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A B S T R A C T   

Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep 
quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a 
large sample in China, this study linked individual air pollutant exposure levels and temporal variability with 
subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date 
were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and tra
jectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep 
quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 
indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution 
exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean con
centration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM2.5) and ≤10 μm (PM10) led to 0.4% 
(95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of 
overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM2.5 and 
PM10 were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean 
concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they 
contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure 
with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). 
Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. 
Thus, sleep health improvements should account for air pollution exposure and its variations in China under 
relatively high air pollution levels.   

1. Introduction 

Poor sleep quality is a growing public health issue, and air pollution 
exposure may be one of the potential triggers for poor sleep quality 
(Stranges et al., 2012; Ohayon, 2002). Thus far, poor sleep quality has 
affected more than 40% of the Chinese population (Liu et al., 2016), and 
has been well recognized as a contributor to a series of adverse health 
outcomes, including cognitive dysfunction, behavioral and emotional 

dysregulation, cancer, diabetes, and cardiovascular disease (Liu et al., 
2020; Crowley, 2011). Therefore, a comprehensive understanding of 
relevant influencing factors is required to improve sleep quality. 
Ambient air pollutant exposure is considered to affect sleep quality via 
disparate mechanisms, including, but not limited to, central ventilator 
control centers and the central nervous system (Cao et al., 2021). 

Growing epidemiological evidence has shown a positive association 
between air pollutant exposure and various sleep problems in 
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populations across different age groups and countries; however, the 
results remain inconclusive (Liu et al., 2020; Liu et al., 2021a; Cao et al., 
2021; Li et al., 2020a; Wang et al., 2020a; Wang et al., 2020b; Tang 
et al., 2020; Yu et al., 2021b). The effects of exposure to particulate 
matter (PM) have been the focus of most epidemiological studies (Wang 
et al., 2020a; Yu et al., 2021b; Tang et al., 2020). Other air pollutants 
include nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and 
carbon monoxide (CO). Sleep assessments include both objective (e.g., 
actigraphy and polysomnography) and subjective (e.g., self-reported) 
measures. Previous studies have objectively analyzed sleep duration 
and efficiency; however, varying results have been obtained. For 
example, Li et al. (2020a, 2020b) assessed sleep duration and efficiency 
using wrist actigraphy. O3 was found to be associated with a longer sleep 
duration but not with an improved sleep efficiency, while PM2.5, SO2, 
NO2, and CO were not associated with sleep duration or efficiency. 
Nevertheless, in the Multi-Ethnic Study of Atherosclerosis study, the 
average baseline single-day PM2.5 level was not associated with sleep 
efficiency averaged over the subsequent seven days of actigraphy 
recording (Billings et al., 2019). The study population was drawn from 
patients suspected to have sleep disorders, which may have led to an 
inadequate representation and divergence in results. 

Self-reported questionnaires allow for a large sample, and a series of 
sleep quality indicators (e.g., sleep duration, sleep latency, daytime 
dysfunction, daytime sleepiness, and overall sleep quality) have been 
subjectively assessed (Cheng et al., 2019; Cassol et al., 2012; Weinreich 
et al., 2015; Laratta et al., 2020; Billings et al., 2019). However, the 
relationship between air pollution exposure and subjective sleep quality 
remains uncertain. For example, opposing associations were observed 
between sleep duration and PM exposure, with a study demonstrating 
shorter sleep durations with higher PM exposure among UK middle-aged 
adults (Li et al., 2020a); meanwhile, another study based on a large 
sample of young Chinese adults displayed longer sleep durations with 
increased PM exposure (An and Yu, 2018). This divergence may be 
partly due to the temporal variability in air pollution exposure across 
populations during the study period. Substantial temporal variability in 
air pollution exposure has been well documented, but its implications 
for sleep quality have been neglected (Zhou et al., 2022; Liu et al., 
2021b). The potential risks of variability in air pollution exposure to 
sleep quality have to date only been suggested by a recent epidemio
logical study (Xue et al., 2019) that linked air pollution variability with 
mental health. Moreover, current studies have used correlation analyses 
and are subject to the possibility of endogeneity issues (e.g., unmeasured 
confounding and measurement error) or sampling biases, which may 
partly explain the variations in the effects of ambient air pollution 
exposure across studies (Cheng et al., 2019). Liu et al. (2021a) sum
marized the associations between exposure to air pollutants and various 
subjective measures of sleep for children and adults from 14 studies; 
their review showed that 9 studies had sample bias issues or did not 
account for confounders, and samples in 8 studies were 
non-representative. Heyes and Zhu (2019) attempted to apply the 
instrumental variable model to solve this issue using city-level exposure 
and outcome measures. However, it is not always easy to find an 
appropriate instrumental variable. 

