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Abstract: Land surface reflectance (LSR) and aerosol types are the two main factors that affect
aerosol inversions over land. According to LSR determination methods, Moderate resolution Imaging
Spectroradiometer (MODIS) aerosol products are produced using the Deep Blue (DB) and Dark
Target (DT) algorithms. Five aerosol types that are determined from Aerosol Robotic Network
(AERONET) ground measurements are used to describe the global distribution of aerosol types
in each algorithm. To assess the influence of LSR and the method used to determine aerosol type
from aerosol retrievals, 10-km global aerosol products that cover 2013 are selected for validation
using Level 2.0 aerosol observations from 175 AERONET sites. The variations in the retrieval
accuracy of the DB and DT algorithms for different LSR values are analyzed by combining them
with a global 10-km LSR database. Meanwhile, the adaptability of the MODIS products over areas
covered with different aerosols is also explored. The results are as follows. (1) Compared with DT
retrievals, the DB algorithm yields lower root mean squared error (RMSE) and mean absolut error
(MAE) values, and a greater number of appropriate sample points fall within the expected error (EE).
The DB algorithm shows higher overall reliability; (2) The aerosol retrieval accuracy of the DB and
DT algorithms decline irregularly as the surface reflectance increases; the DB algorithm displays
relatively high accuracy; (3) Both algorithms have a high retrieval accuracy over areas covered by
weak absorbing aerosols, whereas dust aerosols and continental aerosols produce a low retrieval
accuracy. The DB algorithm shows good retrieval results for most aerosols, but a lower accuracy for
strong absorbing aerosols.

Keywords: AERONET; aerosol optical depth (AOD); MODIS; DT algorithm; DB algorithm; land
surface reflectance (LSR)

1. Introduction

Atmospheric aerosols are solid, liquid, and gaseous particles that are suspended in the atmosphere,
and their diameters range from 10−3 to 102 µm [1,2]. Aerosol particles affect the atmospheric
radiation balance through direct and indirect radiation forcing, and they lead to important effects
on local and global ecological environments and climate change [3,4]. Atmospheric aerosols are
also primary pollutants. They cause decreases in atmospheric visibility and affect transportation;
moreover, they present a hazard to human health through the distribution of harmful substances
and cause respiratory and cardiopulmonary disease [5,6]. Therefore, aerosol monitoring is crucial.
The wide coverage and continuous monitoring provided by remote sensing techniques compensate
for the limited nature of ground observations and permit effective large-scale aerosol detection [7,8].
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Aerosol optical depth (AOD), which is an important optical parameter, has been successfully
obtained by Advanced Very High Resolution Radiometer (AVHRR), Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS), Moderate resolution Imaging Spectroradiometer (MODIS), Landsat8 Operational
Land Imager (OLI), and other sensors [4,8]. The MODIS instrument onboard the Terra and Aqua
satellites observes a swath that is approximately 2330 km wide and includes 36 spectral bands that
extend from the visible to the thermal infrared (415–14,235 nm) with spatial resolutions of 0.25 km,
0.5 km and 1 km and temporal resolutions of 1 to 2 days [5,6,9]. It provides regular observations of
AOD corresponding to ground sites, which contribute to the analysis of the regional and global effects
of aerosols that are caused by natural and artificial factors [5].

The current MOD04 C6 AOD product is based on the Dark Target (DT) and Deep Blue (DB)
algorithms. The DT algorithm, which was proposed by Kalfman in 1997, has high retrieval accuracy
over “dark areas”. The basic principle of the DT algorithm is that the land surface reflectance (LSR)
is relatively low in the visible red (0.66 µm) and blue (0.47 µm) bands over areas covered with
dense vegetation or dark soil and shows a constant linear relation with the shortwave infrared
band (2.12 µm) [7,9–12]. In addition, the shortwave infrared band is rarely influenced by water,
CO2 or aerosols; therefore, the DT algorithm uses the apparent reflectance of the shortwave infrared
band as a proxy for the LSR to determine the LSR of the red and blue bands. This aerosol retrieval
method has been applied to the MODIS C4 products and earlier versions of these products with
several modifications [13]. However, the MODIS C4 products display substantial biases because of
the underestimation of the LSR and the incorrect classification of aerosol types [14]. Hence, the C5 DT
algorithm denies the assumption at 2.12 µm and assumes that the 2.12 µm channel contains information
on the coarse particle aerosols, as well as the LSR. Moreover, it has been found that the proportional
relation between the red and blue bands, and that at 2.12 µm, is affected by observation geometry
and the “greenness” of the land surface. To accurately determine LSR, the C5 DT algorithm applies
the scattering angle and the Normalized Difference Vegetation Index (NDVISWIR) as parameters of
LSR. These parameters have an influence on the proportional relationship between the red and blue
bands mentioned above [14]. The improvements in the cloud mask and the assignment of the aerosol
type have led to the MOD04 C6 product containing more reliable aerosol retrieval results than those
contained in the C5 DT product [2,15].

