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A B S T R A C T   

Background: Long-term ambient particulate matter (PM) exposure has been found associated with chronic 
obstructive pulmonary disease (COPD) mortality in an increasing body of research. However, limited evidence 
was available on the potential causal links between PM1 and COPD mortality, especially in highly exposed areas. 
Objectives: To examine the COPD mortality risk following long-term ambient PM1 exposure in south China. 
Methods: The cohort included 580,757 participants recruited during 2009–2015. Satellite-based annual con-
centrations of PM1 were estimated at a spatial resolution of 1 km × 1 km and assigned to each participant based 
on their residential addresses. We analyzed the potential causal links between time-varying PM1 exposure and 
COPD mortality using marginal structural cox models within causal frameworks. Stratified analyses were also 
performed to identify the potential susceptible groups. 
Results: The annual average PM1 concentration continuously decreased over time. After adjusting for con-
founders, each 1 μg/m3 increase in PM1 concentration corresponded to an 8.1 % (95% confidence interval: 
6.4–9.9 %) increment in the risk of COPD mortality. The impact of PM1 was more pronounced among the elderly 
and those with low exercise frequency, with a 1.9–6.9 % higher risk than their counterparts. We further observed 
a 0.1–9.7 % greater risk among those who lived in lower greenness settings. Additionally, we observed higher 
effect estimates in participants with long-term low PM1 exposure compared to the general population. 
Conclusions: COPD mortality risk significantly increased following long term ambient PM1 exposure, particularly 
among groups with certain demographics or long-term low exposure.   

1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a type of 
obstructive lung disease which is characterized by persistent limitation 
to airflow (Ritchie and Wedzicha, 2020). As one of the leading health 
concerns worldwide, COPD was estimated to affect 544.9 million people 
globally in 2017, and according to the Global Burden of Disease study, 

caused 3.28 million deaths and 74.43 million disability-adjusted life 
years in 2019 (Christenson et al., 2022; Zou et al., 2022). In China, 99.9 
million adults aged over 20 years were suffering from 
spirometry-defined COPD, accounting for approximately 8.6 % of the 
general adult population in 2015 (Wang et al., 2018). 

Ambient air pollution is recognized as one of the major environ-
mental health concerns worldwide, with extensive epidemiological 
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studies providing evidence linking particulate matter (PM) exposure to 
the COPD mortality. For instance, a recent meta-analysis on top of 11 
cohort studies estimated an 11 % increased risk of COPD mortality 
following each 10 μg/m3 increase in long-term PM2.5 exposure (Chen 
and Hoek, 2020). Although the health impact of regular-sized particles 
such as PM2.5 is still of a great public concern, the impact of smaller 
particles has attracted a growing attention over recent years (Hu et al., 
2022). PM1 is one of the most important fine particles and a major 
component of the regular-sized particles (Chen et al., 2018). It is very 
likely and biologically plausible that PM1 may impose a greater risk of 
chronic respiratory diseases than larger particles as the smaller size and 
larger surface area of the particles may result in a deeper invasion, 
prolonged internal stay, and more pulmonary inflammation (Chen et al., 
2015; Valavanidis et al., 2008). However, limited evidence is available 
on PM1 exposure and the risk of COPD. High-quality evidence, especially 
based on large cohorts, would be critical to expanding our under-
standing of the respiratory effects of PM exposures. 

Furthermore, existing evidence assessing the respiratory effects of 
PMs exposure generally relies on traditional association analysis and 
prone to the residual confounding issues which potentially leads to a 
biased estimation (Pang et al., 2016; Robinson and Jewell, 1991). 
Recent advances in the theory of causal inference based on the obser-
vational data make it possible to investigate the health effect that could 
be specifically attributed to a certain exposure under a counterfactual 
framework (Danesh Yazdi et al., 2021; Robins et al., 2000; Wu et al., 
2020). The causal clues generally are considered more significant for 
decision-makings relative to the traditional association information. 
However, evidence on the potential causal links of PM1 exposure and 
COPD mortality is even more scarce. 