To address these gaps, based on a large and representative sample in 
Shandong Province, China, this study calculated the monthly mean 
concentrations and standard deviations (SD) of daily pollutant exposure, 
the number of heavily polluted days, and pollutant trajectories to 
measure ambient air pollution exposure and its variations; subsequently, 
these indicators were linked to multiple dimensions of subjective sleep 
quality. Following a multilevel regression model, a negative control 
model was used to control for unobserved confounders that satisfied 
certain conditions (Yu et al., 2021a). The air pollution level in Shandong 
Province is relatively high compared with that in developed countries. 
Our research helps enhance the understanding of the relationship be
tween air pollutants and sleep health. 

2. Methods 

2.1. Enhanced semi-individual design 

This study proposed an enhanced semi-individual design to estimate 
the effects of air pollution exposure. A series of sleep indicators were 
collected from a large sample of healthy residents in Shandong Province. 
In contrast with typical semi-individual studies, the interviews for par
ticipants living in the same township were conducted at different dates. 
We then linked the temporal characteristics of individual exposure with 
township-level air pollution to include personal modifiers of exposure 
and reduce nondifferential exposure misclassification. 

2.2. Shandong Province Mental Disorders Epidemiological Survey 

This study used cross-sectional survey data from the Shandong 
Province Mental Disorders Epidemiological Survey (SMDES) 2015. 
SMDES 2015 employs a representative sample of people 18 years and 
older in Shandong Province using stratified cluster sampling, and the 
final samples include 102 townships of 17 cities across Shandong 
Province. One neighborhood was randomly selected from each 
township-level unit, and 300 households within each neighborhood 
were randomly chosen. One resident aged 18 years or older from each 
selected household was randomly interviewed face-to-face by household 
investigators in 2015 (Zhang et al., 2021). Written informed consent was 
obtained from all participants, and the Shandong Mental Health Insti
tute review board approved the survey. Overall, 28,534 individuals 
were identified at these sites, with a response rate of 98.8%. The SMDES 
2015 was implemented from September to December 2015. A more 
detailed description of the study design and sampling procedure can be 
found in the study of Zhang et al. (2021). After excluding 639 partici
pants who did not complete the Pittsburgh Sleep Quality Index (PSQI) 
survey and 2294 participants who had missing values, 25,601 partici
pants were obtained for analysis. 

2.3. Pittsburgh Sleep Quality Index 

The overall subjective sleep quality of the participants 30 days prior 
to the survey date was measured using the PSQI. The PSQI is a stan
dardized self-rated questionnaire developed to measure overall sleep 
quality and alert physicians to the need for further assessments of in
dividuals showing symptoms of sleep problems (Buysse et al., 1989). 
The 24-item questionnaire generates seven component scores—sleep 
quality, sleep latency, sleep duration, habitual sleep efficiency, sleep 
disturbances, use of sleep medications, and daytime dysfunction—with 
subscale scores ranging from 0 to 3. The total score (ranging from 0 to 
21) was obtained by calculating the sum of the seven factors, with a 
higher score indicating worse sleep quality. The details are presented in 
Table S1. The Chinese version of the PSQI is also widely used in a large 
number of Chinese studies, with good reliability and reproducibility 
(Tang et al., 2017; Wang et al., 2021a; Xie et al., 2020; Zhang et al., 
2019a). In the present study, Cronbach’s alpha, employed to assess in
ternal consistency, was 0.77. A total PSQI score above 5 is clinically 
considered to indicate overall poor sleep quality (Buysse et al., 1989; 
Wang et al., 2021a). Additionally, the PSQI score was used as a 
continuous variable to measure the symptoms of poor sleep quality. 
Following Yu et al. (2019) and Wei et al. (2017), we separated the PSQI 
into seven dimensions of sleep quality. 

