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Abstract— The retrieval of aerosol properties over land from
satellite sensors has always been a challenge. At present, several
different algorithms for retrieving aerosol optical depth (AOD)
have been developed from different satellite sensors. While each
algorithm has its own advantages, the accuracy of AOD retrieval
still needs to be further improved. To improve the retrieval
accuracy of aerosol algorithms, it is necessary to provide a
better method to describe the surface properties. In the current
study, a new aerosol retrieval algorithm for Moderate Resolution
Imaging Spectroradiometer (MODIS) images at a high spatial
resolution of 500 m is proposed based on a priori bidirec-
tional reflectance distribution function (BRDF) shape parameters
database, which is reconstructed via the 3-D discrete cosine
transform (DCT-PLS) method. Then, the surface reflectances
are calculated from BRDF model (i.e., RossThick-LiSparse), and
a non-Lambertian forward model used to describe the surface
anisotropy. The new algorithm is used for processing the MODIS
over the Beijing–Tianjin–Hebei of China, and Southeastern
United States of America regions, and results are validated
against AERONET AOD measurements as well as compared with
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the MODIS AOD products. The comparison showed that the
estimation scheme of surface reflectance in this new algorithm
significantly improved the AOD retrievals accuracy, with aver-
age correlation coefficient ∼0.965 and root-mean-square error
∼0.125; the number of AOD retrievals falling within expected
error has increased to ∼80.1%, and the overestimation uncer-
tainty has been reduced compared with MODIS products. Due to
the high spatial resolution and continuous spatial distributions
of the AOD retrievals by the new algorithm, therefore, it can
well-captured aerosol details over mixed surfaces and better
useful for air pollution studies than the MODIS products at local
and urban scales.

Index Terms— Aerosol optical depth (AOD), a priori knowl-
edge, kernel-driven BRDF model, surface anisotropy.

I. INTRODUCTION

THE IMPACTS of atmospheric aerosols on the radiance
balance of the earth are an important factor affecting

global climate change [1]. Due to the complex chemical
and physical properties of aerosols as well as elusive spa-
tiotemporal variability, the uncertainty of estimating aerosol
forcing is still one of the highest in climate researches [2].
They not only have some effects on climate variability by
the scattering and absorption of incoming solar energy [3],
but also have adverse impacts on the environment and human
health [4], [5]. The aerosols are receiving increasing attention,
especially in heavily polluted urban areas [6]–[8]. To improve
our understanding of aerosol effects, an effective method is
required to obtain the optical properties and distribution of
aerosols.

Aerosol optical depth (AOD) is a crucial fundamental para-
meter for meteorological observation and basic optical prop-
erty of aerosol derived from satellites. Over the past several
decades, numerous different AOD retrieval algorithms have
been proposed by using different satellite sensors [9]–[11].
The radiation signals measured by the passive satellite sen-
sors at the top-of-the-atmosphere (TOA) contain the radiation
information of both the surface and atmosphere. In gen-
eral, the retrieval of atmospheric aerosols from satellite data
requires separating the contribution of the surface to the
satellite signals. However, satellite spectral signals do not have
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enough measurement data to solve multiple unknown parame-
ters that describe aerosol and surface properties. Therefore,
the accurate reflectance properties of the surface are necessary
in aerosol retrieval algorithms, and the estimation of surface
reflectance is a key step in the improvement or development
of retrieval algorithms over land.

Over land, the aerosol contribution in satellite signals is
small compared with the surface, which makes it difficult to
separate the aerosols path radiance from satellite measure-
ments, particularly over bright urban and desert surfaces [12].
The Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol products mainly include the dark target
(DT) [13], [14] and deep blue (DB) [9], [15] algorithms. They
use different strategies for surface reflectance estimation,
while the former established hypothetical spectral relationships
between the shortwave infrared and visible channels, and was
mainly developed for aerosol retrieval over densely vegetated
areas. In contrast, the latter built a global NDVI-dependent
dynamic surface reflectance database, and was originally
designed over bright surfaces. Both they provided AOD
products at 10-km spatial resolutions, and DT also provided a
3-km separate product [16]. Later, Lyapustin et al. [10], [17]
proposed a multiangle implementation of atmospheric
correction (MAIAC) algorithm to retrieve AOD over land at a
1-km resolution, and has become a new operational MODIS
retrieval algorithm. Recently, a high-spatial-resolution aerosol
retrieval algorithm based on a priori land surface reflectance
database (HARLS) was developed [18] over bright urban
surfaces for MODIS images and then was continued to be
improved (I-HARLS) on the global land [19].