To fill the research gaps in the area of PM1-COPD mortality research, 
we first used causal inference models to investigate the potential causal 
links of long-term PM1 exposure with the COPD mortality using data 
from a community-based cohort study in south China, and then per-
formed stratified analyses to identify the potential susceptible groups. 

2. Materials and methods 

2.1. Study design and population 

Participants for the current study were recruited from Guangzhou 
area, China between 2009 and 2015, as part of the national project of 
community-based collaborative innovation hepatitis B virus (Ruan et al., 
2019). In the present study, we included all the residents in the com-
munity who signed health service contract (for physical checkup) with 
the community healthcare centers. These residents were identified 
through official residential records and were simultaneously enrolled in 
China’s basic public health service project, with a long-standing resi-
dential history in the local area. This study recruited a total of 654,115 
participants, the locations of whom have been described elsewhere 
(Zhang et al., 2023). After excluding 72,330 participants who were 
younger than 18 years of age and 1028 individuals who died from un-
known causes, the number of participants analyzed was 580,757. This 
study was approved by the Institutional Review Board (IRB) Committee 
at Sun Yat-sen University. We collected information on demographic 
characteristics, behavioral factors, a detailed assessment of body mass 
index, and other variables during the baseline survey. 

2.2. Outcome definition 

Information on survival status of each participant and the cause of 
death for those who died during January 2009 through December 2020 
were obtained from the Death Registry System of the Guangzhou Center 
for Disease Control and Prevention. In the current study, the outcome 
was the COPD mortality (International Classification of Diseases, 10th 
revision: J40-J44, J47). Each participant was followed from enrollment 
until either the occurrence of the outcome or the end of the follow-up, 

whichever occurred first. 

2.3. Exposure assessment 

Annual average PM1 concentrations for the period of 2009–2020 
were obtained from the ChinaHighAirPollutants data set at a spatial 
resolution of 1 km × 1 km. The predictive model of daily PM1 concen-
trations displayed a satisfactory performance with a 10-fold cross- 
validation R2 (root mean square error) value of 0.77 (14.6 μg/m3). 
Detail on the simulation process and model validation can be found 
elsewhere (Wei et al., 2019). In the present study, annual average PM1 
concentrations were calculated and linked to participants’ residential 
address. During the follow-up period, we matched the annual average 
PM1 concentration for participants who died before June, with the last 
exposure value being the annual concentration of the previous year. For 
participants who died after June, the last exposure value was the annual 
concentration of the mortality year. 

Given the existing evidence suggesting an association of greenness 
with both air pollution and respiratory diseases, we examined the po-
tential confounding effect of greenness exposure (Twohig-Bennett and 
Jones, 2018). The normalized difference vegetation index (NDVI) is a 
widely used for evaluating vegetation coverage, which is obtained from 
the Land Processing Distributed Active Archive Center(Huete et al., 
2002). The annual average NDVI value within a 500-meter radius buffer 
around the residential address was computed for each participant. 

2.4. Potential confounders 

In order to select potential confounders, we utilized a directed 
acyclic graph which integrated both evidence synthesis strategies and 
causality principles (Ferguson et al., 2020). The potential confounders 
included in this study were age, sex, ethnicity (Han Chinese and ethnic 
minorities), education (illiterate or semiliterate, elementary school, 
middle school, high school, and college or above), marital status (never 
married, married, widowed, and divorced), medical insurance (medical 
insurance for urban workers, medical insurance for urban residents, the 
new rural cooperative medical insurance, and others), smoking (never, 
former and current), exercise frequency (low, moderate, and high), and 
NDVI (Fig. S1). More details have been described elsewhere (Wang 
et al., 2023a). 