2.4. Ambient air pollution data source and measurement 

Exposure to ambient air pollution was measured using the mean 
concentration of six common pollutants for 30 days prior to the survey 
date in the selected townships where the participants lived. 

L. Wang et al.                                                                                                                                                                                                                                   
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Step 1: Extraction of daily air pollution data. Ambient air pollution 
data for China were collected from a high-resolution and high- 
quality dataset of ground-level air pollutants (CHAP, available at 
https://weijing-rs.github.io/product.html), including six kinds of 
species—particulate matter with aerodynamic diameters ≤2.5 μm 
(PM2.5), particulate matter with aerodynamic diameters ≤10 μm 
(PM10), CO, NO2, SO2, and O3. Each air pollutant was estimated at a 
uniform grid of 0.1◦ × 0.1◦ (≈10 × 10 km2) from big data, including 
ground-based measurements, satellite remote sensing products, at
mospheric reanalysis, and model simulations, using the developed 
space-time extra-trees model. The pollutant estimations are reliable 
since they exhibit high R2 values of 0.80–0.91, with reference to 
surface observations obtained by adopting the independent ten-fold 
cross-validation approach (Wei et al., 2021a, 2021b; Wei et al., 
2022a, 2022b). The pollution values were determined by collocating 
the nearest grid for each participant’s physical address based on its 
unique longitudinal and latitudinal information. We extracted daily 
air pollution data for 30 days starting from the survey date and 
moved backward in time for each sampled township using the above 
dataset and map of Shandong Province. 
Step 2: Calculation of one-month air pollution exposure and its 
temporal variations. The average exposure to air pollution, including 
PM10, PM2.5, NO2, SO2, CO, and O3, in one-month was calculated 
based on the daily values. Variation in air pollution was assessed 
using the SD of the daily concentrations and number of heavy 
pollution days for 30 days prior to the survey date. Following Wang 
et al. (2021b), heavy pollution days with common pollutants were 
defined according to the daily exceeded multiples (EM): 

EM =
C − S

S
.100% (1)  

where c is the daily concentration and s is the national ambient air 
quality standard (MEE, 2012) (Table S2). We defined days with EM >
0 as being polluted and days with EM ≥ 20% as being heavily polluted 
(Wang et al., 2021b). 

Step 3: The trajectory of each pollutant concentration for 30 days was 
calculated using group-based trajectory modeling (GBTM), which 
was applied to measure the joint effects of air pollution exposure 
level and variation. Based on the GBTM, the trajectory for air 
pollution exposure was grouped into the following statuses inte
grating the mean concentration and variation: good air quality and 
stable, light pollution and stable, and medium-to-heavy pollution 
with regular or irregular fluctuations. The details to obtain the tra
jectory for air pollution exposure by GBTM are provided in Supple
mentary Material. 

2.5. Control variables 

Interpersonal, social, and environmental factors that contribute to 
sleep health were adjusted in our multilevel models (Wang et al., 2021a; 
Kim et al., 2022). Demographic characteristics included age, sex 
(reference group: men), and marital status (reference group: married 
and living with their spouse; common-law marriage was considered 
married; unmarried included single, divorced, and separated). Individ
ual socioeconomic status was measured based on education level and 
occupation. Participants were asked to select one of the following cat
egories for the educational level: (1) elementary school and below, (2) 
junior high school, or (3) senior high school and above. The “elementary 
school and below” group served as the reference group. Occupation was 
classified into five groups: unemployed, retired, peasants, 
self-employed, and administrators. 

