and the radiation transmission process of these bands is simulated to
obtain the AOD of the bright surface, which was introduced into the MOD04 C5 product.
In the improved MOD04 C6 product, the improved algorithm introduces land use type
and establishes a dynamic LSR database, particularly useful in areas with rapidly changing
surfaces. In urban areas, the bidirectional reflectance distribution function (BRDF) was
considered, and the LSR database was established in urban areas in combination with the
BRDF model [14–16]. The varying sources and composition of aerosols across different
regions is the main source of uncertainty in AOD retrieval [17]. Comparatively, the DB
algorithm is more adaptable to the underlying surface type, but requires the support of
an accurate LSR database in the target area. Although the DT algorithm does not require
database support, the spatial continuity of the retrieval results is poor.

The spatial resolution of MOD04 C5 is 10 km, and that of MOD04 C6 is 10 and
3 km [18]. Although MOD04 C6 has a good global accuracy, the retrieval of pollutants in
small-and medium-sized areas is limited due to the coarse spatial resolution. Therefore,
an increasing number of studies have been carried out focusing on aerosol retrieval with
high spatial resolution and precision. Lyapustin et al. [19,20] proposed a multiangle
implementation of the atmospheric correction (MAIAC) algorithm to retrieve AOD over
land with a resolution of 1 km, which has become a new operational MODIS retrieval
algorithm. Wong et al. [21] developed a new aerosol retrieval algorithm based on MODIS
apparent reflectance images and using the minimum reflectance technique. AOD values
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with a resolution of 500 m were subsequently retrieved over Hong Kong and the Pearl
River Delta. Recently, a high-spatial-resolution aerosol retrieval algorithm based on the
a priori Land Surface Reflectance Database (HARLS) was developed for use in MODIS
images over bright urban land surfaces [22] and then further improved for global land
surfaces (I-HARLS) [23].

Gaofen 4 (GF-4) is the first Chinese high-resolution geostationary satellite. As the
first synchronous high-resolution satellite, it requires 75 s to produce a panchromatic
multispectral image with good temporal resolution that allows for rapidly updating AOD
estimates in certain regions. The spatial resolution (50 m) can reflect the spatial distribution
law of AOD in sufficient detail, and the image width (400 km) is capable of large-scale
AOD retrieval. This study aimed to develop a robust regional aerosol retrieval algorithm
capable of generating a 1 km spatial resolution AOD from GF-4 PMS images for aerosol
studies at small and medium-range scales. There are differences between the GF-4 and
MODIS satellites, and the existing AOD retrieval methods cannot be directly applied to the
GF-4 satellite for two main aspects: first, there are large differences in spectral channels
between MODIS and GF-4 satellites, and we transformed the surface reflectance of used
channels between MODIS and GF-4 satellites using the spectral convolution method to
improve the surface reflectance estimation. Second, the existing AOD retrieval methods
used several global aerosol types determined by experience, which are too rough to be
used in local areas. To overcome this issue, we define finer regional seasonal aerosol types
based on historical AERONET ground-based observations using the time series analysis
method to improve the aerosol type assumption. In this study, we considered and resolved
the following issues:

(1) Since band 10 in MOD09 has the highest coincidence degree with band 2 in GF-
4, MOD09 band 10 was used supporting AOD retrieval. However, there are still
differences between MODIS band 10 and GF-4 band 2. Conversion was performed to
resolve the difference in the central wavelength, bandwidth, and absorption peaks
between the MODIS and PMS blue band. The aerosol types were determined by
analyzing the aerosol optical properties in a long time series [24].

(2) Because pixel-by-pixel geometric information of the GF-4 PMS image was not avail-
able, we calculated the observed zenith angle, relative azimuth angle, and solar zenith
angle of each pixel in the PMS image.

(3) In terms of removing useless pixels, we use the universal dynamic threshold cloud
detection algorithm(UDTCDA) [25] to reconstruct the dynamic threshold pixel by
pixel and remove the cloud pixels. MOD10A1 data were used to mask snow pixels.

(4) The 6S [19] radiation transfer model was used to establish quantitative relationship
between the relative position of the sun and the satellite, LSR, AOD, and the apparent
reflectance in the blue wave bands. The AOD can be calculated by comparing the
satellite apparent reflectance with that simulated from the 6S model for pixels meeting
the retrieval conditions (no cloud and snow, LSR(0.483–0.493µm) < 0.15) [26].

