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A B S T R A C T   

Background: The association between long-term particulate matter (PM) exposure and all-cause mortality has 
been well-documented. However, evidence is still limited from high-exposed cohorts, especially for PM1 which is 
smaller while more toxic than other commonly investigated particles. We aimed to examine the potential casual 
links of long-term PMs exposure with all-cause mortality in high-exposed areas. 
Methods: A total of 580,757 participants in southern China were enrolled during 2009–2015 and followed up to 
2020. The annual average concentration of PM1, PM2.5, and PM10 at 1 km2 spatial resolution was assessed for 
each residential address through validated spatiotemporal models. We used marginal structural Cox models to 
estimate the PM-mortality associations which were further stratified by sociodemographic, lifestyle factors and 
general exposure levels. 
Results: 37,578 deaths were totally identified during averagely 8.0 years of follow-up. Increased exposure to all 3 
PM size fractions were significantly associated with increased risk of all-cause mortality, with hazard ratios (HRs) 
of 1.042 (95 % confidence interval (CI): 1.037–1.046), 1.031 (95 % CI: 1.028–1.033), and 1.029 (95 % CI: 
1.027–1.031) per 1 μg/m3 increase in PM1, PM2.5, and PM10 concentrations, respectively. We observed greater 
effect estimates among the elderly (age ≥ 65 years), unmarried participants, and those with low education 
attainment. Additionally, the effect of PM1, PM2.5, and PM10 tend to be higher in the low-exposure group than in 
the general population. 
Conclusions: We provided comprehensive evidence for the potential causal links between long-term PM expo-
sure and all-cause mortality, and suggested stronger links for PM1 compared to large particles and among certain 
vulnerable subgroups.   

1. Introduction 

Air pollution is well acknowledged to be a major public health threat 
(Schraufnagel et al., 2019), of which particulate matter (PM) impose the 
most serious health hazard, contributing to approximately 4.14 million 
deaths worldwide in 2019 (GBD 2019 Risk Factors Collaborators, 2020). 

In China, PM pollution is the fourth leading risk factor for mortality in 
2017, which is estimated to be responsible for 0.85 million deaths 
nationwide (GBD 2017 Risk Factor Collaborators, 2018; Yin et al., 2020; 
Zhou et al., 2019). 

Previous studies assessed the long-term effects of PM exposure on all- 
cause mortality. For example, a recent meta-analysis suggested each 10- 
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μg/m3 increase in PM2.5 (PM with aerodynamic diameters ≤ 2.5 µm) 
was associated with 8 % higher risk of mortality (Chen and Hoek, 2020). 
However, existing studies were mainly from western countries where 
the PM levels and composition, as well as the sociodemographic was 
substantially different from those in high-polluted areas such as China. 
The evidence on the long-term impact of PM exposure on mortality was 
still limited in China with only several cohort studies being identified, 
which either focused on selected populations (e.g. men (Zhou et al., 
2014), elderly (Li et al., 2018; Wong et al., 2015; Yang et al., 2018), 
tuberculosis patients (Peng et al., 2017)) or reported small number of 
outcome events (e.g. 256 (2.57 %) (Zhang et al., 2011) or 1,353 (3.46 %) 
(Chen et al., 2016)). Moreover, these limited studies generally focused 
on the impact of PM2.5 or PM10 (PM with aerodynamic diameters ≤ 10 
µm), leaving significant gaps in our understanding of the impact of 
smaller particles. PM1 (PM with aerodynamic diameters ≤ 1 µm) is a 
major component of PM2.5 but is considered to be more toxic due to the 
smaller size and higher surface area, allowing particles to easily pene-
trate deep into the lungs, metastasize to essentially all organs, and 
rapidly enter blood vessels and cells (Chen et al., 2018; Valavanidis 
et al., 2008). However, evidence on the long-term effect of PM1 exposure 
on mortality in China is even more limited. 

Last but not least, most existing evidence was based on traditional 
association analysis. Effect estimates from traditional approaches may 
be biased due to unmeasured confounding factors (Bind, 2019). The 
recently-developed causal inference methods were considered to be able 
to address this issue by simulating the randomized controlled trials and 
making exposures independent from other predictors of outcome, thus, 
providing causal clue based on the observational data (Wang et al., 
2016; Wu et al., 2020). For example, a study in the U.S. using a robust 
causal model with inverse probability weights (IPWs) showed that a 
decrease in PM2.5 by 10-μg/m3 led to a 6–7 % lower risk of mortality 
(Wu et al., 2020). Another study in the U.S. using IPWs reported that 
each 10-μg/m3 increase in PM2.5 concentrations could increase 11.7 % 
risk of mortality (Higbee et al., 2020). With causal inference methods, 
effect estimates are more reliable and are considered to represent the 
risk that could be specifically attributed to PM exposure. However, such 
evidence is still limited among existing studies. 