For the areas not covered by dense vegetation, such as deserts and semiarid areas, the top of
the atmosphere (TOA) reflectance received by most satellite sensors in the red and near-infrared
bands is overwhelmed by LSR, making it difficult to separate the contribution of aerosols to the
TOA signal from that of the surface [16,17]. As a result, AOD retrievals are much more difficult over
deserts and semiarid areas, which have a high reflectance [18]. The DB algorithm was proposed
by Hsu [19] to perform AOD retrievals over areas with high surface reflectance. This algorithm
retrieves AOD using the deep blue wavelength, where the land surface reflectance is lower than that at
longer wavelengths over “bright surfaces”, such as deserts. Therefore, the DB algorithm successfully
retrieves AOD over arid and semiarid areas by building a land surface reflectance database [19,20].
The DB algorithm has been updated and improved by many studies. It has been introduced in
the MODIS C5 product to compensate for the DT algorithm in aerosol retrievals over deserts and
semiarid areas. However, a static LSR database is not applicable over areas with varying vegetation.
Thus, Hsu employed a comprehensive LSR database and dynamic LSR data for the C6 DB algorithm.
The MODIS land type product (MCD12C1) is introduced as supporting data to accurately determine the
LSR, especially within areas that display vegetation changes. As a result, LSR determination methods
can be selected as a function of the surface type. Accordingly: (1) arid/semiarid pixels are retrieved
using an LSR database built according to season and the NDVI; (2) vegetation pixels use an LSR
determination method that is based on the proportional relation between the 2.12 µm wavelength and
the visible wavelength in the red and blue bands; (3) within urban areas, the pixels are first grouped
by their NDVI values to calculate the Bidirectional Reflectance Distribution Function (BRDF) model,
in which the angle model is applied to LSR determination combined with the LSR database [16,19,21,22].
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The MOD04 C6 product, which employs the modified DB algorithm, contains much more accurate
aerosol retrieval results [18].

The determination of aerosol type, a key attribute in AOD retrievals, has changed considerably during
the development of the MODIS aerosol retrieval algorithms. To determine aerosol type, in the early MODIS
C4 product, the AOD retrieved over the continental model, along with the continental model’s single
scattering albedos and phase functions, are used to determine the path radiance, the spectral dependence
of which is then used to separate dust aerosols from fine aerosols. The aerosol type is then identified
via the size distribution parameters and the single scattering albedo [13]. In contrast with MODIS C4,
the C5 and C6 products determine aerosol types using the cluster analysis for AERONET sites proposed
by Omar [23]. To better distinguish the three fine aerosols, a single scattering albedo (ω0) at 0.67 µm and
an asymmetry factor (g) at 0.44 µm are applied using the MODIS algorithms [14,15]. The results of C5 and
C6 differ strongly from those of C4.

Evaluation of aerosol retrievals has significant theoretical and practical significance in climatic research
and the improvement of retrieval algorithms. It is of great significance for the research of individual users
to choose MODIS aerosol products that contain reasonable results, based on the quantitative analysis and
evaluation of different MODIS aerosol products. In recent years, scholars have performed several clear and
deep studies of MODIS aerosol evaluations. Bilal and Nichol evaluated different aerosol retrieval algorithms
over the Beijing-Tianjin-Hebei region using AERONET data. Specifically, they investigated the MODIS
DB/DT C5 and C6 10-km algorithms and the DT/DB 10-km and DT 3-km algorithms, as well as simple
aerosol retrieval algorithms with spatial resolutions of 500 m, 3 km and 10 km. They validated the retrieval
accuracy of the different MODIS products using different algorithms, and they also provided necessary
descriptions of the causes of errors [18]. Jalal et al. studied the MODIS aerosol products over the Kuching
area in 2012–2013 using AERONET data [24]. Levy et al. validated the DT-based global AOD products
over land using AERONET data. Meanwhile, the relation between the retrieval accuracy in areas with
lower AOD and the reflectance at 2.12 µm was also studied [9]. Sayer et al. studied the accuracy and
uncertainty of the C6 DB product using data from 60 AERONET sites. In addition, regional differences in
accuracy and a comparison with the MODIS C5 product were studied [25].