In addition, several area-level indicators, including urbanicity (pro
portion of urban population), gross domestic product (GDP) per capita 
(log), greenspace coverage, and artificial light at night exposure (ALAN) 

(log), were also adjusted (Liu et al., 2021a; Kim et al., 2022; Obayashi 
et al., 2019). The details of area-level control variables are provided in 
Supplementary Material. 

2.6. Data analysis 

Weighted descriptive statistics, including percentages for categorical 
variables and means for continuous variables, were reported based on 
the subjective sleep quality. Although we differentiated between the 
individual interview dates, some participants living in the same town
ship were interviewed on the same day. Thus, a multilevel logistic model 
adjusted for a series of influencing factors was employed to estimate the 
association between air pollution exposure and sleep quality. The 
intraclass correlation coefficient also suggests that the multilevel models 
were well fitted (see the Supplementary Material for the intraclass cor
relation coefficient of the multilevel model). Sleep quality measures 
included overall poor sleep quality (PSQI score >5), sleep latency, sleep 
medication use, daytime dysfunction, sleep disturbance, sleep duration, 
sleep efficiency, and subjective sleep quality, which were assessed and 
derived from the PSQI (Table S1). For the sensitivity analysis, the PSQI 
score, being a continuous variable, was used as the dependent variable; 
samples were categorized by age, sex, and physical health (Davies, 
2019). Participants were asked whether they had been hospitalized or 
visited the hospital frequently for physical illness in the last three years. 
Those who responded “yes” were coded as having poor physical health. 
As a robustness check, we conducted multiple imputations for the 
samples that completed the PSQI (n = 28,534–639 = 27,895). 

Subsequently, the negative control model developed by Yu et al. 
(2021a) was applied. Assuming that post-outcome exposure does not 
affect prior outcomes, no causal effects among time-varying exposures 
exist, and the proportional effects of the unobserved confounders on 
exposures do not change over time, post-outcome exposure was used as a 
negative control exposure (e.g., adjustment for pre- and post-outcome 
exposure simultaneously) in the negative control model. Thus, the 
negative control model could control for unobserved confounders, of 
which the proportional effects on exposures did not change over time (e. 
g., curtains for bedroom windows and the use of a sleeping mask) (Yu 
et al., 2021a; Bjorvatn et al., 2018). According to the negative control 
logistic model, three categorical variables of ambient air pollution 
exposure—the monthly mean concentration exceeding the pollution 
level, the occurrence of exposure to heavily polluted days, and the SD of 
daily air pollution surpassing the medium level—were constructed as 
the pre- and post-outcome exposures. Since the monthly mean concen
trations of CO, SO2, NO2, and O3 did not reach the standard pollution 
level, we did not construct a categorical variable measuring if the 
monthly mean was above the national standard. In addition, there were 
no days of heavy pollution with SO2 and O3. The details of the 
negative-control model are presented in Supplementary Material. 

There was a disproportionately high number of women and elderly 
individuals in our sample, since women and older people were more 
likely to stay at home (e.g., at the scene of the investigation) and, thus, 
be selected. Therefore, we weighted the data by considering sample 
weights and post-stratification adjustment weights. The sample weights 
consisted of different sampling rates, as implied by the sample design. 
The post-stratification weights further accounted for the oversampling 
issue by adjusting the design weights in such a way that they replicated 
the age-by-sex distribution of the 2015 Demographic Census (Holt and 
Smith, 1979; Zhang et al., 2019b). The details of sample weighting are 
available in Supplementary Material. Odds ratios (ORs) with 95% con
fidence intervals (CIs) for the multilevel logistic regression estimates and 
estimated effect sizes with 95% CIs for the negative control logistic 
model were reported. STATA 14 and R 4.0.5 were used for all 
calculations. 
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3. Results 

3.1. Basic characteristics of selected individuals 

Table 1 presents weighted descriptive statistics. The total number of 
participants had a weighted mean [SD] age of 44.90 [26.86] years, and 
52.81% of the participants were women. Almost 18% of participants 
reported poor sleep quality (PSQI >5), with approximately 9% having 
poor subjective sleep quality (PSQI score >5) and 50% taking over 15 
min to fall asleep. Approximately 22% and 44% of the participants re
ported daytime dysfunction and sleep disturbance, respectively, and less 
than 5% used medication to help them sleep. The bedtime and wake-up 
time for most participants were earlier than 12:00 a.m. and later than 
6:00 a.m., respectively, and the sleep duration was over 7 h daily. 
However, 15% of the participants reported sleep efficiency lower than 

75%. Regarding the socioeconomic statuses of the individuals, approx
imately 17% of the participants had completed senior high school, 
almost 66% were peasants, and 7% were unemployed. More than 25% of 
participants lived in urban areas. 