To address these knowledge gaps, our study aimed to quantify the 
causal links between long-term PM (PM1, PM2.5, and PM10) exposure 
and all-cause mortality using a causal inference approach, based on a 
large general population cohort of 0.6 million participants in South 
China. We also identified the potential modification effect of de-
mographic characteristics and lifestyle factors. 

2. Materials and methods 

2.1. Study design and population 

Our analysis was based on data collected by the Major Projects of 
Science Research for the 11th (2006–2010) and 12th (2012–2017) five- 
year plans of China, a prospective study of over 5 million participants 
(Ruan et al., 2019). Based on the accessibility of outcome data, we 
conducted the present study in the Guangzhou cohort which covered 35 
communities randomly selected based on sociodemographic character-
istics. Totally, 654,115 participants were recruited through a thorough 
survey of those selected communities between January 2009 and 
December 2015.The study was approved by the institutional review 
board (IRB) at Sun Yat-sen University and all participants gave written, 
informed consent before participation. Of the 654,115 participants at 
baseline, 72,330 under 18 years old and 12,326 lost in follow-up with 
unknown vital status were excluded, leaving 580,757 participants 
(305,081 women and 275,676 men) aged 61.21 ± 6.85 years (mean ±
standard deviation (SD)) in the present analysis. Information on the 
death obtained from the Death Registry of the Guangzhou Center for 
Disease Control and Prevention. The outcome of this study was the all- 
cause mortality as well as the time from the enrollment to the date of 

death or the end of follow-up (December 31, 2020). 
Beefily, baseline information was collected using face-to-face inter-

view by well-trained nurses. Information on demographic characteris-
tics and lifestyle factors was collected by a computer-based 
questionnaire, and physical examinations were done following a stan-
dard protocol. Demographic characteristics and lifestyle factors assessed 
in the present study included sex, age, ethnicity, marital status, educa-
tion, medical insurance, smoking, drinking, exercise frequency, and 
body mass index (BMI). 

2.2. Assessment of PM and relevant environmental exposures 

Annual concentrations of PM at 1 km2 spatial resolution were ob-
tained from the ChinaHighAirPollutants (CHAP) dataset. The concen-
trations were estimated by validated spatiotemporal models. These 
models showed a high predictive ability with R2 values of 77 %, 92 %, 
and 90 % and root mean square errors of 14.6 μg /m3, 10.76 μg /m3, and 
21.12 μg /m3 for the daily estimations of PM1, PM2.5, and PM10, 
respectively. The details of modeling processes have been reported in 
previous studies (Wei et al., 2019a, 2019b, 2020, 2021a, 2021b). Annual 
average concentrations of PM were assigned to each participant ac-
cording to the corresponding residential address, as the primary expo-
sure in this study. 

In addition, we considered greenness as a potential confounder 
(Twohig-Bennett and Jones, 2018). Normalized difference vegetation 
index (NDVI), an indicator of individual greenness exposure level, was 
downloaded for the period of 2009–2020 from LPDAAC (Land Pro-
cessing Distributed Active Archive Center) (Huete et al., 2002). The 
annual average exposure of NDVI within the radial buffer (500 m) sur-
rounding the residential address were assessed for each participant. 

2.3. Statistical analysis 

We used marginal structural models to assess the risk of mortality 
with each 1 μg/m3 increase in PM (PM1, PM2.5, and PM10) concentra-
tions. The method is based on IPWs followed by time-varying Cox pro-
portional hazards models to addressed the temporal variation in PMs 
exposure, as descried previously (Wu et al., 2020).The basic idea of IPW 
was to create a pseudo population by mimicking a randomized 
controlled trial, in which possible confounding effects were effectively 
balanced (Cole and Hernan, 2008). In this framework, the generalized 
propensity scores (GPS) were first computed by regressing the exposure 
against the potential confounders, followed by the development of the 
stabilized IPW of the exposure based on the inverse of GPS to weigh the 
observations (Robins et al., 2000). In addition, we considered three 
weighting methods based on a linear model (LM), a generalized esti-
mating equation (GEE) or a gradient boosting machine learning (ML), 
respectively (Chen and Guestrin, 2016). Although the percent of IPW 
exceeding 10 was < 0.01 %, to improve covariate balance, we trimmed 
those large weights to 10 as commonly used in previous studies (Austin, 
2011; Wu et al., 2020). We checked the covariate balance on the 
weighted pseudo-population through average absolute correlation (AC), 
with values < 0.1 indicating a good balance of confounders. 