On this basis, a high spatial resolution aerosol retrieval algorithm suitable for GF-
4 PMS was developed. Its accuracy was verified using six Aerosol Robotic Network
(AERONET) sites, and its applicability was verified under different values of surface
reflectance. The primary difficulty of this research lied in the spatiotemporal matching
and application of multisource data as it required the support of multiple data sources and
pixel-by-pixel matching.

2. Materials and Methods
2.1. Data Introduction
2.1.1. GF-4 PMS Data

The parameters of the GF-4 satellite are shown in Table 1. GF-4 data were obtained
from the China Centre for Resources Satellite Data and Application website (http://www.
cresda.com/CN/(accessed on 1 January 2021).The GF-4 PMS image has a high spatial
resolution of 50 m in the visible to near-infrared channels, and of 400 m for the mid-infrared

http://www.cresda.com/CN/
http://www.cresda.com/CN/
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channel, with a temporal resolution of 1 day, thus having significant advantages in AOD
retrieval. However, the blue wavelength of the GF-4 satellite is 0.45–0.52 µm, larger than
the LSR “deep blue” band, thus limiting the application of the DB algorithm to GF-4 data.
In addition, because there were some calibration issues in GF-4 images after the satellite
had been launched into space, we modified the orthographic image correction to correct
the displacement of pixel points caused by the topographic relief and sensor errors and
improved the image quality. In this study, 156 cloudless GF-4 PMS images from 2017 to
2018 were used for AOD retrieval and verification.

Table 1. Technical specifications of the GF-4 satellite and MODIS.

Band Wavelength (µm) Description Spatial Resolution (m) Width (km)

GF-4

1
2
3
4
5

0.45–0.90
0.45–0.52
0.52–0.60
0.63–0.69
0.76–0.90

Visible to NIR
Blue

Green
Red
NIR

50
400

6 3.5–4.1 Mid-IR 400

MODIS 10 0.483–0.493 Blue

2.1.2. AERONET AOD Measurements

The Aerosol Robotic NETwork (AERONET) is a global, ground-based, aerosol observa-
tion network set up by NASA (USA) and the Centre National de la Recherche Scientifique
(CNRS, France). As of October 2020, it has more than 1065 observation sites. The sun
photometer used in each monitoring station obtains data every 3 min. The network system
provides AOD, Ångström exponent, precipitation data, and other products in 8 bands
across 340–1640 nm [27]. For the latest AERONET Version 3 data, unlike Level 1.0 (un-
screened), Level 1.5 (cloud-screened and quality controlled) measurements have also been
subjected to strict quality controls including raw data checks (sensor temperature, digital
counts, clock shift, etc.), collimator consistency checks, AOD diurnal dependence checks,
AOD spectral dependence checks, and solar eclipse screening. They have been reported to
be highly consistent with Level 2.0 (quality-assured) in most cases [28,29].

Considering that there are only a few ground-based AERONET stations in eastern
China, and some stations do not even provide Level 2.0 measurements, if we only use the
Level 2.0 data, the validation samples will be significantly reduced by about 76%. Such a
small data sample will affect the accuracy evaluation of aerosol retrievals. Therefore, in the
current study, we give priority to using Level 2.0 data, and if it is not available, Level 1.5 data
will be used. This method has also been widely adopted in previous related studies [30–35].
Here, we collected data from 2017 to 2018 across six AERONET sites distributed across both
urban and rural locations: Beijing_PKU (39.992◦N, 116.310◦ E), Beijing-CAMS (39.933◦N,
116.317◦E), Beijing_RADI (40.005◦N, 116.379◦E), Beijing (39.977◦N, 116.381◦E), XiangHe
(39.754◦N, 116.962◦E), Xu-Zhou (34.217◦N, 117.142◦E).