However, all abovementioned DT, DB, MAIAC, HARLS,
and I-HARLS algorithms are all designed based on the
assumption of the Lambertian surface. In recent years,
many exciting developments have taken place in improving
the estimation of surface directional reflection by bidirec-
tional reflectance distribution function (BRDF) in aerosol
retrievals [20]–[23]. Almost all these retrieval methods
assumed that the surface BRDF does not change during a
short time period and can be obtained from existing satellite
products. However, a priori BRDF database is directly used
without further modifications which will still bring errors in
aerosol retrievals [24]. Numerous studies have reported that the
poor performance of current aerosol algorithms over mixed
surfaces is mainly due to the problems in estimating the
surface reflectance [25], [26].

Therefore, a new method is desired to reconstruct the
BRDF with existing products and improve the AOD
retrieval accuracy as well as the spatial resolution. For this
purpose, in this article, we propose a new aerosol retrieval
algorithm for MODIS images based on a priori BRDF shape
parameters database at a 500-m resolution. This database was
reconstructed by penalized least square regression based on
3-D discrete cosine transform (DCT-PLS) method [27]. Then,
the bidirectional reflectance is estimated by the semiempirical
kernel-driven linear BRDF model and the non-Lambert
radiation transfer model. Then, the AOD retrievals are tested
and validated over two typical regions with different surface
and atmospheric conditions. In addition, we also compare

Fig. 1. Location of the AERONET stations (dots) in (a) BTH region of
China and (b) SUSA.

our results with MODIS official aerosol products at different
spatial resolutions.

II. STUDY AREA AND DATA SOURCES

A. Study Region

In this study, two typical regions, i.e., the Beijing–Tianjin–
Hebei (BTH) region of China and the southeastern region
of the United States of America (SUSA), are selected to
test and validate our algorithm (Fig. 1). These two selected
regions have totally different underlying surfaces, aerosol
types, aerosol loadings, and viewing angles. The former is
mainly the urban surface with high brightness and dense popu-
lation, where faces relatively high aerosol loadings throughout
the year. In contrast, the latter is mainly the dark surface with
high vegetation coverage, showing a low pollution level.

B. AERONET Data

AErosol RObotic NETwork (AERONET) is a worldwide
ground-based aerosol monitoring network using CIMEL multi-
band sun photometers, which provides AOD measurements
at multiple wavelengths with low uncertainty <0.2 every
15 min [28]. The AOD measurements have three quality
levels (L), i.e., L1.0, L1.5 (cloud-screened), and L2 (cloud
screened and quality-assured). The newly released Version
3 AOD measurements [29] are employed, and we prefer to
use L2 data, if not available, then L1.5 data. Here, we have
collected four and five AERONET sites in the BTH and SUSA
regions, respectively (Fig. 1). However, it does not provide
AOD measurements at 550 nm; thus, the 550-nm AODs are
calculated using the Ångström exponent algorithm [30].

C. MODIS Data

Here, the Terra-MODIS MOD02HKM L1B calibrated
radiance data, MOD03 geolocation data, MOD04 and
MCD19A2 aerosol products, and MCD43A1 BRDF/Albedo
model parameters covering two regions were collected to
perform the experiment. For MODIS aerosol products, only
the AOD retrievals passing the recommended quality assurance
(QA) are selected for comparison. Table I shows the detailed
information of ground and satellite data used in this study.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 16,2021 at 02:31:41 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TIAN et al.: IMPROVING MODIS AEROSOL ESTIMATES OVER LAND WITH THE SURFACE BRDF REFLECTANCES 3

TABLE I

SUMMARY OF DATA SETS USED IN THIS STUDY

III. METHODOLOGY

A. Atmospheric Radiative Transfer Model

As mentioned above, the TOA reflectance measured by
satellites contains both the atmosphere and surface informa-
tion. The traditional aerosol retrieval algorithm assumes that
the surface is Lambertian surface, which could introduce errors
into TOA reflectance simulation, and affect the accuracy of
aerosol retrieval. Therefore, a fast and accurate atmospheric
radiative transfer model (RTM) [31], [32] is selected to sim-
ulate TOA reflectance. It is especially suitable for describing
the radiative transfer process over the non-Lambertian surface.
For a given viewing geometry, the TOA reflectance ρTOA is
expressed as