Considering the time-dependent exposure variables, including 
annual PM concentrations and NDVI, we specifically fitted marginal 
structural Cox models with time-varying covariates. Potential con-
founders were identified by a directed acyclic graph (Fig. S1) (Tennant 
et al., 2021). We used the model with GEE weighting method as the final 
model according to the optimal balance of confounders achieved with 
this method (Fig. S2). 

The study utilized a sequential modeling strategy. Model 0 was the 
crude model without any adjustment. Model 1 adjusted for age at 
baseline under the Cox proportional hazard model, and model 2 addi-
tionally adjusted for sex, ethnicity, education, marital status, medical 
insurance, smoking, exercise frequency and NDVI (500 m). Model 3: 
model 2 refitted with the causal inference approach. Model 3 was the 
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primary model for the current study. 
Furthermore, we conducted stratification analysis among predefined 

subgroups, including demographic variables and lifestyle factors. The 
interactions were assessed by including the product term of PM and 
stratification factors in the main model. The P-values of the product 
terms were used to identify the potential interactions. Furthermore, 
previous studies also suggested that, within the same area, the group 
generally exposed to a lower exposure tended to have a greater 
vulnerability, probably due to less acclimation (Danesh et al., 2021; Di 
et al., 2017; Wu et al., 2020). To assess the potential influence of the 
long-term low-concentration exposure on human vulnerability in the 
study areas, we further restricted the analysis to participants with 
annual PM (PM1, PM2.5 and PM10) concentrations generally below the 
third quartile of the entire cohort throughout the study period. We 
imputed missing data for confounding variables using the multiple im-
putations by chained equations (MICE), which was an established 
method for missing imputation and widely used in literature (van 
Buuren, 2007; White et al., 2011). In this study, the method was 
implemented via the mice package in R (van Buuren and Groothuis- 
Oudshoorn, 2011). 

The sensitivity analysis was conducted to verify the robustness of our 
estimates. 1)To evaluate the influence of missing data imputation, the 
analysis was also done using the complete dataset before imputation. 2) 
We compared the main results estimated using three different marginal 
structural Cox models. 3) We developed additional marginal structural 
Cox models with NDVI averaged across buffers of different sizes (i.e., 
250 m and 1000 m). 4) We further calculated the E-value to evaluate the 
robustness of our results against potential unmeasured confounding, 
with a larger E-value representing that our findings were less likely to be 
overridden by unmeasured confounding (VanderWeele and Ding, 2017). 
All statistical analyses were conducted using R software (version 4.1.3). 

3. Results 

3.1. Participant characteristics 

During an average of 8.0 years (with 4,753,965 person-years) of 
follow-up, 37,578 deaths occurred. Table 1 shows that participants who 
died tended to be older (72.39 years vs 46.66 years), and more likely to 
be men (54.51 % vs 46.98 %), Han people (99.31 % vs 98.03 %), wid-
owed (13.65 % vs 2.23 %), current smokers (13.99 % vs 11.67 %), ever 
alcohol users (12.24 % vs 11.22 %) than the control group (all P <
0.001). They also had lower education (29.35 % vs 10.35 %), higher 
frequency of exercise (23.37 % vs 19.85 %), higher BMI (22.26 kg/m2 vs 
22.05 kg/m2), and lower exposed to NDVI (500 m) (0.210 vs 0.214) (all 
P < 0.001). Annul average concentrations of PM1, PM2.5 and PM10 
declined from 2009 to 2020 (Table 2). The various sizes of PMs were 
strongly correlated with each other, with the correlation coefficient all 
greater than 0.9. In addition, the descriptive statistics for the complete 
dataset were shown in Table S1. 

3.2. All-cause mortality and PM exposure 

Fig. 1 shows that, after fully adjusting for confounders, for each 1 μg/ 
m3 increase in PM1, PM2.5, and PM10 concentrations, the HRs of all- 
cause mortality were 1.042 (95 % CI: 1.037–1.046), 1.031 (95 % CI: 
1.028–1.033), and 1.029 (95 % CI: 1.027–1.031) in the casual inference 
model (i.e., model 3), respectively. Based on the traditional model (i.e., 
model 2), the effect estimates were slightly higher, with 1.059 (95 % CI: 
1.055–1.064), and 1.030 (95 % CI: 1.028–1.032) per 1-ug/m3 increase 
in PM1 and PM10 concentrations, respectively. 