PM2.5 and PM10 had high concentrations and dispersion degrees. The 
one-month mean concentration [SD] of PM2.5 and PM10 were 104.84 
[46.87] and 160.40 [70.80], respectively, exceeding the Chinese Na
tional Ambient Air Quality Standards for good quality (MEE, 2012). 
Over 70% and 40% of participants lived in a town where the monthly 
mean PM2.5 and PM10 exposure surpassed the national standard for 
pollution, respectively (Table S3). On average, 15 and 10 days were 
labeled as heavy pollution days according to the monthly mean PM2.5 
and PM10 concentrations, respectively (Table 2). Approximately 
20–30% of participants lived in a town with medium-to-heavy pollution 
pertaining to PM2.5 and PM10 every day of the month (Fig. S1 and 
Table 2). The remaining four common pollutants met the national 
standards and rarely resulted in a heavily polluted day. We found that 
common pollutant exposure was highly correlated with each other 
because some pollutants shared their sources (Table S4). For example, 
PM mixtures and NO2 are released from traffic and industrial emissions 
(Li et al., 2022). Air pollution exposure varied across communities, with 
the one-month mean PM2.5 and PM10 concentrations ranging from 44.39 
to 201.33 and 43.70 to 307.66, respectively. Meanwhile, the 
community-level prevalence of poor subjective sleep quality, measured 
by a PSQI score over 5, was also sparsely distributed, ranging from 5 to 
50%. Compared to those with fair or good sleep quality, participants 
with poor sleep quality (PSQI >5) tended to be exposed to worse air 
quality, although the differences were small. Nevertheless, the concen
tration of O3 did not differ across participants with different sleep 
qualities. 

3.2. Association between air pollutant exposure and subjective sleep 
quality 

The regression results of the associations between common pollutant 
exposure and subjective sleep quality are presented in Figs. 1 and 2. In 
addition to O3 exposure, exposure to five other common pollutants 
tended to have a negative impact on subjective sleep quality. The as
sociation was not sensitive to different regression assumptions (e.g., 
multilevel and negative control models). Our results from the multilevel 
models suggest that a one-point increase in the one-month mean PM2.5 
and PM10 concentrations resulted in 0.4% (95% CI: 1.002–1.006) and 
0.3% (95% CI: 1.001–1.004) increases in the possibility of overall poor 
sleep quality (PSQI score >5), respectively (Fig. 1a). Analogously, 
judging from the estimates of the negative control model, monthly mean 
PM2.5 and PM10 concentrations exceeding the national standard led to 
12.8% (95% CI: 0.104–0.152) and 7% (95% CI: 0.046–0.093) increases 
in the possibility of overall poor sleep quality (PSQI score >5) (Fig. 1b). 
Similarly, the concentrations of NO2, SO2, and CO were low, but they 
had effects on sleep quality, while O3 was not significantly related to 
overall poor sleep quality (PSQI score >5) (Fig. 1). 

3.3. Association between variability in air pollution exposure and 
subjective sleep quality 

Our results show that the variability in air pollution exposure, 
measured by the SD of daily concentration for five common pollutants 
(PM2.5, PM10, CO, NO2, and SO2), contributed to the likelihood of 
overall poor sleep quality (PSQI score >5). The greater the variability in 
air pollution exposure, the greater the possibility of poor sleep quality 
(PSQI score >5). The increase in days heavily polluted with PM was also 
significantly positively associated with the likelihood of overall poor 
sleep quality (PSQI score >5). According to the multilevel model results, 
a heavy pollution day with PM2.5 and PM10 led to 2.2% (OR: 1.022; 95% 
CI: 1.012–1.032) and 2.2% (OR: 1.022; 95% CI: 1.012–1.032) increases 
in the likelihood of overall poor sleep quality (PSQI score >5) (Fig. 1a). 