2.5. Statistical analysis 

Marginal structural models with inverse probability weighting 
(IPWs) that combined time-varying Cox model was used to evaluate the 
risk of COPD mortality following each 1 μg/m3 increase in PM1 con-
centrations, providing hazard ratio (HR) and 95 % confidence interval 
(CI). The marginal structural models took into account time-varying 
covariates, such as the annual average PM1 concentrations and NDVI 
(500 m), that changed during the follow-up period. The main idea of the 
model is to establish a pseudo-population in which the covariates are 
balanced between different exposure groups. With this method, a 
generalized propensity score (GPS) is first computed using three 
different methods which included the linear model (LM), generalized 
estimating equation (GEE), and gradient boosting machine learning 
(ML). Then, following the approach by Robins et al. (Robins et al., 
2000), stabilized inverse probability weights (IPW) of exposure were 
constructed using the inverse of the GPS to weigh the observations. 
These weights were assigned to each participant, creating a weighted 
pseudo-population that balances the potential confounding effects 
across exposure groups. The optimal model with the best performance in 
confounding balancing was identified based on the average absolute 
correlation (AC) values, and the LM weighting method was chosen for 
the marginal structural model (Fig. S2). More methodological details 
have been described elsewhere (Wang et al., 2023b; Wu, et, 2020). 

Model 0 was the crude model under time-varying Cox model. In 
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multivariable analyses (model 1), adjusted for sex, age, demographic 
characteristics, behavioral factors, and time-varying NDVI. Model 2 was 
assessed using the marginal structural model, with the same covariates 
employed in Model 1. The main findings in the present study were 
presented as the results from Model 2. 

In addition, stratified analyses were performed by the demographic 
characteristics, behavioral factors, and NDVI. Multiple imputations 
using chained equations were utilized to fill in missing data for con-
founding variables (van Buuren and Groothuis-Oudshoorn, 2011). 
Moreover, the previous studies have shown that participants in the same 
region but exposed to lower PM concentrations tended to have a higher 
susceptibility (Danesh Yazdi et al., 2021; Di et al., 2017). To explore the 
potential impact of low exposure on human susceptibility, the analysis 
was further restricted to participants with annual PM1 concentrations of 
were generally under the 75th percentile among all the annual con-
centration of all the participants. 

Multiple sensitivity analyses were conducted. First, the effect of 
NDVI buffer option was evaluated by defining NDVI exposure using 
buffers of varying sizes (i.e., 250 m and 1000 m). Second, the impact of 
missing data imputation was evaluated by conducting a complete case 
analysis only including participants without missing data. 

Third, we additionally adjusted for alcohol consumption and BMI in 
our model. Fourth, the effect of using different IPW construction 
methods was also assessed (i.e., LM vs GEE vs ML). In addition, the 
potential impact of unmeasured confounders was evaluated by calcu-
lating the E-value (VanderWeele and Ding, 2017), with a higher E-value 
indicating that the results are less likely to be affected by unmeasured 
confounders bias. All statistical analysis was conducted in R version 
4.1.3. 

3. Results 

A total of 580,757 participants [mean (standard deviation (SD)) 
age= 48.3 (17.6 years; 305,081 (52.53 %) women] were included in the 
present analysis. During an average of 8.0 years (SD=3.3) follow-up, 
2250 COPD deaths occurred. The average concentration of PM1 from 
2009–2020 was 19.56 μg/m3 (SD=4.48), and the annual average PM1 
concentration decreased during this period (Fig. S3). Table 1 shows that 
participants who were minorities, never married, or had a lower edu-
cation level had higher average PM1 concentrations (all P < 0.001). 
Moreover, participants who were never smokers, never alcohol uses, had 
low exercise frequency, lower NDVI exposure, and higher BMI levels 
tended to have higher average PM1 concentrations (all P < 0.001). 
Table S1 displays the characteristics of the complete case dataset. 

Fig. 1 shows a significant association between long-term PM1 expo-
sure and COPD mortality. For each 1 μg/m3 increase in PM1 concen-
tration, the HR of COPD mortality was 1.084 (95 % CI:1.067–1.101) in 
the crude model. In the marginal structural Cox model, the HR and 95 % 
CI were 1.081 (95 % CI:1.064–1.099) per 1 μg/m3 increase in PM1 
concentration after adjustment for sex, age, demographic characteris-
tics, behavioral factors and NDVI. The results obtained from the fully 
adjusted time-varying Cox model were similar, with the HR and 95 % CI 
being 1.090 (95 % CI:1.071–1.109). 