3.3. Subgroup analyses 

Results of the modification analysis showed that participants over 65 
years old tended to be more vulnerable to the impact of PM1 on 

mortality (HR: 1.071, 95 % CI: 1.066–1.076), compared to the younger 
ones (HR: 1.044, 95 % CI: 1.035–1.052) (Table 3). Similar trends were 
observed for PM2.5 and PM10, although the modification effects were not 
statistically significant. The association was greater among participants 

Table 1 
Characteristics for the study participants from 2009 to 2015*.  

Characteristic Overall All-cause 
deaths 

Control 
group 

P-value 

Number of participants 580,757 37,578 543,179  
Demographics     
Age, mean ± SD, years 48.33 ±

17.55 
72.39 ±
13.27 

46.66 ±
16.56  

<0.001 

Sex, (men %) 275,676 
(47.47) 

20,484 
(54.51) 

255,192 
(46.98)  

<0.001 

Ethnic, (minority %) 10,953 
(1.89) 

258 (0.69) 10,695 
(1.97)  

<0.001 

Education (%)     <0.001 
Illiterate or semiliterate 6603 (1.14) 1870 

(4.98) 
4733 (0.87)  

Primary school 67,247 
(11.58) 

11,030 
(29.35) 

56,217 
(10.35)  

Second school 131,394 
(22.62) 

9639 
(25.65) 

121,755 
(22.42)  

High school 266,467 
(45.88) 

12,904 
(34.34) 

253,563 
(46.68)  

College or above 109,046 
(18.78) 

2135 
(5.68) 

106,911 
(19.68)  

Marital status (%)     <0.001 
Never married 108,424 

(18.67) 
3570 
(6.84) 

105,854 
(19.49)  

Married 448,138 
(77.16) 

29,310 
(78.00) 

418,828 
(77.11)  

Widowed 17,262 
(2.97) 

5128 
(13.65) 

12,134 
(2.23)  

Divorce 6933 (1.20) 570 (1.52) 6363 (1.17)  
Medical insurance (%)     <0.001 
Medical insurance for 

urban workers 
354,396 
(61.02) 

23,370 
(62.19) 

331,026 
(60.94)  

Medical insurance for 
urban residents 

164,213 
(28.28) 

11,888 
(31.64) 

152,325 
(28.04)  

The new rural 
cooperative 
medical insurance 

6439 (1.11) 100 (0.27) 6399 (1.17)  

Others 55,709 
(9.59) 

2220 
(5.90) 

53,489 
(9.85)  

Lifestyle behaviors     
Smoking status (%)     <0.001 
Never 505,385 

(87.02) 
31,039 
(82.60) 

474,346 
(87.33)  

Ever 6716 (1.16) 1282 
(3.41) 

5434 (1.00)  

Current 68,656 
(11.82) 

5257 
(13.99) 

63,399 
(11.67)  

Alcohol consumption (%)     <0.001 
Never 515,205 

(88.71) 
32979 
(87.76) 

482,226 
(88.78)  

Ever 65,552 
(11.29) 

4599 
(12.24) 

60,953 
(11.22)  

Exercise frequency (%)     <0.001 
Very low 322,225 

(55.48) 
20,011 
(53.25) 

302,214 
(55.64)  

Low 73,103 
(12.59) 

4926 
(13.11) 

68,177 
(12.55)  

Moderate 68,835 
(11.85) 

3859 
(10.27) 

64,976 
(11.96)  

High 116,594 
(20.08) 

8782 
(23.37) 

107,812 
(19.85)  

BMI, mean ± SD, kg/m2 22.07 ±
2.45 

22.26 ±
2.66 

22.05 ±
2.44  

<0.001 

NDVI (500), mean ± SD 0.214 ±
0.04 

0.210 ±
0.04 

0.214 ±
0.04  

<0.001 

* Data are presented as number (percentage) of study participants unless 
otherwise indicated. 
Abbreviations: SD, stand deviation; BMI, body mass index; NDVI, normalized 
difference vegetation index; 
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with primary or lower education level [PM1 (HR: 1.045, 95 % CI: 
1.038–1.053); PM2.5 (HR: 1.038, 95 % CI: 1.034–1.042); PM10 (HR: 
1.037, 95 % CI: 1.034–1.041), respectively] than those with second and 
high education level [PM1 (HR:1.010, 95 % CI: 1.005–1.055); PM2.5 
(HR:1.022, 95 % CI: 1.019–1.025); PM10 (HR:1.018, 95 % CI: 
1.016–1.021), respectively]. Similar disparity was observed among 
participants with college or above education level, although the modi-
fications were not statistically significant. 