Current validation studies of the accuracy of the MODIS products can be roughly divided into
regional and global validation studies. The former focus on the adaptability of the products over
particular regions. Such studies are targeted and have lower universality, whereas the latter studies
provide overall accuracy and general guidance for users. However, existing global validations do
not examine the influence of the accuracy with which the surface reflectance and aerosol types are
determined on the overall accuracy.

In this paper, the root mean squared error (RMSE), the mean absolute error (MAE), the mean relative
error (MRE), the relative mean bias (RMB), the correlation coefficient (R) and the expectation error (EE)
are used to validate the MODIS aerosol products over 175 AERONET sites. The LSR database built
using the MOD09 reflectance data and the aerosol type database built using the MOD04 aerosol type
data were applied to study the variations in accuracy of the MODIS DT/DB products with different
reflectance and accuracy differences of the various aerosol types. Comprehensive validation results of
the MOD04 product were obtained that provide a reference for the selection and application of MODIS
aerosol products and the improvement of the accuracy of aerosol retrievals.

2. Data and Methods

2.1. MODIS Aerosol Products

In this paper, an accuracy validation is applied to the standard MODIS aerosol product over
land (MOD04), a Level 2 MODIS C6 product with a spatial resolution of 10 km. Released by NASA,
MOD04 was produced using the DT and DB aerosol retrieval algorithms and is provided in the
HDF4 scientific data format, which contains geographical location, aerosol data and their auxiliary
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parameters. The DT and DB AOD products over land at 550 nm with a quality grade Q = 3 were
extracted for accuracy validation.

2.2. AERONET Data

AERONET is a federation of ground-based remote sensing aerosol networks established by NASA
and its collaborators. AERONET provides a long-term, continuous and readily accessible (public
domain) database of aerosol optical, microphysical and radiative properties for use in research on
aerosols and their characterization, as well as the validation of satellite retrievals.

AERONET provides globally distributed observations of spectral aerosol optical depth (AOD)
data that are computed for three data quality levels. The Level 1.0 data are unscreened, the Level 1.5
data are cloud-screened, and the Level 2.0 data are cloud-screened and quality-assured [15].
With AOD observation errors that lie within the range of 0.01–0.02, the AERONET products are
often used for AOD remote sensing validation [4,18,26–28]. The MODIS aerosol products used in this
study are validated using the Level 2.0 data from 175 global AERONET sites collected in 2013.

As the AOD data at 550 nm are deficient, an interpolation is performed using the AERONET data
and the Angstrom exponent:

τ(λ) = βλ−α (1)

here, τ (λ) is AOD at a wavelength of λ, α is the Angstrom wavelength exponent, and β is the Angstrom
turbidity coefficient. Substituting AOD at 440 µm, 500 µm and 675 µm into Equation (1), we obtain β
and α. The AOD value at 550 µm can then be obtained [7,29].

2.3. LSR Database

To avoid the influence of clouds on surface reflectance, the monthly blue band data in 2013
were composited using the MOD09A1 product and the LSR database via the second minimum value
synthesis method [30,31].

MOD09A1 is a global surface reflectance 8-day gridded product that includes 7 bands at
a resolution of 500 m from the visible to the near-infrared bands. To match the AOD values with the
surface reflectance, monthly composite reflectance data were resampled to pixels with a resolution of
10 km, as shown in Figure 1.
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Figure 1. Monthly composite images of global 10-km surface reflectance in the blue band (0.47 µm;
(a–d) represent January, April, July and October, respectively).