Results of stratified analyses were showed in Fig. 2. The older par-
ticipants (above 65 years) showed greater susceptibility to the impacts 
of PM1 exposure on mortality due to COPD (HR: 1.110, 95 % CI: 
1.092–1.128) than younger participants (HR: 1.091, 95 % CI: 
1.013–1.175). We also found that participants with low exercise fre-
quency may be more susceptible to the impact of PM1, compared to 
participants with a moderate exercise frequency, with the HRs being 

Table 1 
Baseline characteristics by quartiles of long-term PM1 concentrations in 2009–2020.  

Characteristics long-term PM1 concentrations  P 

Overall 
(N = 580,757) 

Quartile 1 
(N = 147,433) 

Quartile 2 
(N = 159,475) 

Quartile 3 
(N = 148,608) 

Quartile 4 
(N = 125,241) 

Demographics       
Age (mean (SD)) 48.33 (17.55) 47.75 (17.27) 49.91 (17.64) 49.12 (17.71) 46.05 (17.28) <0.001 
Sex (men %) 275,676 (47.47) 71,246 (48.32) 73,852 (46.31) 69,804 (46.97) 60,774 (48.53) <0.001 
Ethnicity (minority %) 10,953 (1.89) 249 (0.17) 702 (0.44) 1953 (1.31) 8049 (6.43) <0.001 
Marital status (%)     <0.001 

Never married 108,424 (18.67) 23,059 (15.64) 31,538 (19.78) 27,107 (18.24) 26,720 (21.34)  
Married 448,138 (77.16) 120,227 (81.55) 119,018 (74.63) 114,151 (76.81) 94,742 (75.65)  
Widowed 17,262 (2.97) 2926 (1.99) 6618 (4.15) 5093 (3.43) 2625 (2.09)  
Divorced 6933 (1.20) 1221 (0.82) 2301 (1.44) 2257 (1.52) 1154 (0.92)  

Education level (%)     <0.001 
Illiterate or semiliterate 6603 (1.14) 418 (0.28) 1986 (1.25) 2563 (1.72) 1636 (1.31)  
Elementary school 67,247 (11.58) 11,891 (8.07) 19,643 (12.32) 19,046 (12.82) 16,667 (13.31)  
Middle school 131,394 (22.62) 22,424 (15.21) 34,341 (21.53) 43,647 (29.37) 30,982 (24.74)  
High school 266,467 (45.88) 65,259 (44.26) 74,885 (46.96) 64,242 (43.23) 62,081 (49.57)  
College or above 109,046 (18.78) 47,441 (32.18) 28,620 (17.94) 19,110 (12.86) 13,875 (11.07)  

Medical insurance (%)     <0.001 
Medical insurance for urban workers 354,396 (61.02) 92,203 (62.54) 93,971 (58.93) 89,455 (60.20) 78,767 (62.89)  
Medical insurance for urban residents 164,213 (28.28) 44,994 (30.52) 48,186 (30.22) 42,476 (28.58) 28,557 (22.80)  
The new rural cooperative medical insurance 6439 (1.11) 239 (0.16) 613 (0.38) 2398 (1.61) 3189 (2.55)  
Others 55,709 (9.59) 9997 (6.78) 16,705 (10.47) 14,279 (9.61) 14,728 (11.76)  

Lifestyle behaviors       
Exercise frequency (%)    <0.001 

Low 322,225 (55.48) 97,255 (65.97) 74,599 (46.78) 79,267 (53.34) 71,104 (56.78)  
Moderate 141,938 (24.44) 27,672 (18.77) 40,802 (25.58) 40,697 (27.38) 32,767 (26.16)  
High 116,594 (20.08) 22,506 (15.26) 44,074 (27.64) 28,644 (19.28) 21,370 (17.06)  

Smoking status (%)     <0.001 
Non-smoker 505,385 (87.02) 134,765 (91.41) 123,080 (77.18) 132,249 (88.99) 115,291 (92.06)  
Ever smoker 6716 (1.16) 1343 (0.911) 2385 (1.49) 1943 (1.31) 1045 (0.83)  
Current smoker 68,656 (11.82) 11,325 (7.68) 34,010 (21.33) 14,416 (9.70) 8905 (7.11)  