In addition, we found that the risk of mortality with PM1 was greater 
among participants who never married (HR: 1.054, 95 % CI: 
1.036–1.073) compared to the married (HR: 1.044, 95 % CI: 
1.039–1.049) and widowed and divorce (HR: 1.053, 95 % CI: 

1.042–1.064) groups. Similar trends were observed in the associations of 
PM2.5 and PM10 exposure with mortality. There were also significant 
modification effects observed for the smoking status, with higher effect 
estimates for never smokers than ever or current smokers. We also 
observed significant differences in PM–mortality associations among 
participants with different exercise frequency. The effect of PM on 
mortality tended to be lower in participants with low exercise frequency 
than those with moderate or high exercise frequency. 

We further examined mortality following PM exposure among in-
dividuals who always exposed to low pollutant concentration 
throughout the follow-up period (Fig.S3). The effect estimates for the 
low-exposure group generally were larger than their counterparts based 
on the entire cohort. 

3.4. Sensitivity analyses 

Table S3 shows that the estimated HRs of morality for PM exposures 
were similar when the analytical sample was restricted to the complete 
dataset. The results were also consistent across three different marginal 
structural Cox models using IPWs with a LM, ML and GEE, respectively 
(Table S3). The effect of PM also remained unchanged across different 
definitions of NDVI exposures (i.e., using 250 m and or 1 km buffers) 
(Table S4). The E value suggested that our estimates would be robust if 
no unmeasured confounders have a relative risk association greater than 
1.2 with both the exposure and outcome (Table S5). 

4. Discussion 

In this large cohort study of 580,757 participants in South China, we 
found that long-term PM exposure were associated with an increased 
risk of all-cause mortality, implicating PM exposure as an important 

Table 2 
Estimated exposure concentrations of PM1, PM2.5, and PM10 (μg/m3) from 2009 
to 2020.   

PM1  PM2.5  PM10  

Mean ± SD  Mean ± SD  Mean ± SD 
2009 25.33 ± 1.11  50.09 ± 0.27  77.75 ± 0.68 
2010 24.26 ± 1.16  47.26 ± 0.31  74.02 ± 0.75 
2011 24.73 ± 1.29  49.55 ± 0.24  77.05 ± 0.66 
2012 24.27 ± 1.18  47.75 ± 0.29  73.17 ± 0.66 
2013 26.97 ± 1.25  53.36 ± 1.04  78.27 ± 1.36 
2014 24.93 ± 1.42  49.48 ± 1.18  71.11 ± 1.11 
2015 20.31 ± 1.21  40.45 ± 0.78  63.34 ± 1.39 
2016 18.65 ± 1.11  36.24 ± 0.46  58.43 ± 1.60 
2017 18.43 ± 1.39  36.17 ± 1.07  60.44 ± 2.65 
2018 16.84 ± 1.07  35.26 ± 0.71  56.66 ± 1.96 
2019 15.89 ± 1.18  30.97 ± 0.65  54.49 ± 1.11 
2020 12.41 ± 1.03  23.97 ± 0.76  43.30 ± 0.92 

Abbreviations: PM1, particulate matter with an aerodynamic diameter ≤ 1 μm; 
PM2.5, particulate matter with an aerodynamic diameter ≤ 2.5 μm; PM10, par-
ticulate matter with an aerodynamic diameter ≤ 10 µm; SD, stand deviation. 