Table 1 
Statistical description by sleep quality.  

Variables Weighted mean ± SD/N (weighted percent (%)) 

Total 
25,601 

Poor sleep quality (PSQI >5) 

No 
19,307 
(82.03) 

Yes 
6249 
(17.94) 

P- 
value 

PSQI 3.18 ±
4.55 

1.96 ±
2.54 

8.75 ±
3.39 

0.00 

Sleep latency >0 13,806 
(49.35) 

8042 
(40.51) 

5764 
(89.67) 

0.00 

Sleep medication use 839 (2.19) 111 (0.45) 728 
(10.13) 

0.00 

Daytime dysfunction >0 6240 
(21.67) 

2775 
(14.00) 

3465 
(56.72) 

0.00 

Sleep disturbance >0 12,759 
(43.51) 

7246 
(33.84) 

5513 
(87.67) 

0.00 

Sleep duration ≤7 h 8734 
(25.70) 

3783 
(14.88) 

4951 
(75.15) 

0.00 

Sleep efficiency ≤85% 8496 
(28.50) 

3386 
(17.44) 

5110 
(79.00) 

0.00 

Bad subjective sleep 
quality 

3247 
(9.19) 

275 (0.94) 2972 
(46.87) 

0.00 

Age 44.90 ±
26.86 

42.82 ±
25.29 

54.39 ±
26.76 

0.00 

Urbanicity 57.29 ±
12.59 

57.19 ±
13.10 

57.71 ±
9.89 

0.56 

GDP per capita (log) 11.02 ±
0.77 

11.01 ±
0.80 

11.02 ±
0.62 

0.00 

NDVI 0.28 ±
0.19 

0.28 ±
0.20 

0.28 ±
0.15 

0.32 

Artificial light at night 
exposure (log) 

4.98 ±
13.61 

5.21 ±
14.54 

3.95 ±
7.96 

0.00 

Women 17,227 
(52.81) 

13,253 
(53.38) 

3974 
(50.20) 

0.00 

Married 21,869 
(89.81) 

16,962 
(91.59) 

4907 
(81.67) 

0.00 

Education    0.00 
Elementary school and 

below 
10,341 
(32.89) 

6947 
(28.72) 

3394 
(51.91)  

Junior high school 11,190 
(49.47) 

8995 
(52.17) 

2195 
(37.11)  

Senior high school and 
above 

4070 
(17.64) 

3365 
(19.11) 

705 
(10.98)  

Occupation    0.00 
Unemployed 2213 

(7.25) 
1450 
(6.50) 

763 
(10.65)  

Retired 2415 
(2.65) 

1783 
(2.50) 

632 (3.37)  

Peasants 16,425 
(66.53) 

12,168 
(65.51) 

4257 
(71.24)  

Self-employed 3310 
(17.44) 

2830 
(18.75) 

480 
(11.48)  

Administrators 1238 
(6.13) 

1076 
(6.75) 

162 (3.26)  

Note: SD: standard deviation; PSQI: the Pittsburgh Sleep Quality Index; NDVI: 
Normalized Difference Vegetation Index. 
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The results of the negative control models were consistent (Fig. 1b). 
However, the number of days with heavy NO2, SO2, and CO pollution 
seemed insignificantly associated with an increased likelihood of overall 
poor sleep quality (PSQI score >5), which may be because the levels of 
the three pollutants were rarely defined as being heavy (Fig. 1). Sub
sequently, a trajectory of the air pollution exposure was constructed to 
integrate the mean concentration and variation, and the differences in 
the possibility of overall poor sleep quality (PSQI score >5) across these 
trajectories were estimated using a multilevel model (Fig. 2). Compared 
with the group exposed to a good air quality and stable trajectory, those 
exposed to a light pollution and stable trajectory were more likely to 
report overall poor sleep quality (PSQI score >5). A trajectory of air 
pollution exposure characterized by great variability in air pollution 
exposure was associated with a higher likelihood of overall poor sleep 
quality (PSQI score >5). 