ρTOA(θs, θv , ϕ) = ρ0(θs, θv , ϕ)

+ T (θs)R(θs, θv , ϕ)T (θv ) − tdd(θs)tdd(θv)|R(θs, θv , ϕ)|ρ̄
1 − rhhρ̄

(1)

where the matrices of the combinations of atmospheric
transmittance T (θs) and T (θv), and the reflectance matrix
R(θs, θv , ϕ) are defined as

T (θs) = [tdd(θs)tdh(θs)], T (θv) = [tdd(θv )thd(θv)]
T (2)

R(θs, θv , ϕ) =
[

rdd(θs, θv , ϕ) rdh(θs, ϕs)
rhd(θv, ϕv) rhh

]
. (3)

In the above equations, θs and θv represent the solar zenith
angle (SZA) and view zenith angle (VZA), respectively, ϕs

and ϕv represent solar azimuth angle and view azimuth angle,
respectively, and ϕ is the relative azimuth angle (RAA).
|R(θs, θv , ϕ)| represents the determinant of the reflectance
matrix R. Equation (1) consists of two groups of independent
parameters: atmosphere- and surface-dependent parameters.
The atmosphere-dependent parameters include: the path
scattering reflectance ρ0(θs, θv, ϕ), atmospheric spherical
albedo ρ̄, the downward bidirectional path transmittances
tdd(θs), directional to hemispheric path transmittance
tdh(θs), the upward bidirectional path transmittances tdd(θv),
and hemispheric to directional transmittance thd(θv). The
surface-dependent parameters include: the bidirectional
surface reflectance rdd(θs, θv , ϕ), directional to hemispheric
reflectance rdh(θs, ϕs) (also called black-sky albedo, αbs),
hemispheric to directional reflectance rhd(θv , ϕv) [which is
equal to rdh(θs, ϕs)], and bihemispheric reflectance rhh (also
called white-sky albedo (WSA), αws). Subscripts d and h
represent directional and hemispheric, respectively, so, the hd,

Fig. 2. Simulated reflectance at the TOA in the blue band as a function of
VZA over Lambertian and non-Lambertian surfaces over various land cover
types. SZA and atmospheric condition are the same in all panels (θs = 20◦,
AOD = 0.1).

hh, dh, and dd symbols stand for hemispheric-directional,
bihemisphere, directional-hemispheric, and bidirectional,
respectively.

To expedite the calculation of the RTM model, the values
of atmosphere-dependent parameters are stored in the lookup
table (LUT), which is precalculated using the MODerate reso-
lution atmospheric TRANsmission (MODTRAN) atmospheric
radiative transfer code [33]. The surface-dependent parameters
are calculated using the semiempirical kernel-driven BRDF
model with kernel weight parameters obtained from the pre-
built BRDF database.

For Lambertian surface, the matrix R in (1) is generally
expressed as a single surface reflectance (rhh or rdd); therefore,
|R(θs, θv, ϕ)|= 0. Thus, the aerosol retrieval over Lambertian
surfaces is to find the result matching the LUT by compar-
ing the simulated and satellite received TOA reflectances.
Fig. 2 shows that the comparison simulated results of TOA
reflectances in the blue channel as a function of VZA over
Lambertian and non-Lambertian surfaces over various land
cover types. There are obvious differences in TOA reflectance
between above two different surfaces along with the VZA
changes, and the difference increases gradually as the VZA
approaches the hotspot direction, indicating that the igno-
rance of the surface directional reflection characteristics can
increase the estimation uncertainty of aerosol retrieval, espe-
cially in the hotspot direction. More importantly, compared
with forest and plowland, the difference of TOA reflectance
over urban areas is much larger, which may be one of the
main reasons for the poor accuracy of most current aerosol
algorithms.
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B. Estimation of Surface-Dependent Parameters

The angular distribution of surface reflected radiance can be
described by the bidirectional reflection factor (BRF), which
is the magnitude most frequently employed in radiometry.
To simulate the surface anisotropy, various BRF models have
been proposed, including physical [34], computer simula-
tion [35], and empirical or semiempirical models [36], [37].
At present, the linear semiempirical kernel-driven model
is the most widely used for fitting and predicting BRDF.
Thus, the Ross-Thick and Li-Sparse-Reciprocal (RTLSR) ker-
nel [38], [39] is selected to calculate the rdd surface reflectance

rdd(θs, θv , ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ)