2.2. AOD Retrieval for GF-4 PMS Imagery

The energy received by the satellite sensor in the visible to NIR wavelengths is shown
in Equation (1) [36,37]:

ρTOA(τ, θs, θv,ϕ) = ρa(τ, θs, θv,ϕ) +
T(θs)T(θv)ρs(θs, θv,ϕ)

1− ρs(θs, θv,ϕ)S
(1)

where ρTOA(τ, θs, θv,ϕ) is the apparent reflectance; ρa(τ, θs, θv,ϕ) is the atmospheric path
radiation, which refers to the radiation that does not reach the ground but is directly re-
ceived by satellite sensors due to atmospheric reflection and scattering; θs, θv,ϕ are the solar
zenith angle, satellite zenith angle, and relative azimuth angle, respectively; T(θs)T(θv)
are the atmospheric downward and upward transmittance, respectively; ρs(θs, θv,ϕ) is
the land surface reflectance; S is the atmospheric hemisphere reflectivity; and τ is the atmo-
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spheric optical depth. Among them, only τ and ρsρ_s are unknown quantities. Therefore,
the unknowns will be ρblue, ρred, and τ. However, there are still fewer equations than the
number of unknowns, and thus, they cannot be solved. The principle of the DT algorithm
is that the apparent reflectivity at 2.1 µm is used to approximate LSR to determine ρs,
but aerosol information at 2.1 µm is limited. This problem is addressed by using the
multiple relations between ρs0.66µm, ρs0.47µm, and ρs2.1µm in dense vegetation areas; thus,
the equation only has one, solvable unknown. However, in high-LSR regions, no stable
linear relationship exists among the bands, and the influence of aerosols in the coupling of
the earth and atmosphere is decreased. The DB algorithm addresses this problem by taking
advantage of the low reflectivity of most ground objects in the blue band and directly
determines ρblue for the blue wavelength through the constructed blue band LSR database,
pixel-by-pixel. After ρblue has been determined, τ can be solved directly. The GF-4 AOD
algorithm developed by us adopted an idea similar to the DB algorithm to ensure an
effective calculation of AOD values in as many areas as possible.

2.2.1. Surface Reflectance Estimation

MOD09 is the global land surface reflectance product of MODIS, obtained through
atmospheric correction based on the MODIS 1B radiation data product. In the correction
process, the aerosol optical properties of different regions are considered, cloud mask
algorithm is improved, and quality control is applied [38]. Since Band 10 of MOD09 is
most similar to the blue band peak of GF-4, and the band range is similar (Table 1), the
retrieval supported LSR database was selected, with a spatial resolution of 1000 m.

Urban areas have higher blue band LSR than marine and densely vegetated areas,
and the AOD in the visible band is generally < 0.25 [7], making it difficult to separate
aerosol information from apparent reflectance. For every unit increase in LSR error, the
corresponding AOD error will increase by 10 [39]. Therefore, an accurate LSR database
should first be obtained. When LSR values are low, apparent reflectance values primarily
stem from clouds and the atmosphere. Assuming that the surface objects have remained
relatively stable across the two-year examination period [40], if images of the same Julian
calendar date have different values, this indicates the influence of atmospheric and cloud
effects, and smaller values should be taken as the true LSR. Therefore, the blue band of
MOD09 data was synthesized into monthly surface reflectance data using this minimum
reflectivity technique [26], which was further used as the LSR database to support the AOD
calculations. Figure 1 shows the blue band LSR data for different months in 2017–2018.

The central wavelength, bandwidth, and absorption peak of the MODIS blue band are
greatly different from PMS, so that they needed to be transformed. The specific method
for this was as follows: 58 types of ground object spectra were found in the United
States Geological Survey (USGS) spectral library, and Equation (2) was used to calculate
the spectrum of each ground object. In the equation, R(λ) represents the ground object
spectrum and f(λ) represents the spectral response function of MODIS or PMS. After
calculation, the conversion relationship between GF-4 PMS Band 2 (ρGF4) and MODIS Band
10 (ρMODIS) reflectance can be established with a correlation coefficient (r) reaching 0.998.

ρ =

∫ λmax
λmin

R(λ)f(λ)dλ∫ λmax
λmin

f(λ) dλ
(2)

ρGF4= 0.989 ∗ ρMODIS + 0.004, R = 0.998 (3)
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2.2.2. Calculation of Pixel-By-Pixel Imaging via the Geometric Angle

The field of view of the GF-4 PMS camera is 0.8◦, but the official data only provide
the imaging geometric angle of the center pixel. With an increase in the side swing angle,
the zenith angle of the satellite gradually increases. To accurately simulate the radiation
transmission process of sunlight, it is necessary to determine the solar zenith angle by pixel
and observe the zenith angle and relative azimuth angle. The calculation method is shown
in Equations (4)–(9) [41].

cos (SOZ) = cos (Lat) cos δ cosω+ sin (Lat) sin δ (4)

r
sin (SAZ)