Table 2 shows that differences in the pollutant exposure level were 
minor between the groups with a PSQI above and below 5. It is possible 
that the effects of air pollution could be spurious and cannot be easily 
converted into a poor–good sleep quality metric. The results should be 
interpreted with caution. While trajectory analysis shows that the like
lihood of poor sleep quality (PSQI score >5) varied significantly by 
trajectory groups of air pollution exposure. As robust check, subsample 
analyses by age, sex, and physical health were performed (Table S5), and 
they obtained similar results. Thereafter, the PSQI score was used as a 
continuous variable, and the association between air pollution exposure 
and PSQI score was maintained (Table S6). Taking PM2.5 and PM10 as 
examples, a 10-point increase in their monthly mean concentrations was 
associated with increases of 0.05 (95% CI: 0.03–0.07) and 0.04 (95% CI: 
0.02–0.05) PSQI scores, respectively, and the effect size of a heavy 
pollution day with PM2.5 and PM10 were 0.03 (95% CI: 0.02–0.04) and 
0.03 (95% CI: 0.02–0.04), respectively. Although the effects of monthly 
air pollution exposure on possibility of overall poor sleep quality (PSQI 
score >5) were minor, it is likely to affect sleep quality. Since these were 
estimates of population effects, combined with a series of theoretical 

Table 2 
One-month exposure to air pollution by sleep quality.  

Variables Weighted Mean ± SD/N (weighted percent (%)) 

Total 
25,601 

Poor sleep quality (PSQI>5) 

No 
19,307 
(82.03) 

Yes 
6294 
(17.94) 

P- 
value 

One-month PM2.5 exposure 
Monthly mean concentration 104.84 ±

46.87 
104.55 ±
49.22 

106.2 ±
34.03 

0.00 

SD of daily PM2.5 concentration 47.35 ±
29.05 

47.21 ±
30.40 

48.00 ±
21.78 

0.01 

Number of heavily polluted 
days 

15.96 ±
11.06 

15.86 ±
12.79 

16.46 ±
19.50 

0.00 

PM2.5 trajectory    0.00 
Good air quality and stable 7438 

(27.33) 
5893 
(28.22) 

1545 
(23.26)  

Light pollution and stable 12,152 
(56.29) 

8974 
(55.50) 

3178 
(59.92)  

Medium-heavy pollution and 
medium variation 

6011 
(16.38) 

4440 
(16.28) 

1571 
(16.82)  

One-month PM10 exposure 
Monthly mean concentration 160.4 ±

70.80 
159.99 ±
74.43 

162.29 ±
51.12 

0.00 

SD of daily PM10 concentration 67.55 ±
40.20 

67.36 ±
42.21 

68.38 ±
29.34 

0.00 

Number of heavily polluted 
days 

10.01 ±
10.42 

9.92 ±
12.04 

10.43 ±
18.54 

0.00 

PM10 trajectory    0.00 
Good air quality and stable 4649 

(15.65) 
3746 
(16.08) 

903 
(13.70)  

Light pollution and stable 9444 
(40.50) 

7109 
(40.62) 

2335 
(39.96)  

Medium-heavy pollution and 
rising 

5984 
(27.92) 

4328 
(27.38) 

1656 
(30.37)  

Medium-heavy pollution and 
regular fluctuations (Wavy- 
shape) 

2919 
(7.20) 

2254 
(7.46) 

665 (5.99)  

Great variability 2605 
(8.73) 

1870 
(8.45) 

735 (9.98)  

One-month CO exposure 
Monthly mean concentration 1.74 ±

0.78 
1.73 ±
0.82 

1.78 ±
0.57 

0.00 

SD of daily CO concentration 0.51 ±
0.34 

0.51 ±
0.35 

0.52 ±
0.26 

0.01 

Number of heavily polluted 
days 

0.15 ±
0.72 

0.15 ±
0.84 

0.13 ±
1.28 

0.01 

CO trajectory    0.00 
Good air quality and stable 5286 

(16.59) 
4222 
(17.06) 