2.4. Aerosol Type Database

MOD04 provides daily aerosol types over land at a resolution of 10 km in the “Aerosol_Type_Land”
dataset. Aerosol type is obtained via cluster analysis of AERONET aerosol parameters. These types include
dust, continental, and fine aerosols; the fine aerosols can be subdivided into strong absorbing, moderate
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absorbing and weak absorbing types. Aerosol properties mainly include single scattering albedo (SSA) and
the asymmetry factor (g) [2,14,16]. Studies have shown that the optical properties of fine aerosols change
slightly; however, this change rarely influences variations in aerosol type [2]. Therefore, we assume that:
(1) the optical properties of aerosols change slightly over short periods of time; (2) the dominant factors at
each AERONET site that determine aerosol type are affected a lot by the season. Thus, we built a seasonal
aerosol type dataset via the modal synthesis method, as shown in Figure 2. Table 1 shows the SSA and g
values of each aerosol type, according to the AERONET data.
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Figure 2. Global aerosol distribution in each season ((a–d) represent spring, summer, autumn and
winter, respectively).

Table 1. Parameters of each aerosol type.

Aerosol Type Single Scattering Albedo
(SSA)ω0 0.47/0.55/0.66 µm

Asymmetry Factor g
0.47/0.55/0.66 µm

Continent 0.90/0.89/0.88 0.64/0.63/0.63
Weak absorbing 0.96/0.95/0.94 0.71/0.68/0.65

Moderate absorbing 0.93/0.92/0.91 0.68/0.65/0.61
Strong absorbing 0.88/0.87/0.86 0.64/0.60/0.56

Dust 0.94/0.95/0.96 0.71/0.70/0.69

2.5. Evaluation Methods

AERONET provides continuous AOD values at 15-min intervals. On the other hand, MODIS captures
instantaneous AOD values with a pixel size of 10 km × 10 km. Thus, AERONET and MODIS differ in
terms of their spatial-temporal scales. Substantial matching errors or incorrect matching results would be
produced if AERONET AOD values were improperly matched with MODIS data. Therefore, in terms of
temporal scale, the average AERONET AOD values within±30 min of the times when the satellite passed
overhead were applied in this study. In terms of spatial scale, a grid of 3 × 3 MODIS pixels centered
on AERONET sites are selected, in which AOD is determined by the median of the nonzero values.
The aerosol type and surface reflectance are determined by the same method described above, in which the
aerosol type was determined as the mode of a 3× 3 grid of pixels. The evaluation statistic matrix includes
the RMSE, the MAE, the MRE, the EE, the RMB and R [1,4,18].

RMSE =

√
1
n

n

∑
i=1

(
AOD(MOD04)i − AOD(AERONET)i

)2
(2)

MAE =
1
n

n

∑
i=1

∣∣∣AOD(MOD04)i − AOD(AERONET)i

∣∣∣ (3)
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MRE =
1
n

n

∑
i=1

∣∣∣AOD(MOD04)i − AOD(AERONET)i

∣∣∣
AOD(AERONET)i

(4)

RMB =
AOD(MOD04)

AOD(AERONET)
(5)

EE = ±
(

0.05+ 0.15× AOD(AERONET)

)
(6)

r =
∑n

i=1

(
AOD(MOD04)i − AOD(MOD04)

)(
AOD(AERONET)i − AOD(AERONET)

)
√

∑n
i=1

(
AOD(MOD04)i − AOD(MOD04)

)2
√

∑n
i=1

(
AOD(AERONET)i − AOD(AERONET)

)2
(7)

The RMSE, the MAE, and the MRE are used to measure the differences between the MOD04 AOD
values and the AOD values measured using a Sun photometer. Here, AODMOD04 represents MOD04 AOD
values, and AODAERONET represents AERONET AOD values. RMB indicates the overall bias of MOD04
and AERONET AOD; RMB > 1 and RMB < 1 represent overestimates and underestimates, respectively.
EE is used here for the confidence envelopes of the retrieval algorithm over land to evaluate the quality of
the MOD04 AOD estimates. The correlation coefficient R is a good indicator of the agreement between the
AERONET and MOD04 AOD values; higher values of R indicate better agreement [1,18].

3. Results and Discussion

3.1. Overall Validation of MOD04 C6 DT and DB AOD Products

Panels (a) and (b) in Figure 3 represent the global aerosol optical thickness obtained using the DT
and DB algorithms of MOD04 C6 on the 165th day. The results clearly indicate that the DB algorithm
produces more continuous AOD results with wider retrieval scales and compensates for the errors
generated by the DT algorithm over the Sahara Desert.Atmosphere 2017, 8, 155  7 of 19 
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Figure 3. Global aerosol distribution of MOD04 C6 AOD products over land on day 165 ((a) MOD04
C6 DT; (b) MOD04 C6 DB). DT: Dark Target; DB: Deep Blue.