Alcohol consumption (%)    <0.001 
Never 515,205 (88.71) 135,802 (92.11) 128,778 (80.75) 135,020 (90.86) 115,605 (92.31)  
Ever 65,552 (11.29) 11,631 (7.89) 30,697 (19.25) 13,588 (9.14) 9636 (7.69)  

Body mass index (mean (SD)) 22.07 (2.45) 21.82 (2.23) 22.10 (2.57) 22.189 (2.50) 22.17 (2.47) <0.001 
NDVI (500), mean (SD) 0.214 (0.04) 0.251 (0.033) 0.217 (0.041) 0.191 (0.025) 0.194 (0.024) <0.001 

Abbreviations: SD, standard deviation; PM1, particulate matter with an aerodynamic diameter ≤ 1 µm, NDVI, normalized difference vegetation index. 
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1.114 (95 % CI: 1.076–1.154), and 1.045 (95 % CI: 1.011–1.080), 
respectively. Regarding the modification of NDVI, participants with low 
NDVI exposure were more susceptible to the influence of PM1 than those 
with higher NDVI exposure. 

Fig. 3 showed the relationships between COPD mortality and long- 
term PM1 exposure among individuals who were generally exposed to 
low PM1 concentrations (Fig. S4). We found the estimated HR for COPD 

mortality was larger among those who were always exposed to lower 
levels of PM1 (HR: 1.382, 95 % CI: 1.234–1.548) concentrations in 
comparison to the entire population. 

Our sensitivity analysis yielded consistent results across different 
buffer sizes of NDVI (250 m, 1000 m), between data with and without 
imputation, additional adjustments for alcohol consumption and BMI, as 
well as across three different approaches for IPW computation (LM, ML, 
and GEE) (Table S2). Our conclusions were considered robust with 
regards to unmeasured confounding bias, based on the E values. 
(Table S3). 

Fig. 1. Association between 1-μg/m3 increase in long-term PM1 exposure and 
mortality due to COPD under two different statistical approaches (traditional 
approach and causal inference approach). Note: 1) Model 0 was a crude model 
under time-varying Cox model. 2) Model 1: model 0 adjusted for sex, age, 
ethnicity, education, marital status, medical insurance, smoking status, exercise 
frequency and normalized difference vegetation index (500 m). 3) Model 2: 
refitted with the marginal structural Cox model based on the same co-variates 
in the model 1. Abbreviations: HR, hazard ratio; CI, confidence interval; PM1, 
particulate matter with an aerodynamic diameter ≤ 1 µm;. 

Fig. 2. The modification effect of basic participant char-
acteristics on the association between PM1 concentrations 
and mortality due to COPD. 
Note: The effects were estimated under causal inference 
model with adjustment for sex, age, ethnicity, education, 
marital status, medical insurance, smoking status, exercise 
frequency and normalized difference vegetation index 
(500 m). All stratified estimates were adjusted for the 
remaining covariates. Abbreviations: HR, hazard ratio; CI, 
confidence interval; PM1, particulate matter with an aero-
dynamic diameter ≤ 1 µm;.   

Fig. 3. Association between 1-μg/m3 increase in long-term PM1 exposure and 
mortality due to COPD under causal inference approach among all participants 
and participants who always exposed to low concentrations. Abbreviations: HR, 
hazard ratio; CI, confidence interval; PM1, particulate matter with an aero-
dynamic diameter ≤ 1 µm;. 
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4. Discussion 

In a general population cohort study, the findings of our study 
demonstrated an elevated risk of about 8.1 % in COPD mortality for each 
1 μg/m3 increase in long-term PM1 concentration after adjusting for 
confounding factors. The impact of PM1 was more pronounced among 
the elderly, people with lower exercise frequency, and lower residential 
greenness than their counterparts. Furthermore, we observed a higher 
effect estimate in participants with long-term low PM1 exposure 
compared to the general population. This is the first study utilizing the 
causal inference approaches to provide robust evidence clarifying the 
potential causal relationship between long-term PM1 exposure and 
COPD mortality in China. 