=
d

sin (arccos (cos (Lat) cos (SatLon− Lon)))
(5)

cos (SOA) =
(sin δ cos (Lat)− cos δ sin (Lat)cosω)

cos (0.5π− SAZ)
(6)

In Equations (4)–(6), SOZ is the solar zenith angle, Lat is the pixel latitude, δ is the
solar declination angle, andω is the solar hour angle. SAZ is the satellite zenith angle, r is
the distance from the satellite to the center of the earth, d is the distance from the satellite
to the ground pixel, SatLon is the longitude of the satellite’s sub-satellite point, Lon is the
longitude of the pixel, and SOA is the solar azimuth.

cosβ = cotγ tan (Lat) (7)

Lon− SatLon ≤ 0, Lat− SatLat < 0, SAA = β

Lon− SatLon < 0, Lat− SatLat ≥ 0, SAA = π− β
Lon− SatLon ≥ 0, Lat− SatLat > 0, SAA = π+ β

Lon− SatLon > 0, Lat− SatLat ≤ 0, SAA = 2π− β

(8)

REA = |SOA− SAA| (9)

The relative azimuth of the geostationary satellite can be calculated through
Equations (7)–(9), where β represents the intermediate variable, SSA represents the satellite
azimuth, and REA is the relative azimuth. Please note that if REA > π, REA = 2π − REA.
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2.2.3. Aerosol Type Assumption

Every type of aerosol possesses unique optical properties, such as complex refractive
index, extinction efficiency factors, scattering phase functions, and single scattering albe-
dos, all influencing the solar radiation transmission process [23]. Therefore, accurately
determining regional aerosol types is an essential step in calculating AOD. We used the
custom results by Wei et al. [2] for aerosol types near Beijing. Aerosol types changed
slightly over this short period, and the dominant factors that determined the aerosol types
at each station showed a strong seasonal influence [11,12,42–44]. In the surrounding areas
of Xuzhou, using the method of Wei et al. [2] as a reference, the aerosol parameters of
different seasons at AERONET during 2017–2018 were averaged, and the aerosol types of
each sea-son were customized. The statistical results are shown in Table 2.

Table 2. Optical properties for customized seasonal aerosol models used in the AOD retrieval.

Model ω g RP-CRI IP-CRI

(470/550/660 nm) (470/550/660 nm) (470/550/660 nm) (470/550/660 nm)

Beijing

Spring 0.920/0.925/0.932 0.710/0.684/0.662 1.521/1.529/1.536 0.008/0.007/0.006

Summer 0.947/0.948/0.949 0.720/0.693/0.669 1.478/1.479/1.480 0.007/0.006/0.006

Autumn 0.910/0.912/0.913 0.709/0.683/0.660 1.520/1.522/1.524 0.013/0.011/0.011

Winter 0.889/0.893/0.896 0.704/0.677/0.654 1.533/1.539/1.545 0.016/0.014/0.013

Xuzhou

Spring 0.930/0.940/0.949 0.728/0.698/0.672 1.463/1.478/1.493 0.006/0.005/0.004

Summer 0.959/0.958/0.956 0.738/0.698/0.662 1.398/1.409/1.419 0.007/0.006/0.005

Autumn 0.937/0.941/0.945 0.728/0.700/0.676 1.467/1.473/1.478 0.007/0.006/0.005

Winter 0.907/0.912/0.916 0.705/0.670/0.639 1.483/1.499/1.513 0.010/0.009/0.008

Note: ω, g, RP-CPI, and IP-CPI stand for the single scattering albedo, the asymmetry factor, and the real and imaginary part of the
refractive index.

2.2.4. Cloud and Snow Screening

In this study, we selected our proposed Universal Dynamic Threshold Cloud Detection
Algorithm (UDTCDA) to identify and mask the cloud pixels in GF-4 images here [45].
UDTCDA is performed based on the pre-calculated surface reflectance database, which
can significantly reduce the influence of mixed pixels and improve the detection accuracy
of thin and broken clouds. Here, we simulated and reconstructed the dynamic threshold
models of visible to near infrared channels for the GF-4 satellite:

ρ∗’b = 0.8077 ∗ ρb + 0.03673 ∗ cos θscos θv + 0.1355 (10)

ρ∗’g = 0.7991 ∗ ρg + 0.0239 ∗ cos θscos θv + 0.08047 (11)

ρ∗’r = 0.8419 ∗ ρr + 0.01666 ∗ cos θscos θv + 0.04654 (12)

ρ∗’NIR = 0.8495 ∗ ρNIR + 0.01065 ∗ cos θscos θv + 0.02873 (13)

Ci = ρ∗i > ρ∗’i and F = Cb ∪Cg ∪Cr ∪CNIR (14)

where ρ∗’i represents the dynamic cloud thresholds at the blue (ρ∗’b ), green (ρ∗’g ), red (ρ∗’r ),
and NIR (ρ∗’NIR) channels. Ci represents the channel-dependent cloud result and F represents
the final cloud mask. ρi represents the MODIS surface reflectance.