Panels (a) and (b) of Figure 4 show the results of comparing the MOD04 DT and DB AOD values
and the AERONET AOD values at 550 nm, where the dotted lines are the EE bounds of the MODIS
products over land. The solid line indicates the X = Y line. The retrieval results of DT and DB are
similarly distributed, especially where the AOD values are less than 1.0. Compared with those of
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DT the DB AOD products are more evenly distributed on both sides of the 1:1 line; 67.94% of the
sample points fall within the EE range, which is higher than the proportion associated with the DT
AOD products (61.09%). The evaluation indicators of the DB algorithm (RMSE = 0.113 and MAE = 0.072)
are lower than those of the DT algorithm (RMSE = 0.126 and MAE = 0.082). Both algorithms produce
overestimates to some extent; 32.53% of the DT samples fall above the EE and 6.38% fall below the
EE. With an RMB of 1.265, the DT algorithm shows obvious signs of overestimation which are over the
threshold of the science requirement of AOD measurement accuracy on the average level [32,33]. However,
the DB algorithm shows a small degree of overestimation; 17.64% of the samples fall above the EE,
14.42% fall below the EE, and the RMB is 1.010. Moreover, the DB algorithm can be applied over areas
with higher surface reflectance, enlarging the scale of aerosol retrieval scale and leading to higher numbers
of valid sample points (N = 11,694 for DB and N = 9869 for DT). Figure 5 is the deviation histogram
(|AODMODIS − AODAERONET|) for different AERONET AOD ranges (A: 0–0.05, B: 0.05–0.1, C: 0.1–0.2,
D: 0.2–0.5, E: 0.5–1.0, F: >1.0). As shown, the DB product also has an overall lower deviation than that of
the DT algorithm within each AOD bin. Overall, the MOD04 C6 DB product displays greater adaptability
and higher retrieval accuracy and product reliability, especially over areas with larger AOD values.Atmosphere 2017, 8, 155  8 of 19 
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Additionally, the reason for the accuracy differences between the DT and DB algorithms lies in
the theory of surface reflectance determination: for the DT algorithm, the surface reflectance in the
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visible red and near-infrared band is a function of the scattering angle and vegetation index; however,
the fixed linear relation between the visible red and blue bands is not stable. Figure 6 shows spectral
curves (i.e., measured spectral curves from the USGS) of five different vegetation types, specifically walnut,
black brush, lawn grass, firtree and maple. The surface reflectance of these vegetation types at 2.1 µm,
0.47 µm and 0.66 µm are shown in Table 2. The reflectance at 0.66 µm leads to an underestimation of
the reflectance of 0.0159–0.0258 in the blue band, which further leads to an error in the AOD values of
0.159–0.258. In contrast, the C6 DB algorithm determines surface reflectance comprehensively via the prior
LSR database and NDVI values. Thus, it possesses additional reliability and stability. Thus, the MOD04 C6
DB algorithm produces more accurate AOD retrieval results.Atmosphere 2017, 8, 155  9 of 19 
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Table 2. Surface reflectance at 2.1 µm, 0.47 µm and 0.66 µm.

Vegetation Type Blue Band (0.47 µm) Red Band (0.66 µm) Near-Infrared Band (2.1 µm)

Walnut 0.06540 0.08080 0.15170
Black Brush 0.04160 0.05020 0.05535
Lawn Grass 0.03658 0.04214 0.12793

Firtree 0.04923 0.05986 0.07373
Maple 0.03670 0.03794 0.15050

3.2. Validation of the MOD04 C6 DT and DB AOD Products within Different LSR

The key factor in aerosol retrieval is the separation between the land surface and aerosol
reflectance [34]. Thus, the accuracy of the surface reflectance estimate is of considerable importance.
Studies have shown that errors in surface reflectance estimates are magnified, becoming ten times
larger, when applied to the retrieval of AOD [22].

To assess the influence of surface reflectance on AOD retrieval accuracy, the apparent reflectance
of different surface reflectance and AOD values in the blue band were simulated using the 6 s (Second
Simulation of the Satellite Signal in the Solar Spectrum) model [29], as shown in Figure 7. As surface
reflectance increases, the sensitivity of the apparent reflectance to AOD changes decreases gradually
and declines sharply when surface reflectance is larger than 0.06, leading to difficulties in AOD retrieval.
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Figure 7. Simulations of AOD and apparent reflectance for different surface reflectances.