+ fgeo(λ)Kgeo(θs, θv, ϕ) (4)

where λ is the wavelength; Kvol and Kgeo are the volumetric
and geo-optical scattering kernels, respectively; fiso, fvol, and
fgeo represent the corresponding weight coefficients; Kvol and
Kgeo are functions of SZA, VZA, and RAA. MCD43A3 prod-
ucts provide the kernel weight coefficients that can be used
to calculate black sky albedo with the specific illumination
geometry and WSA by the following polynomial, and gi,k

integral coefficients are provided by Lucht et al. [38]:

αbs(θ, λ) = fiso(λ)
(
g0,iso + g1,isoθ

2 + g2,isoθ
3
)

+ fvol(λ)
(
g0,vol + g1,volθ

2 + g2,volθ
3
)

+ fgeo(λ)
(
g0,geo + g1,geoθ

2 + g2,geoθ
3). (5)

C. Reconstruction of BRDF Shape Parameters

The BRDF shape, defined by the volumetric (V = fvol
/

fiso)
and the geometric (G = fgeo

/
fiso) parameters, is more

stable than BRDF kernel weight coefficients [39]–[41]. Thus,
we assume that the BRDF shape parameters change little dur-
ing a short time period. The anisotropic of the surface can be
captured by the BRDF shape. MCD43A1 products can provide
the three model weighting parameters. However, the estimation
of these parameters is affected by errors of the atmospheric
correction due to the uncertainties of atmospheric parameters
or the insufficient angular range of surface reflectance data.
In addition, the cloud contaminations, suboptimal illumination
conditions, and errors of input surface reflectance can also
cause missing data and reduce the data quality, especially over
heterogeneous urban.

Here, we used the discrete cosine transform (DCT-PLS)
algorithm to reduce the effects of atmospheric conditions (e.g.,
clouds). This method uses the strategy of minimizing the
following function to find the best smoothing estimate [27].

F(ŷ)= wRSS + sP(ŷ) =
∥∥∥W 1/2(ŷ − y)

∥∥∥2 + s‖Dŷ‖2 (6)

where RSS represents residual sum-of-squares, P is a penalty
term, ‖ ‖ denotes the Euclidean norm, y is a vector containing
a series of BRDF shape parameters, ŷ is the smoothed equidis-
tant data, W is the diagonal matrix containing the weights,
wi ∈ [0, 1] that corresponds to the data yi , s represents a
positive value that controls the smoothness of smooth data,
and D is a Laplace operator.

Fig. 3. Precalculated 8-day BRDF shape data set; fiso, V ( fvol/ fiso) and G
( fgeo/ fiso) parameters from top to bottom in the blue band on day 17, 97,
177, and 257 in the BTH region of China and the Southeastern United States
of America.

The minimization of ŷ can be achieved by iterative calcula-
tion. Through the discrete cosine transform (DCT) and inverse
DCT (IDCT), the smooth output ŷ is given by

ŷ{k+1}= IDCT
(
�DCT

(
W

(
y − ŷ{k}

) + ŷ{k}
))

(7)

where ˆy{k} is ŷ calculated at the k-step iteration, � is a diagonal
matrix, and its components can be expressed as

�i, j =
[
1 + s

(
2 − 2cos

(
(i − 1)π

/
n
))2

]−1
(8)

where n is the number of elements in y. The weighting
functions [42] are given by

wi =

⎧⎪⎨
⎪⎩

1.0 ui > 0.0

1.0−(
ui

/
4.685

) −1.0 < ui
/

4.685 < 0.0

0.0 ui
/

4.685< −1.0

(9)

where ui represents the Studentized residual, which is adjusted
for leverage and standard deviation

ui = ri

⎡
⎣1.4826MAD(r)

√
1 −

√
1 + √

1 + 16s√
2
√

1 + 16s

⎤
⎦

−1

(10)

where ri = yi − ŷi denotes the residual of the ith observation,
and MAD represents the median absolute deviation.