Since GF-4 lacks the key bands for calculating the normalized difference snow index
(NDSI), we employed the MOD10A1 daily snow cover products to screen snow/ice pixels.

2.3. Validation Method

For the ground-based observation data of AERONET, we took all observation values of
AERONET stations within 30 min before and after the transit time of the satellite, removed
problematic observations with large fluctuations that exceed the average value by plus or
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minus three times the standard deviation, and then used the average value as the actual
observation value of the respective point.

On the spectral scale, the AOD at 550 nm was obtained by satellite retrieval, while
AERONET does not have aerosol observation data at this wavelength. Therefore, to achieve
the matching between the AOD values, the Ångström equation was used to convert the
AOD of AERONET to 550 nm. In the process of spatial matching, the corresponding latitude
and longitude of the nine AERONET sites were converted into row and column values on
the image. A square five-pixel radius surrounding the measurement site was selected as the
verification area, and the values of effective AOD retrievals were averaged and compared
with AERONET data using common evaluation metrics including correlation coefficient
(r), root mean square error (RMSE), mean absolute error (MAE), mean relative error (MRE),
relative mean bias (RMB), and the MODIS Expert Error over land [46], calculated according
to Equation (15):

EE = ±(0.05 + 0.2×AODAERONET) (15)

where AODAERONET represents AERONET values, and EE represents the expected allow-
able margin of error.

3. Results and Discussion
3.1. Validation against AERONET Ground Measurements

We compared the GF-4 AOD retrieval results with the monitoring results of six
AERONET stations in eastern China during 2017–2018. The AERONET data were se-
lected at Level 2.0 and Level 1.5, and the accuracy of the verification results are shown
in Table 3. Among them, Beijing, Beijing_PKU, Beijing-CAMS, and Beijing_RADI were
located in urban areas, while XiangHe and XuZhou were located in rural areas. In to-
tal, 429 validation data points were obtained. In general, in our GF-4 AOD algorithm,
71.33% of the points were within EE, 17.88% of the sample points were higher than the
EE boundary, and RMB = 1.05. r reached 0.922, whereas RMSE and MAE were 0.122
and 0.089, respectively. The retrieval results were consistent with the AERONET moni-
toring results. Furthermore, the results show that the new algorithm works well in both
rural areas and bright urban areas, but the overall accuracy in urban areas (e.g., r = 0.895,
RMSE = 0.143, and within EE = 69.01%) is slightly worse than that in rural areas (e.g.,
r = 0.943, RMSE = 0.097, and within EE = 73.84%).

Table 3. Comparison of accuracy between GF-4 AOD and AERONETAOD in different regions.

Sites N r RMSE MAE RMB within EE (%) Above EE (%) Below EE (%)

Beijing 104 0.897 0.126 0.09 1.082 70.31 18.54 11.15

Beijing_PKU 70 0.919 0.139 0.105 0.964 68.2 16.87 14.93

Beijing-CAMS 56 0.874 0.148 0.093 0.971 69.24 16.32 14.44

Beijing_RADI 41 0.893 0.155 0.091 1.02 67.87 17.58 14.55

XiangHe 84 0.945 0.113 0.081 0.975 74.69 16.97 8.34

XuZhou 74 0.942 0.08 0.095 1.044 72.87 16.44 10.69

urban areas 271 0.895 0.143 0.096 1.011 69.01 17.5 13.49

rural areas 158 0.943 0.097 0.088 1.009 73.84 16.72 9.44

All sites 429 0.922 0.122 0.089 1.05 71.33 17.88 10.79

3.2. Comparison with Operational MOD04 AOD Products

It is fair to compare different methods using the satellites with the similar resolutions.
However, most of the operational aerosol products are generated from satellites with
medium and low resolutions; among them, MODIS is the most popular one, and has been
widely used for comparison in previous studies because of its various mature aerosol
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retrieval algorithms (e.g., DT and DB) at different spatial resolutions (e.g., 3 km and
10 km). For the other satellites, limited by the aerosol retrieval algorithms, their spatial
resolution and overall accuracy are overall lower than those of MODIS products. Of course,
many scholars have developed their own algorithms to retrieve AODs from different high-
resolution satellites [47–52], but these generated data are not public, making it impossible
to perform a comparison. Considering these, MODIS DT and DB AOD products at different
resolutions are selected for comparison in the current study.