The DT and DB AOD samples were classified into five intervals based on LSR, specifically 0–0.02,
0.02–0.03, 0.03–0.04, 0.04–0.06 and greater than 0.06. Scatterplots and accuracy verifications are
shown in Figure 8. The DB product has an overall higher retrieval accuracy than that of the DT
algorithm within each interval (i.e., the N, RMSE and MAE are all greater). The number of valid
DT retrieval samples is greater than that of the DB algorithm over low reflectance areas (LSR < 0.03),
and the samples are distributed evenly on both sides of the 1:1 line. More than 70% of the DT
samples fall within the EE over areas with reflectance lower than 0.02, where RMSE = 0.086 and
MAE = 0.057. All of the data support the conclusion that DT AOD retrievals are overestimated in all
of the intervals, especially over high reflectance areas (LSR > 0.06), where RMB = 1.402 and 40% of the
samples fall above the EE. This overestimation occurs because the DT algorithm yields biased aerosol
type determinations; moreover, the underestimation of LSR leads to large errors in AOD [18].

As LSR increases, the AOD retrieval accuracy of both DT and DB decrease gradually. The fraction of
the DB samples that fall within the EE decrease from 81.34% in the 0–0.02 LSR interval to 55.59% in
the LSR > 0.06 interval, whereas the RMSE and the MAE grow from 0.072 and 0.045 to 0.142 and 0.098.
Nevertheless, the DT algorithm displays high accuracy and reliability in the 0–0.02 LSR interval when it is
used for dark target areas. The product accuracy of both DT and DB reaches a minimum for areas with
LSR values larger than 0.06. In such areas, 45.12% of the DT samples fall within the EE, and RMSE = 0.153,
MAE = 0.111, and RMB = 1.402. In conclusion, although the improved DB algorithm reduces the degree
of underestimation over areas with low AOD, the scattering diagram indicates that the AOD retrieval
accuracy of the DB algorithm needs to be improved in cases where LSR is high and AOD is low (in areas
with LSR > 0.06, over 90% of the AERONET AOD samples are distributed within 0.5).
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3.3. Variations in the Accuracy of MOD04 C6 DT and DB AOD Retrievals with Different LSR

The results presented in the preceding section reveal that the accuracy of DT and DB AOD
retrievals decreases as LSR increases. This pattern is described in a more intuitive and complete way
in the following section.

Figure 9 clearly shows the variations in the accuracy indicators and MOD04/AERONET AOD.
To avoid errors caused by the number of samples, the LSR data are assigned to groups containing
100 samples each and ordered from low to high, of which the median value is determined to be the
LSR. Indexes including the RMSE, the RMB, and the MAE are calculated for each group of data.
The results calculated are then fitted on an LSR line chart to obtain more intuitive variation trends
and rates. Theoretically, the AOD extracted should be distributed within the range of the surface
reflectance that is below 0.0625 in the blue band when the DT algorithm is applied to dark areas.
However, in view of the severe underestimation and inevitable matching errors produced by the DT
algorithm, some of the samples are selected from areas where LSR > 0.09.
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Figure 9. Variations in the accuracy of DT AOD retrievals with land surface reflectance (LSR).

As shown in Figure 9, the fluctuations in the accuracy indicators increase with LSR. Examples include
the proportion above the EE, the RMSE, the MAE and the MRE, whereas the proportion within the EE
and the R decline gradually. Therefore, the accuracy of DT AOD retrievals generally declines as LSR
increases. In addition, the RMB fluctuates smoothly with increased LSR within the range of 1.0–1.5,
showing an overall overestimation. The AOD values are smaller (<0.2) over low LSR areas (<0.04) that
have high retrieval accuracy. In general, the accuracy of DT AOD retrievals decreases as LSR increases and
contain clear errors, including an overall overestimation.

As the DB algorithm can be applied to perform AOD retrievals over urban and desert areas,
the LSR selected for this research is enlarged to 0.16. Figure 10 shows that the accuracy indicators for the
DB algorithm are similar to those of the DT algorithm and increase sharply when LSR is larger than 0.11.
In areas with a mean LSR of 0.1566, 88% of the samples fall above the EE, and RMSE = 0.26, MAE = 0.23
and MRE = 2.2. The indicators display obvious changes in areas with LSR > 0.11, where 37% of the
samples fall within the EE. In conclusion, the DB algorithm achieves AOD retrievals in areas with
high LSR; however, its accuracy decreases quickly, and its estimates tend to overestimate the true
values substantially.
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To sum up, the accuracy of DT and DB AOD retrievals falls gradually as LSR increases, but they are
highly reliable in low LSR areas. Additionally, the accuracy must be improved in areas with high LSR.