Fig. 1. Hazard ratios and 95 % confidence interval of mortality associated with 1 µg/m3 increase in particulate matter concentrations, under two different statistical 
approaches (traditional approach and causal inference approach). Note: 1) Model 0 was a crude model under conventional Cox proportional hazards model. 2) Model 
1: model 0 adjusted for age. 3) Model 2: additionally adjusted for sex, ethnicity, education, marital status, medical insurance, smoking status, exercise frequency and 
normalized difference vegetation index (500 m) based on model 1. 4) Model 3: refitted with the marginal structural Cox proportional hazards model based on the 
same co-variates in the model 2. Abbreviations: HR, hazard ratio; CI, confidence interval; PM1, particulate matter with an aerodynamic diameter ≤ 1 μm; PM2.5, 
particulate matter with an aerodynamic diameter ≤ 2.5 μm; PM10, particulate matter with an aerodynamic diameter ≤ 10 μm; 
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environmental hazard which may be targeted to effectively reduce the 
mortality burden. Furthermore, our results showed that the elderly and 
those with low education attainment were more vulnerable to PM- 
mortality risk. Moreover, we observed higher risks related to PM in 
participants exposed to long-term low PM concentrations compared 
with the entire cohort. Our study provides most robust and interpretable 
evidence to date on the causal links between long term PM exposure and 
mortality in China with multiple sensitivity analyses. 

Our study provided evidence for the potential causal links between 
long-term PM (PM1, PM2.5, and PM10) exposure and mortality. The re-
sults showed positive association of PM2.5 and PM10 on mortality, 
consistent with previous findings (Chen and Hoek, 2020). Nevertheless, 
limited studies focused on the effect of PM1. Although limited evidence 
on the association between long-term PM1 exposure and all-cause 
mortality was available for comparison, our estimates were within the 
range of those reported for other outcomes in previous cross-sectional 
studies. For example, a study in rural Chinese population found that 
the odds ratio for hypertension was 1.043 (95 % CI: 1.033, 1.053) per 
each 1 μg/m3 increase in long-term PM1 exposure (Li et al., 2019). 
Another cross-sectional study in China showed that the risk of suicidal 
ideation was also associated with the long-term PM1 exposure, with an 
excess risk of 8 % (95 % CI: 1 %-15 %) per 1 μg/m3 increase in PM1 (Luo 
et al., 2020). Our study is among the first to add potential casual evi-
dence to the current knowledge on the PM1-mortality association in 
highly polluted cities, which should be fully considered in policy making 
to protect public health from air pollution. 

Our estimates of the mortality risk following PM2.5 and PM10 expo-
sure tended to be greater than those reported in previous studies. The 
disparity in the results could be partly due to the different characteristics 
of the air pollutants. Our study area is located in the center of the Pearl 
River Delta region, where a large number of manufacturing and chem-
ical industries and heavy traffics were producing pollutants with higher 
toxicity. For example, a nationwide study in China showed that the 
mortality risk associated with PM exposures in Guangzhou approxi-
mately 2–3 times greater than the estimates in other cities, suggesting a 

greater toxicity of the particles in this area (Chen et al., 2012). In 
addition, Guangzhou has a suitable climate throughout the year and 
people generally have more outdoor activities, and subsequently, more 
exposure to ambient air pollution. 

The potential biological mechanisms underlying the adverse impact 
of PM generally include increased inflammation and oxidative stress and 
disruption of the coagulation cascade (Anderson et al., 2012). More 
importantly, we found a greater impact of PM1 in comparison with those 
large particles, which was also consistent with the existing evidence 
(Chen et al., 2017a,b). PM1 particles are mainly from automobile 
exhaust and direct emissions during the combustion process (Meng 
et al., 2013; Jaiprakash et al., 2017). PM1 was considered to be even 
more toxic than large particles due to its smaller diameter, which allows 
them to quickly enter the circulation system, and its larger active surface 
area, which enable them to adsorb more toxic substances (e.g., heavy 
metals) and produce stronger biological effects (Izhar et al., 2016). 
Previous studies also suggested that the smaller size of the inhaled 
particles was associated with more gene alterations, resulting in a higher 
risk of airway inflammation (Frydas et al., 2020). These findings may 
have implications for policy makers to evaluate the long-term adverse 
impact of air pollution, develop intervention policies, and can be the 
basis for future studies evaluating the cost-efficiency of PM-reducing 
policies. 

Moreover, our findings showed that the elderly and participants with 
low education attainment may suffer from greater effects of PM than 
their counterparts. The increased susceptibility among the elderly may 
be due to the fact that these people usually are suffering from preexisting 
diseases and longer exposure to air pollution compared to younger 
people (Gouveia and Fletcher, 2000). The greater risk of mortality 
among participants with low education attainment was also observed 
previously, a time series study in China showed a higher risk of mortality 
attributable to PM10 exposure among the less-educated participants 
(Chen et al., 2012). The higher vulnerability among the participants 
with low education attainment may be resulted from the disparity in 
factors related to their social disadvantages, such as environmental 

Table 3 
Hazard ratios and 95 % confidence interval of mortality associated with 1 µg/m3 increase in particulate matter concentrations, stratified by demographic and lifestyle 
factors.   