Figure 2 shows the AOD results obtained by our GF-4 AOD algorithms in the Beijing
and Xuzhou, regions. The aerosol conditions selected by us existed in both the high and low
AOD regions. From the perspective of aerosol spatial distribution, the acquired GF-4 AOD
data were consistent with those of MODIS C6 products. In Beijing, AOD was lower in the
southeast and higher in the northwest. In the mountainous area of northwest Beijing, GF-4
AOD was slightly higher than MODIS AOD. Near Xuzhou City, MODIS AOD and GF-4
AOD were higher in the eastern region and lower in the western region. In the southern
region, the GF-4 AOD was significantly higher than MODIS AOD. Different algorithms
have different cloud elimination and aerosol retrieval schemes; therefore, AOD includes
different spatial ranges. Due to algorithm limitations, MOD04 DT AOD presented many
missing values, and could not operate in some urban areas, but it provided a good spatial
resolution. GF-4 AOD used a similar scheme for the DB algorithm to retrieve AOD in bright
urban areas, thus providing finer aerosol information while ensuring spatial continuity.
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Figure 2. (a) Standard false color images, and spatial distributions of (b) MOD04C6.1 DB (10 km), (c) DT (10 km),
(d) DT (3 km), and (e) our new (1 km) AOD data sets for (i) on 4 October 2018 over Beijing, and (ii) on 8 September 2018
over Xuzhou.

GF-4 images covering the AERONET sites in 2017–2018 were selected as the data
source, and the sites included urban and rural areas. The AOD values obtained by our
GF-4 AOD algorithm were compared with the corresponding spatiotemporal AERONET
data. MOD04 product results for the corresponding time were also added, and correlation
analyses were calculated (the results are shown in Figure 3). The solid lines on either side
of X = Y represent the upper and lower boundaries.

We compared the accuracy of the GF-4 AOD with that of the MOD04C6 product from
2017 to 2018. Among the three MOD04 products selected, the performance of the MOD04
3 km DT product was poor, with only 52.8% of the retrieved values falling within the EE
range, with an average MAE of 0.138 and an RMSE of 0.204 (Figure 3b). A large overesti-
mation of AOD values could be observed with more than 38% of the matched retrievals fell
above the EE expectation line. The accuracy of the MOD04 10km DB product was obviously
better than that of the MOD04 3 km DT product. Under the same verification data, 75.69%
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of the retrievals fell within the EE range, MAE and RMSE were lower (0.085 and 0.117,
respectively), and the overestimation by the DB algorithm was greatly reduced. The cause
for the overestimation by the DT algorithm is that this algorithm seriously underestimates
the surface reflectance, especially in urban areas [23], while the DB algorithm effectively
avoids this problem, using a more accurate surface reflectance database. In eastern China,
compared to the MOD04 DT 3 km product, the MOD04 DT 10 km product had higher
accuracy. This is mainly related to the smaller number of discardable radiance pixels within
the AOD super pixel, i.e., the pixels used in the 3 km retrieval box may be discarded in the
10 km retrieval box [18,22]. However, our GF-4 AOD retrievals can effectively avoid such
issue by applying the pixel-to-pixel aerosol retrieval scheme.
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retrievals as a function of AERONET AOD measurements at all sites in Eastern China from 2017 to 2018.

Our 1 km GF-4 AOD was slightly less accurate than the MOD04 10 km DB product,
with higher RMSE and MAE values (0.122, 0.089, respectively) and a lower EE value
(71.33%). However, compared with MOD04 3K product, our GF-4 AOD 1 km data were
more accurate. The use of GF-4 can provide an AOD retrieval with a higher spatial and
temporal resolution and a better accuracy, which is an advantage.