3.4. Variations in the Accuracy of MOD04 C6 DT and DB AOD Retrievals with Different Aerosol Types

Aerosol type is another key factor that influences AOD retrievals. Aerosol types differ in terms of
their ability to reflect, scatter, and absorb solar radiation. Thus, incorrect aerosol type determinations
lead to incorrect aerosol retrievals [35].

To study the sensitivity to AOD of different aerosol types, we also used the 6s model to simulate the
variation in apparent reflectance with different AOD values in the blue band [36]. The results are shown
in Figure 11. In the two panels of the figure, the LSR values are 0.02 (a) and 0.1 (b). In other words,
these panels reflect dark and bright land surfaces. It can be seen that the relative sensitivity of aerosols
is stable over both dark and bright areas. Weak absorbing and dust aerosols display the greatest
sensitivity, followed by the moderate absorbing and continental aerosols; the strong absorbing aerosols
are the least sensitive. The low sensitivity of continental and strong absorbing aerosols increases the
difficulties associated with performing aerosol retrievals over areas with these two aerosol types.
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dust aerosol samples fall within the EE for the following two reasons: (1) dust aerosols occur mainly 
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Figure 11. Variations in apparent reflectance of different aerosol types with increasing AOD values
under the surface reflectance of 0.02 (a) and 0.10 (b).

Figure 12 presents scatterplots that indicate the accuracy of DT AOD retrievals and the variations
of indicators. Panels a, b, c, d and e represent weak absorbing, moderate absorbing, strong absorbing,
continental and dust aerosols, respectively. This figure indicates that more than 97% of the samples
represent fine aerosols. In addition, fine aerosols are widely distributed, and the moderate absorbing
aerosols are the most widely distributed, whereas continental aerosols are sparsely distributed and
concentrated around dust aerosols. As continental and dust aerosols are distributed mainly in desert areas,
aerosol retrievals cannot be performed by the DT algorithm; therefore, few samples are produced for
continental and dust aerosols. Panels d and e of Figure 12 show that most of the AOD values are smaller
than 0.5 and fall above the 1:1 line, indicating substantial overestimation. About a third (30.44%) of the
continental aerosol samples and 50% of the dust aerosol samples fall within the EE for the following two
reasons: (1) dust aerosols occur mainly in the Sahara Desert, and seasonal factors have little influence
on these aerosols, leading to stable aerosol types and easy aerosol retrievals; and (2) the overall retrieval
accuracy is affected by inevitable matching errors and a lack of samples (N = 10).
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Among the fine aerosols, the weak absorbing type is associated with the greatest accuracy.
This type is primarily distributed in eastern South America, western Europe and eastern Asia during
the first three seasons, which feature favorable air conditions and small variations in aerosol type.
In terms of weak absorbing aerosols, 66.68% of the samples fall within the EE, and RMSE = 0.1,
MAE = 0.067 and RMB = 1.274. These values reflect substantial overestimation. These overestimates
result from errors in determining LSR and aerosol type and the underlying surface distribution of
large scale urban areas. Aerosol type determinations based on AERONET data contain some bias.
For example, the Beijing-Tianjin-Hebei region, an area with high LSR and a complex distribution
of land surface types, displays a complex mix of aerosol types. However, large-scale aerosol type
products suggest that this area is dominated by a single aerosol type. Compared with the weak and
moderate absorbing aerosols, the results for strong absorbing aerosols are distributed more evenly
along the 1:1 line and show no obvious overestimation (RMB = 1.036; fraction above the EE = 21.15%;
fraction below the EE = 20.00%). However, the air quality in this area is bad, and the AOD values of
27% of the samples are larger than 0.5. The retrieval of AOD values using the modified C6 product
is greatly increased over areas of “dense smoke”. In view of the wide distribution of moderate
absorbing aerosols, 58.31% of the samples fall within the EE with RMSE = 0.134 and RMB = 1.302,
showing medium aerosol retrieval accuracy. As with the weak absorbing aerosols, the DT product
displays considerable overestimation over areas with moderate absorbing aerosols.