PM1  PM2.5  PM10  

Effect modifiers HR (95 % CI) P value HR (95 % CI) P value HR (95 % CI) P value 
Age       
<65 years 1.044 (1.035–1.052) Ref. 1.033 (1.028–1.038) Ref. 1.031 (1.027–1.035) Ref. 
≥65 years 1.071 (1.066–1.076) <0.001 1.039 (1.036–1.041) 0.14 1.038 (1.036–1.040) 0.10 
Sex       
Men 1.030 (1.024–1.035) Ref. 1.025 (1.022–1.028) Ref. 1.024 (1.022–1.027) Ref. 
Women 1.054 (1.048–1.061) 0.10 1.038 (1.034–1.041) 0.62 1.035 (1.032–1.038) 0.34 
Education       
Primary school and below 1.045 (1.038–1.053) Ref. 1.038 (1.034–1.042) Ref. 1.037 (1.034–1.041) Ref. 
Second and high school 1.010 (1.005–1.015) 0.002 1.022 (1.019–1.025) <0.001 1.018 (1.016–1.021) <0.001 
College degree or above 1.032 (1.015–1.050) 0.62 1.025 (1.015–1.034) 0.60 1.020 (1.012–1.028) 0.75 
Marital status       
Never married 1.054 (1.036–1.073) Ref. 1.039 (1.029–1.050) Ref. 1.036 (1.027–1.046) Ref. 
Married 1.044 (1.039–1.049) 0.008 1.031 (1.028–1.033) 0.02 1.029 (1.027–1.031) 0.02 
Widowed/ 

Divorce 
1.053 (1.042–1.064) <0.001 1.033 (1.028–1.039) <0.001 1.033 (1.028–1.038) <0.001 

Smoking status       
Never 1.046 (1.041–1.050) Ref. 1.035 (1.033–1.038) Ref. 1.033 (1.030–1.035) Ref. 
Ever 1.038 (1.015–1.061) 0.11 1.015 (1.004–1.026) 0.02 1.017 (1.007–1.027) 0.03 
Current 1.011(1.000–1.023) <0.001 1.007 (1.002–1.013) <0.001 1.010 (1.006–1.015) <0.001 
Exercise frequency      
Very low 1.039 (1.030–1.047) Ref. 1.021 (1.017–1.026) Ref. 1.023 (1.020–1.027) Ref. 
Moderate* 1.040 (1.031–1.049) <0.001 1.036 (1.031–1.040) <0.001 1.033 (1.028–1.037) <0.001 
High 1.047 (1.041–1.053) <0.001 1.037 (1.034–1.041) <0.001 1.034 (1.031–1.037) <0.001 

Note: The effects were estimated under causal inference model with adjustment for age, sex, ethnicity, education, marital status, medical insurance, smoking status, 
exercise frequency and normalized difference vegetation index (500 m). All stratified estimates were adjusted for the remaining covariates. 
* The group of low exercise frequency was combined into the group of moderate exercise frequency due to sample size limit in the stratified analysis. 
Abbreviations: HR, hazard ratio; CI, confidence interval; PM1, particulate matter with an aerodynamic diameter ≤ 1 µm; PM2.5, particulate matter with an aerodynamic 
diameter ≤ 2.5 µm; PM10, particulate matter with an aerodynamic diameter ≤ 10 µm. 
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health inequalities, less affordable health care resources, etc. (Yusuf 
et al., 2017). Taken together, evidence from previous studies as well as 
ours suggested that the elderly and less-educated participants, should 
take more protective measures against ambient PM. 

Furthermore, participants who were unmarried, never smoking, or 
those with moderate or high exercise frequency had a greater risk of 
mortality from PM exposure than their counterparts. Previous studies 
reported the complex role of marital status on the health effects of PM. A 
case-crossover study in Korean showed a larger association between 
nitrogen dioxide and suicide mortality among the married participants, 
whereas a higher association between ozone and suicide mortality 
among unmarried participants (Lee et al., 2018). Previous studies on the 
modification effects of smoking and physical activity on the PM-health 
association did not come to consistent conclusions. Consistent with 
our study, a cohort study of American Cancer Society showed that never 
smokers had a higher risk of mortality from lung cancer from PM2.5 
exposure than ever or current smokers (Pope et al., 2002). There is some 
evidence that long-term air pollution exposure may reduce health ben-
efits from physical activity, which supports our results (Tainio et al., 
2021). Further studies are needed to illustrate the underlying 
mechanisms. 