Judging from the above overall accuracy verification results, our GF-4 AOD has a
decent overall accuracy and incomparable advantages in time and space resolution. To
verify the adaptability of our GF-4 AOD algorithms in different regions, according to the
Deep Blue surface reflectance database, LSRblue was subsequently divided into different
intervals, and the sources of error were analyzed.

3.3. Retrieval Uncertainty Related to LSR Variations

Surface reflectance is a key factor affecting aerosol retrieval. Here, we discuss the
accuracy and uncertainty of aerosol retrieval results under different LSRs. To verify the
relationship between AOD retrieval accuracy and LSR, and to determine for which LSR
interval our GF-4 AOD algorithm presents advantages, LSR was divided into four classes,
and accuracy assessments of our GF-4 AOD algorithm were conducted for each class. The
scatter plot and verification (Figure 4) show that when the LSR was 0–0.03, 76.39% of
the points fell within the EE range; additionally, the RMSE was 0.116 and the error was
lower than the average error of the verified data. Furthermore, when LSR > 0.05, 69.7%
of the points fell within the EE range and the accuracy was the worst among all the LSR
intervals. In general, the overall accuracy of the algorithm decreased with increasing LSR
(as indicated by the increasing RMSE, MAE, and MRE, as well as the decreasing proportion
of points within EE. However, despite the error being relatively small when 0.05 < LSR,
this was limited by the relatively small sample number).

To investigate the impact of varying LSR on AOD retrieval, we simulated the relation-
ships between apparent reflectance and surface reflectance of the blue channel under a
custom-defined observation and atmospheric conditions using the 6S model. This showed
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that the apparent reflectance becomes less sensitive to AOD with increasing LSR because
there is difficulty in performing the separation due to increased multiple scattering when
the surface albedo is high; in addition, the AOD contribution to the radiance decreases as
LSR increases [32,53]. Thus, the AOD estimates would be less accurate.
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4. Conclusions

As a geosynchronous satellite, GF-4 has great advantages for the monitoring of aerosol
changes with high temporal and spatial resolutions, but this potential has not been fully
exploited yet. In this study, on the basis of the 6S radiation transfer model, we customized
special aerosol types according to the aerosol environment in China in recent years, and to
determine the geometric angle of each pixel in GF-4 images. After a series of optimization
measures, we obtained the 1 km GF-4 AOD. Our GF-4 AOD was compared with the
AERONET V3 2.0 AOD measurements and the MOD04 3 km and 10 km products.

In the 429 selected sets of validation data, our GF-4 AOD was strongly correlated
with AERONET AOD, our GF-4 AOD retrievals were highly correlated with AERONET
AODs (r = 0.922) and 71.33% of them fell within the EE range. On verifying the accuracy of
bright urban areas and rural areas, our GF-4 AOD algorithm showed good adaptability,
with a slightly lower accuracy in urban areas than in rural areas. Compared with the
MOD04C6 version, our GF-4 1 km AOD showed better spatial continuity and higher
spatial resolution, and the calculated high-AOD and low-AOD distribution areas were
similar to those acquired from the corresponding MOD04. The accuracy of GF-4 AOD
improved significantly compared with that of the 3 km DT AOD, but it was slightly lower
than that of the 10 km DB AOD. The main reason for this is that although there was a
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good consistency, the converted surface reflectance from MODIS to GF-4 can result in some
uncertainties. In addition, we did not consider the effects of BRDF on aerosol retrievals,
which may have an impact on the highly heterogeneous surfaces. Theoretically, with an
increase in the LSR, the accuracy of the AOD retrieval should continue to decline. The
actual verification results were consistent with this theoretical assumption. The accuracy of
our GF-4 AOD algorithm decreased with an increase in the LSR, with the highest accuracy
observed at LSR < 0.03.

Our work is of great significance for aerosol retrieval on a small scale. These results
have theoretical and practical significance for aerosol research and can lead to improve-
ments in the use of retrieval algorithms with GF-4 satellite data. GF-4 is a new high-
resolution geostationary satellite and was officially put into use on 13 June 2016, with most
of the field of view of GF-4 images covering the domain area of China. Therefore, due to
limited data access, we only collected the GF-4 images in eastern China after 2017 for the
current experiment. Of course, this study only provides a new idea of AOD retrieval from
the GF satellite, which can be extended to other regions with different time periods. In
addition, in a future study, we will generate ahigh-resolution AOD dataset for China since
the launch of the GF-4 satellite.
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