Therefore, the full-coverage eight-day BRDF shape para-
meters data set at a 500-m spatial resolution is reconstructed
using the MCD43A1 products based on the above method for
two typical regions. Fig. 3 shows some examples of the BRDF
shape images on days 17, 97 in the BTH region and days 177,
257 in the SUSA region. It is clear that this data set has a high
data quality that can better reflect the surface BRDF variations
over both urban and vegetated areas. Due to the complex
structures of urban, the fiso parameter varies extensively, and
it is obviously higher than those over vegetation and plowland
regions. The V and R parameters appear to be larger over
vegetated areas than urban areas.
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D. AOD Retrieval

1) Aerosol-Type Assumption: The composition of the
atmospheric aerosol changes with location and time; thus,
aerosol type is another important factor in AOD retrieval.
For the operational MODIS aerosol retrieval algorithms,
the aerosol type is determined according to the aerosol
physical and optical properties from AERONET inversions
using the cluster analysis approach [14], [43]. In recent
years, numerous methods to classify and characterize aerosol
types have been presented. In this study, aerosol types
are assumed at the seasonal level using the long-term
historical ground-based observations (i.e., single scattering
albedo and asymmetry factor) collected from the AERONET
sites in the study regions via the time series analysis
method [44].

2) Pixel Selection: The successful retrieval of aerosol algo-
rithms is related to the effective removal of unsuitable pixels.
Therefore, in this study, our proposed universal dynamic
threshold cloud detection algorithm (I-UDTCDA), which has
been proved to be more accurate than the MODIS offi-
cial cloud algorithms, is selected to detect and mask the
clouds [45]. However, different from our previous study [56],
instead of the surface reflectance without considering the
effects of surface directional reflections, we used rdd to
improve the overall accuracy of cloud detection, especially
for thin clouds. In addition, snow/ice surfaces and inland
water bodies are identified and masked using the normalized
difference snow index (NDSI) [46] and normalized difference
water index (NDWI) [47].

3) Creating the LUT With the MODTRAN: The LUTs are
calculated using the MODTRAN model under the conditions
of ρs = 0 in this study. The parameter values in the simulations
were set as follows: SZA (range from 0◦ to 80◦ with an
interval of 5◦), VZA (same as SZA), RAA (range from 0◦
to 180◦ with an interval of 10◦), and AOD (0.01, 0.05, 0.1,
0.15, from 0.2 to 1.0 with an interval of 0.1, 1.2, 1.5, 2.0,
and 3.0) for defined aerosol types in midlatitude summer
and winter atmospheric models. Then, the aerosol retrieval is
performed using the LUT approach. Fig. 4 shows the flowchart
of our newly developed aerosol retrieval algorithm for MODIS
images.

E. Validation Method

For validation purposes, AOD retrieval is defined by the
average value of 5 × 5 pixels centered on each AERONET
site [48], and to further minimize the effects of cloud
contaminations. The true AOD is defined by the average
value of all available AERONET AOD measurements within
±30 min of the satellite overpass times. In addition, several
main statistical indicators, i.e., the number of collections
(N), linear regression line, correlation coefficient (R), root
mean square error (RMSE), and the MODIS expected error
(EE; ±(0.05 + 0.15×τaer), τaer is AERONET ground AOD
measurements) over land [14], are selected to evaluate the
AOD retrievals.

Fig. 4. Flowchart of our newly developed AOD retrieval algorithm for
MODIS images over land.

IV. RESULTS AND DISCUSSION

A. Validation of AOD Retrievals

1) Over Accuracy: Fig. 5 shows the validation and compar-
ison of new algorithm AOD retrievals using the bihemispheric
(WSA-derived) and four (as shown in (3), BRDF-derived)
surface reflectances against AEROET AOD measurements in
two typical regions, and over land, respectively. We have
collected a total of 3523 AOD matchups in the BTH region,
and the WSA-derived AOD retrievals are well correlated with
the AERONET AODs (R = 0.961) with an RMSE of 0.168.
In addition, 62.4% and 22.5% of them fall within and above
the EE, indicating large overestimations. However, the overall
accuracy of BRDF-derived AOD retrievals has been overall
increased (e.g., R = 0.961, RMSE = 0.145), and the fraction
within the EE ( f=EE) reaches 75%, and the overestimations
have been obviously decreased ( f>EE = 13.8%). In addition,
similar conclusions can be obtained in the SUSA region, i.e.,
the BRDF-derived AOD retrievals (N = 1401) yield an overall
higher accuracy with all improved evaluation metrics (e.g.,
R = 0.923, RMSE = 0.041, and f=EE = 92.5%) than the
WSA-derived retrievals (e.g., R = 0.916, RMSE = 0.052, and
f=EE = 86.9%). In general, the data quality of AOD retrievals
has also been improved with an increasing R of 0.965 and
f=EE of 80.1%, and a decreasing RMSE of 0.125 using the
BRDF reflectance than the WSA reflectance (i.e., R = 0.955,
RMSE = 0.143, and f=EE = 69.4%) over land. These results
illustrate that our new algorithm improves the AOD estimates
with decreasing uncertainties in different regions with varying
atmospheric and surface conditions. In addition, considering
the same aerosol types used, the reduced AOD overestimations
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Fig. 5. Validation and comparison of WSA- (red dots) and BRDF-derived
(blue dots) against AERONET AOD measurements in (a) BTH region of
China, (b) Southeastern United States of America region (SUSA), and (c) over
land. Black dashed and solid lines are EE lines and 1:1 line, respectively.