As shown in Figure 13, the DB AOD accuracy is the highest over areas with weak absorbing
aerosols, and all of the indicators show that the DB algorithm yields better results than the DT algorithm.
A substantial majority (76.99%) of the samples fall within the EE, which is 15.46% greater than that of
the DT algorithm; RMB = 1.071; the 15.93% overestimation represents a decrease; and the RMSE (0.075)
and the MAE (0.051) decrease to 0.025 and 0.016, respectively, showing a high retrieval accuracy.
The accuracy of areas with moderate absorbing aerosols is slightly lower than that of weak absorbing
areas and substantially higher than areas covered by other aerosol types. For the DB AOD product,
the accuracy is similar over areas with strong absorbing, land and dust aerosols, and the corresponding
proportions of samples that fall within the EE are 55.28%, 51.59% and 51.39%; the RMSE values are 0.176,
0.151 and 0.157; the MAE values are 0.123, 0.107 and 0.11; and the RMB values are 0.983, 1.177 and 1.254,
respectively. Moreover, the continental and dust aerosols are associated with higher RMB values that
reflect severe overestimation, especially for the dust aerosols. In contrast, the RMB values of the
continental aerosols are close to 1, indicating a small bias. In addition, the accuracy of DB AOD
retrievals over areas with strong absorbing aerosols is slightly lower than that of the DT algorithm.
In terms of the accuracy of DT AOD retrievals, the proportion of samples within the EE is 5.92%
greater than that of DB, and the RMSE and MAE decrease by 0.018 and 0.012. Figures 12 and 13
(panel c) indicate that the DT samples are closer to the AERONET data for AOD values less than
1, showing a good convergence effect. The DT samples reflect substantial overestimates for AOD
values greater than 1 (a large proportion of the samples fall above the upper bound of the EE),
whereas the DB samples are distributed close to the EE bounds and have a smaller bias than the
DT samples. Taken together, the DT algorithm displays better adaptability over areas with strong
absorbing aerosols, whereas the DB algorithm is more suitable for aerosol retrievals over areas that are
heavily polluted over time. In view of areas with continental and dust aerosols, the DB AOD product
shows severe overestimation, and 35.45% and 35.28% of the samples fall above the EE, and the RMB
reaches 1.177 and 1.254. The scatterplot shows that the overestimation occurs in the area with low
AOD values (<0.5), which is close to the Y-axis.
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As is well known, the sensitivity of apparent reflectance decreases with increasing AOD; however,
in areas with strong absorbing aerosols, more than 25% (DB) and 27% (DT) of the samples are larger
than 0.5, far more than other aerosol types. The combination of the above two factors leads to
a lower retrieval accuracy in areas with strong absorbing aerosols. In addition, the low sensitivity
of continental aerosols also enhance the difficulties involved in performing aerosol retrievals over
areas with continental aerosols. High-frequency variations that occur due to causes including dust
intrusions, meteorological or volcanic factors also have some impact on the accuracy of inversion.

In conclusion, both the DT and DB products have the highest accuracy and reliability over areas
with weak absorbing aerosols; on the other hand, the opposite conclusion can be drawn for areas with
dust aerosols. The accuracy of the DB product is higher than that of the DT product over most areas,
except for those with strong absorbing aerosols.

4. Conclusions

This study aims to investigate the global accuracy of the MODIS DT and DB aerosol products
over continental AERONET sites in areas with different aerosol types and LSR variations. The results
are as follows.

1. The DB results are closer to the data observed from AERONET; a higher proportion of the
samples fall within the EE, and the values of the RMSE, MAE and RMB are lower. Therefore,
the DB algorithm has greater reliability and a wider range of application. The reason for this
accuracy difference is that the underestimates of LSR produced by the DT algorithm lead to
severe overestimation of AOD, whereas the DB algorithm estimates LSR more accurately when
combined with the LSR database.

2. The DT and DB algorithms display the highest AOD retrieval accuracy over areas with low
reflectance, where the fluctuations decrease as the LSR increase. Although the DB algorithm
implements AOD retrievals over high reflectance areas, the overestimation is obvious.

3. Both algorithms display high retrieval accuracy over areas with weakly absorbing aerosols,
whereas the accuracy is low over areas with continental and dust aerosols. The DB algorithm
has an overall advantage in performing retrievals for all aerosol types, whereas the accuracy is
slightly lower than that of the DT algorithm, given the underestimation of strongly absorbing
aerosols over areas with low AOD.
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