Although numerous epidemiological studies, including our previous 
research (Wang et al., 2023a), have shown the relationship between 
PM2.5 and PM10 and COPD mortality, the risk from long-term PM1 
exposure remains understudied. Our study highlights the importance of 
elevated long-term PM1 exposure concentration as a risk factor for COPD 
mortality. Previously, limited research has investigated the impact of 
PM1 on health outcomes, primarily assessing short-term effects or using 
cross-sectional study design (Hu et al., 2018; Lin et al., 2016; Perez et al., 
2009). A study using case-crossover design in China found that per 
10 μg/m3 increase of PM1 concentration was linked to a 9 % elevated 
risk of respiratory diseases admission at lag 0–2 days (Zhang et al., 
2020). Another time-series study in China revealed that for each 
10 μg/m3 increase in short-term PM1 exposure, the risk of mortality due 
to COPD increased by 0.7 % at lag 0–2 days (Hu et al., 2018). These 
findings include our research underscoring the benefits of reducing 
exposure to PM1 for improving health outcomes. 

Interestingly, compared with the effects of PM2.5 and PM10 reported 
(Wang et al., 2023a). we observed that the impact of PM exposure on 
COPD mortality differs with the particle size, with the long term PM1 
exposure being observed with a greater risk. The previous research on 
the health effects of PM exposure of different sizes have not reached a 
consistent conclusion. Several potential mechanisms may explain the 
higher effects of PM1. PM1 is more likely to be inhaled into deeper re-
gions of the lungs compared to larger particle size and can access the 
alveoli and bronchioles, leading to inflammation and other harmful 
reactions, while PM2.5 and PM10 mainly settle in the upper respiratory 
tract and could be cleared by self-cleaning mechanisms, such as the 
mucociliary clearance system (Filep et al., 2016). The smaller the par-
ticles are, the relatively larger amounts of toxic organic compounds they 
may contain (Agudelo-Castan~eda et al., 2015). For example, the PM1 
particles were reported to contain about 86 % of the carcinogenic po-
tential when comparing the total carcinogenic potency in PM2.5 and PM1 
(Pehnec and Jakovljević, 2018). In addition, the smaller particles are 
more likely to trigger gene variations, causing greater health risk (Fry-
das et al., 2020). Overall, more in-depth mechanistic research on the 
sources and composition of PM is necessary to advise better control and 
preventive strategies. 

In subgroup analyses, participants who were older than 65 years and 
those with lower exercise frequency had an increased risk of COPD 
mortality due to PM1 exposure. Aging is among the most frequently 
investigated demographic features that could increase the vulnerability 
to the health effects of PM exposures (Katsouyanni et al., 2001). In a 
case-crossover study in China, the excess fractions of cardiovascular 
disease (CVD) mortality attributable to short-term PM1 exposure were 
higher in participants over 80 years old than in the younger ones (Xu 
et al., 2022). The vulnerability of the elderly may be partly due to their 
decreased immune function and the higher prevalence of chronic dis-
eases, and other underlying health conditions. The current evidence on 
the modification effect of physical activity on air pollution is limited and 
controversial (Qin et al., 2019). Our study agrees with prior research in 
suggesting that the benefit of physical activities, even in highly polluted 
areas (Nocon et al., 2008; Sun et al., 2020; Tainio et al., 2016). One 
potential explanation is that only a small proportion of the inhaled air 

pollutants can be attributed to air pollutants from physical activity, and 
the health benefits of high-intensity exercise exceed the harmful con-
sequences due to ambient air pollution (Qin et al., 2019). Further 
mechanistic studies clarifying the modification effects of physical ac-
tivity on the relationship between air pollution and human health are 
warranted. 