Fig. 6. AOD bias of WSA- (red dots) and BRDF-derived (blue dots) against
AERONET AOD measurements AERONET AOD measurements as a function
of (a) surface reflectance and (b) aerosol loadings over land. The error bars
are 1 standard deviation in both directions. Zero error line is solid and EE
envelopes are dashed.

are due to the improved estimates in the surface reflectance
with the consideration of surface non-Lambert reflections.

2) Error Dependence: The retrieval errors related to surface
reflectance and aerosol loadings are investigated (Fig. 6).
For surface reflectance [Fig. 6(a)], in general, the estimate
uncertainties in WSA- and BRDF-derived AOD retrievals
become continuously larger with the increase of surface
reflectance. The main reason is that the sensitivity of the TOA
reflectance to aerosol changes decreases [19]. The mean bias
of WSA-derived AOD retrievals is ∼0.018, and is larger when
the surface reflectance is >0.05. In contrast, the mean biases of
BRDF-derived AOD retrievals are overall lower than those of
WSA-derived AOD retrievals with varying surface reflectances
with a much smaller mean bias of ∼0.007. The results are
expected and encouraging, i.e., the overestimations of AOD
retrievals have been largely reduced, and the overall accuracy
has been improved when considering the effects of surface
BRDF.

For aerosol loadings [Fig. 6(b)], when AOD ≤ 0.5, there
are overall small positive biases <0.0× of AOD retrievals
using two different surface reflectance schemes. However,
for high aerosol loadings (AOD > 0.5), the uncertainties of
these two-scheme AOD retrievals become larger with larger
standard deviations as air pollution increases. In general,
the BRDF-derived AOD retrievals are overall better than the
WSA-derived AOD retrievals with smaller biases closer to 0,
suggesting that our revised algorithm has a better adaptability
under different air pollution conditions, especially on high
aerosol loadings.

Fig. 7. AOD bias of WSA- (red dots) and BRDF-derived (blue dots) against
AERONET AOD measurements as a function of (a) scattering angle, (b) SZA,
and (c) VZA.

We also explored the AOD retrieval errors related to vary-
ing observation geometry conditions (Fig. 7). For scattering
angles [Fig. 7(a)], the mean biases of BRDF-derived AOD
retrievals are generally smaller than those of WSA-derived
AOD retrievals. The scattering angle is calculated using the
SZA, satellite zenith angle, and RAA. It makes the scatter-
ing angle dependence of AOD difference between retrievals
and measurements difficult to interpret. Therefore, a related
phenomenon is shown in Fig. 7(b) and (c), which depicts the
bias as a function of the solar zenith and VZAs, respectively.
In general, the biases of WSA-derived AODs are always
positive with an average value of 0.020 and 0.024, while the
biases of BRDF-derived AODs are much smaller and closer
to 0 for two angles, respectively. These results suggest that
our revised algorithm is not strongly dependent on geometric
angles because, instead of isotropic Lambertian albedo, it con-
sidered the surface BRDF by calculating the reflectance from
different directions, especially for the heterogeneous surfaces.

B. Comparison With Official Products

For comparison purposes, the official MODIS aerosol prod-
ucts, including Collection 6.1 (C6.1) 10-km DT, 3-km DT,
10-km DB, and C6 1-km MAIAC AODs, are collected for the
BTH and SUSA regions, respectively.