The current study highlighted that the effects of PM exposure on 
mortality were more pronounced among the low-exposure group than 
the entire cohort. Consistent with our findings, a cohort study from the 
Southeast USA reported a higher risk of hospital admissions with res-
piratory disease among the Medicare recipients with lower PM2.5 
exposure levels (PM2.5 ≤ 12 μg/m3) than the entire group (Danesh et al., 
2019). Another cohort study among the elderly in the U.S. showed that 
the risk of death associated with an increase of 10-μg/m3 in PM2.5 was 
1.37 (95 %CI: 1.34–1.40) among the low-exposure group (PM2.5 ≤ 12 
μg/m3), which was larger than the entire population (1.23, 95 %CI: 
1.18–1.28) (Wu et al., 2020). The higher vulnerability among the low- 
exposure group may be due to decreased adaptation. The findings 
showed that the health-benefit-per-unit decrease in the concentration of 
PM is larger for participants with low PM10 exposure levels than those 
with high PM exposure. 

This study furthers the use of causal inference models in examining 
associations between long-term PM exposure and mortality in highly 
polluted areas. Our results showed that the HRs estimated by the casual 
inference models were smaller than those from the traditional Cox 
models, though the difference was not statistically significant, which is 
in line with some previous studies (Higbee et al., 2020; Wu et al., 2020). 
For example, a cohort study using data from the National Health 
Interview Survey, found that the estimated HR from the IPW model was 
lower than that from the Cox model by approximately 5 % for all-cause 
mortality (Higbee et al., 2020). A unique advantage of causal inference 
models is that they provide a “marginal effect” of moving the entire 
population from high exposed conditions to low exposed conditions, i.e., 
the average effect at the population level. In contrast, traditional Cox 
models usually estimate a “conditional effect”, i.e., the effect on the 
outcome following a certain change in exposure with the values of all the 
other covariates kept constant (Dominici and Zigler, 2017; Janes et al., 
2010). Since individuals generally have different confounders, the 
conditional effect is more likely to represent the average effect at the 
individual level. In comparison, “marginal effect” is of a greater interest 
in population studies (Mansournia and Greenland, 2015). In this study, 
the use of the casual inference models provides a reasonable estimate for 
the effects of PM on mortality. 

Our results contribute to the potential causal evidence between the 
long-term ambient PM exposure and all-cause mortality. This is the first 
study that investigated the long-term adverse effect of PM1 exposure on 
mortality in high polluted cities. The study took the advantages of a 
large sample size providing sufficient statistical power to detect the 
casual effects of PM exposure on mortality (partly reflected in the nar-
row CI) and ensuring the generalizability of our results. Furthermore, 
the previous studies may suffer from bias inherent with traditional 

association assessments, this study minimized these issues by using a 
casual inference approach that simulates the randomized controlled 
trial, making exposure independent of other predictors of health out-
comes and yielding more reliable effect estimates. 

Some limitations should also be noted. First, the causal inference 
models were relied on the assumption of no unmeasured confounders 
which is actually hard to be ruled out. Some potential confounders such 
as socioeconomic measures, and neighborhood measures other than 
NDVI were not included due to data limit. However, we have included a 
set of important confounders as suggested by previous studies (Chen 
et al., 2017a,b; Katanoda et al., 2011), which may minimize this issue. 
For example, the education level and the type of medical insurance in 
our model may be the proxy of the personal socioeconomic status such 
as income and access to health care. Our study followed a standard 
framework of causal inference based on the observational data, and the 
E-value (i.e., E = 1.2) was within the range (e.g., 1.02 to 1.30) of those 
reported in previous studies (Danesh et al., 2021; Wu et al., 2020; Zheng 
et al., 2021). Second, since PM exposure was modeled, exposure 
misclassification may occur when assigning the annual averaged PM to 
individuals due to unavailability of accurate personal exposure mea-
surements. However, the simulation model showed satisfactory perfor-
mance, thus, our main conclusions were unlikely to be changed. Third, 
the missing data might affect the estimated effect. However, we con-
ducted several sensitivity analyses and found that the HRs were similar 
between the complete and the entire dataset. 

5. Conclusion 

In conclusion, our study provided comprehensive evidence for the 
potential causal links between long-term PM exposure and all-cause 
mortality, and suggested stronger links for PM1 compared to large par-
ticles and among certain vulnerable subgroups. 
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