Our findings suggested a beneficial effect of a greater residential 
green space against the deleterious effect of PM exposure, corresponding 
to previous findings (Son et al., 2021). There are several major factors 
that can be suggested in order to explain these protective associations. 
Green plants can adsorb PM and gaseous pollutants from the air leading 
to a decrease in its concentration and inhalation (Markevych et al., 
2017; Trivedi et al., 2018). In addition, green space can reduce the harm 
of PM through enhancing the performance of the immune system, 
providing chances for physical exercise, promoting psychological 
restoration, and other factors (Li, 2010; McMorris et al., 2015; Pun et al., 
2018). This finding further demonstrates the importance of residential 
green space in mitigating the harmful consequences of ambient air 
pollution on human health, meaning that greening could prove to be a 
valuable approach to ease the burden of diseases linked to environ-
mental air pollution. 

Furthermore, the low-exposure group exhibited a higher risk of 
COPD mortality at the same PM concentration compared to the partic-
ipants of the entire cohort. Our findings were consistent with the results 
of a 652-city study which suggested a stronger association between PM 
exposure and daily all-cause, CVD and respiratory mortality in areas 
with lower PM2.5 concentrations (Liu et al., 2019). Another study con-
ducted in the United States showed that each 10 μg/m3 increase in PM2.5 
may increase the risk of death by 7.3 % for the entire population, 
whereas by 13.6 % for participants with low exposure (Di et al., 2017). 
The results may be partly due to that participants living in 
high-pollution areas may have developed certain defenses or adaptive 
mechanisms that make them less susceptible to PM exposure, compared 
to those living in low-pollution areas. Taken together, vulnerable pop-
ulations may have a higher risk of COPD mortality at the same PM 
concentration, which underlines the problem of environmental pollu-
tion inequity and highlights the importance of considering susceptibility 
and environmental justice when formulating environment-related 
policies. 

Our study has several strengths. First, the study has a large sample 
size, which yields significant statistical power to detect the effects of 
PM1 on COPD mortality and identify the potential susceptible groups. 
Second, the study takes into account the temporal variation of PM1 
exposure during follow-up and constructed the causal inference models 
to obtain accurate effect estimates of long-term PM exposure. Third, the 
prospective design and the participants with a wide range of de-
mographic backgrounds ensured the reliability and the generalizability 
of the results. Currently, the air pollution standards do not include PM1 
regulations, and this study has made an important contribution to 
establish long-term PM1 standards for the government, providing 
empirical support of the harmful effects of prolonged PM1 exposure on 
human health. 

This study also has some limitations. First, participant mobility 
during the follow-up period may be a possible cause of exposure 
misclassification since we did not have the updated addresses. However, 
the Death Registry System covers all the permanent residents in the 
entire area of Guangzhou. Although we could not rule out the possibility 
of some residents moving out and loss of following, the percentage 
should be quite small in this large cohort as the research was carried out 
in old urban areas with less migration. And this issue should be further 
minimized as the status of all the permanent resident, even outside the 
area, would be regularly checked by the community mangers respon-
sible for the resident resignation information and reported to the Death 
Registry database. Second, some individual factors such as occupational 
history, cooking habits and indoor pollution may also be potential 
confounding factors. However, these individual-level details were not 

Y. Wang et al.                                                                                                                                                                                                                                   



Ecotoxicology and Environmental Safety 263 (2023) 115299

6

collected. Future studies are warranted to fill this gap. Third, our study 
lacked information on personal income and occupation, which are in-
dicators of individual socioeconomic status, although some surrogate 
factors such as educational level and medical insurance status were 
included. However, common confounding factors such as education and 
occupational exposure are unlikely to reverse the effect estimates (Pope 
et al., 2002), and our conclusions were considered robust with regards to 
unmeasured confounding bias, based on the E values. Third, the effect 
estimates may be affected by missing values. However, the sensitivity 
analysis showed that the results from the complete-case analysis and 
multiple imputation analysis were similar. 

5. Conclusion 

This study provides new evidence that long term PM1 exposure is 
associated with an elevated risk of COPD mortality in China. In addition, 
the elderly, participants with low exercise frequency, lower residential 
greenness, or in low-exposure areas are more sensitive to the effect of 
PM1. The findings of our research may have implications for the 
development of environmental policies, and prompt the adoption of 
more rigorous measures to mitigate the hazards posed by fine particles. 
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