1) Over Accuracy: First, we validated our 500-m AOD
retrievals and compared it with MODIS official AOD products
in the high-polluted urban area, i.e., BTH region in China
(Fig. 8). Here, we have collected 985, 1672, 909, and 1476
common AOD retrievals between our and abovementioned
four MODIS AOD products at different spatial resolutions
in the BTH region, respectively. The 10-km DT retrievals
show a poor accuracy with an average RMSE value of 0.197,
and more than 46% of the retrievals falling above the EE
envelope, indicating significant overestimations [Fig. 8(a)].
In addition, the 3-km DT retrievals are less accurate than the
10-km DT retrievals with only 38.1% of the retrievals falling
within the EE envelope [Fig. 8(b)]. In contrast, the number
of the 10-km DB data samples is approximately 1.7 times
more, and the overall accuracy is much better (e.g., RMSE =
0.168, f=EE = 63%) than the 10-km DT retrievals, and the
overestimation is significantly decreased [Fig. 8(c)]. This is
mainly contributed to the improved estimation model of the
surface reflectance in urban areas [9]. In contrast, the 1-km
MAIAC retrievals are better than both DT and DB retrievals
with all improved evaluation metrics (e.g., RMSE = 0.164,
f=EE = 73%). In general, our 500-m AOD retrievals are
much more accurate than the DT, DB, and MAIAC retrievals
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Fig. 8. Comparison of common AOD retrievals of our new AOD retrievals
(500 m) with MODIS. (a) DT (10 km), (b) DT (3 km), (c) DB (10 km), and
(d) MAIAC (1 km) AOD retrievals against AERONET AOD measurements
in the BTH of China region. The blue and red dots represent our new AOD
retrievals and the MODIS official AOD products, respectively. The black
dashed and solid lines are EE lines and 1:1 line, respectively.

at coarser spatial resolutions in the BTH region where high
aerosol loadings always occurred and the underlying surface
is relatively bright and complex.

Then, we validated and compared our 500-m AOD retrievals
with MODIS official AOD products in the clean vegetated
area, i.e., SUSA region (Fig. 9). The mean measured AOD
is ∼0.12, and most collected data samples range from 0 to
0.3, suggesting good air quality. There are small differences in
the number of the common collocations ranging from 1043 to
1276 between different AOD products. It is clear to see that
all MODIS official aerosol retrieval algorithms show similar
good performance in this region with high correlations of
0.88–0.93 with ground measurements, showing small RMSE
values of 0.03–0.06, and approximately 85%–94% of the
retrievals fall within the EE envelopes. This is mainly because
the area is typical dark surfaces which are dominated by dense
vegetation, and the surface reflectance can be determined accu-
rately. Nevertheless, there are still BRDF effects in vegetated
areas that should not be ignored. Thus, after considering it,
the overall accuracy of aerosol estimation has been overall
improved with stronger regression lines and most evaluation
metrics, especially compared with the DT and DB algorithms.
These comparison results illustrate that our new algorithm also
works well over vegetated areas with low aerosol loadings.

Fig. 10 shows the validation and comparison results
between our AOD retrievals and different MODIS official
AOD products against AERONET AOD measurements from
all sites over land. We have collected a total of 2107, 2715,
2185, and 2694 common AOD retrievals between our and
those MODIS AOD products abovementioned, and the number
of the collocations of our new algorithm is approximately
1.8–2.3 times more than different MODIS official algorithms.
In general, the DT retrievals are overall poorer with larger

Fig. 9. Comparison of common AOD retrievals of our new AOD retrievals
(500 m) with MODIS. (a) DT (10 km), (b) DT (3 km), (c) DB (10 km), and
(d) MAIAC (1 km) AOD retrievals against AERONET AOD measurements
in the Southeastern United States of America region (SUSA).

Fig. 10. Comparison of common AOD retrievals of our new AOD retrievals
(500 m) with MODIS. (a) DT (10 km), (b) DT (3 km), (c) DB (10 km), and
(d) MAIAC (1 km) AOD retrievals against AERONET AOD measurements
in all AERONET sites over land.

uncertainties (e.g., RMSE = 0.14–0.17, f>EE = 27%–34%)
over land, and the 3-km DT AODs are generally less accurate
than the 10-km DT AODs mainly due to a decrease in opportu-
nity to discard marginal pixels from the retrieval window [49].
In contrast, the 10-km DB retrievals are better than both 10-
and 3-km DT retrievals with an increasing number of the data
samples, a higher f=EE value of 74%, and a decreasing RMSE
value of 0.134, because the DB algorithm allows aerosol
retrieval over both dark and bright surfaces [9]. The 1-km
MAIAC product yields much more data samples than the 10-
and 3-km DT products but less than the 10-km DB product;
in addition, it outperforms both DT and DB products with
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Fig. 11. Spatial distributions of (a) standard false color image (RGB =
214), (b) DT (10 km), (c) DT (3 km), (d) DB (10 km), (e) MAIAC (1 km),
and (f) our new (500 m) AOD retrievals in (i) and (ii) BTH region of China
and (iii) and (iv) Southeastern United States of America region (SUSA) on a
low (ii) and (iii) and high (i) and (iv) aerosol loadings, respectively.

all better evaluation metrics (e.g., RMSE = 0.123, f=EE =
83.7%). However, our 500-m AOD retrievals have the largest
number of data samples and show the best accuracy with the
highest f=EE values and smallest RMSE values compared with
all MODIS official AOD products over land. On the whole,
the above comparison results suggest that our new algorithm
works well from darkest to brightest surfaces because it not
only increases the number of successful retrievals but also
improves the accuracy of aerosol estimations.

2) Spatial Distributions: Last, we compared the spatial
coverage and distributions under different polluted conditions
among different MODIS AOD products (Fig. 11). For this
purpose, four images including the high aerosol loading events
on May 12, 2013 [Fig. 11(i)] and March 21, 2017 [Fig. 11(iv)],
and low aerosol loading events on May 18, 2015 [Fig. 11(ii)]
and October 8, 2016 [Fig. 11(iii)] over the BTH and SUSA
regions, respectively. In general, our AOD product shows
consistent spatial distributions with the MODIS official AOD
products, e.g., high aerosol loadings appear in the urban areas
of the southeastern BTH and northeastern SUSA regions,
while low aerosol loadings occur in the vegetation areas of
northwestern BTH and western SUSA regions. However, the
10-km [Fig. 11(c)] and 3-km DT [Fig. 11(e)] AOD products
show a large number of missing values with poor spatial
continuity in urban areas due to the limitations of the DT
algorithm. However, the latter can provide more detailed
air pollution aerosol information due to its higher spatial
resolution. The DB product can retrieve AODs over bright
urban areas and provides better spatial continuity than the
DT algorithm [Fig. 11(d)]. Similarly, the MAIAC product
allows for aerosol retrievals over the whole surface but can
produce much more detailed aerosol distributions due to its
1-km higher resolution [Fig. 11(f)]. Our new algorithm can
also generate AODs over both dark and bright surfaces similar
to the DB and MAIAC algorithms [Fig. 11(b)]; however, it can
provide a wider and more accurate spatial coverage than all the
MODIS official AOD products due to our more robust cloud
detection scheme. Moreover, it can also provide much more
detailed AOD spatial distributions due to 2–20 times higher

resolutions than all currently available MODIS official AOD
products at coarser resolutions.

V. CONCLUSION

In this article, we have developed a new aerosol retrieval
algorithm by considering the effects of surface BRDF using
the RossThick-LiSparse model over land for MODIS images.
Here, we assumed that the surface BRDF shapes change
little during a short time period; thus, a priori eight-day
BRDF shape data set is constructed using the MODIS
BRDF/Albedo product by penalized least square regression
based on 3-D discrete cosine transform (DCT-PLS) method.
Then, the surface BRDF reflectances are calculated via
the RossThick-LiSparse model. To test the performance
of the new algorithm, two typical local regions, including
the BTH region in China and the Southeastern United
States of America (SUSA) region, with different underlying
surfaces and aerosol loadings are selected. Then, our 500-m
AOD retrievals are validated against AERONET AOD
measurements in these two regions from 2013 to 2017, and
also compared with MODIS official AOD products.

The results show that our AOD retrievals are highly consis-
tent with AERONET AOD measurements, with a high corre-
lation coefficient (R) of 0.965, a low RMSE value of 0.125,
and 80.1% of the matched retrievals falling within the EE
envelopes. In addition, the data quality of AOD retrievals
has been largely improved compared with those without con-
sidering the effects of surface BRDF, especially over bright
urban surfaces. More importantly, our AOD retrievals show
a much higher spatial resolution and a superior accuracy
than all current available MODIS official AOD products.
These results illustrate that our new AOD product can provide
wide, accurate, and detailed aerosol information, which is
particularly useful for related air pollution studies in city-level
areas. Nevertheless, due to the limited time and huge amount
of data, we just selected two representative regions in the
world for the experiment in the current study; however, we will
consider extending our algorithm to the whole global scale to
produce the high-resolution (500 m) and high-quality global
AOD data set in our future study.
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