1064 
(14.43)  

Light pollution and stable 7848 
(36.24) 

5982 
(36.97) 

1866 
(32.89)  

Medium pollution and medium 
variation 

7119 
(27.01) 

5172 
(26.08) 

1947 
(31.24)  

Medium-to-heavy pollution 
and medium variation 

3713 
(15.19) 

2736 
(14.91) 

977 
(16.46)  

Heavy pollution and regular 
fluctuations (Wavy-shape) 

1635 
(4.97) 

1195 
(4.97) 

440 (4.98)  

One-month NO2 exposure 
Monthly mean concentration 48.35 ±

16.64 
48.22 ±
17.55 

48.94 ±
11.66 

0.00 

SD of daily NO2 concentration 12.28 ±
5.63 

12.24 ±
5.90 

12.44 ±
4.21 

0.00 

Number of heavily polluted 
days 

0.20 ±
0.92 

0.21 ±
1.07 

0.17 ±
1.60 

0.01 

NO2 trajectory    0.00 
Good air quality and stable 4779 

(15.40) 
3789 
(15.71) 

990 
(13.98)  

Light pollution and stable 11,672 
(54.92) 

8755 
(54.98) 

2917 
(54.63)  

Medium-to-heavy pollution 
and medium variation 

4653 
(11.52) 

3583 
(11.79) 

1070 
(10.28)  

Medium-to-heavy pollution 
and great variation 

4497 
(18.16) 

3180 
(17.52) 

1317 
(21.11)  

One-month SO2 exposure 
Monthly mean concentration 0.00  

Table 2 (continued ) 

Variables Weighted Mean ± SD/N (weighted percent (%)) 

Total 
25,601 

Poor sleep quality (PSQI>5) 

No 
19,307 
(82.03) 

Yes 
6294 
(17.94) 

P- 
value 

50.82 ±
22.59 

50.58 ±
23.61 

51.9 ±
17.12 

SD of daily SO2 concentration 15.87 ±
7.61 

15.83 ±
7.92 

16.04 ±
5.95 

0.00 

Number of heavily polluted 
days 

0.01 ±
0.14 

0.01 ±
0.17 

0.00 ±
0.11 

0.00 

SO2 trajectory    0.00 
Good air quality and stable 4390 

(14.50) 
3478 
(14.93) 

912 
(12.53)  

Light pollution and stable 12,910 
(60.06) 

1687 
(60.02) 

3223 
(60.24)  

Medium-heavy pollution and 
medium variation 

8301 
(25.44) 

6142 
(25.05) 

2159 
(27.23)  

One-month O3 exposure 
Monthly mean concentration 47.89 ±

27.56 
48.14 ±
28.65 

46.79 ±
21.89 

0.01 

SD of daily O3 concentration 13.91 ±
10.03 

13.99 ±
10.38 

13.55 ±
8.26 

0.00 

O3 trajectory    0.00 
Good air quality and stable 1113 

(3.49) 
942 (3.71) 171 (2.48)  

Light pollution and stable 14,701 
(57.27) 

10,865 
(56.05) 

3836 
(62.78)  

Low-to-medium pollution and 
stable 

7493 
(30.57) 

5726 
(31.37) 

1767 
(26.93)  

Medium-to-heavy pollution 
and stable 

2294 
(8.68) 

1774 
(8.87) 

520 (7.80)  

Note: SD: standard deviation; PSQI: the Pittsburgh Sleep Quality Index. 
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supports and previous studies, they cannot be ruled out as irrelevant. 
The descriptive statistics between the imputed data and complete case 
were quite similar (Table S7), and the estimated association with 
imputed data were similar with those using raw data (Table S8). 

3.4. Association between air pollution exposure and sleep dimensions 

When we further analyzed our evidence, including the association 
between air pollution exposure and different dimensions of sleep, 
consistent results were obtained. Air pollution exposure and its varia
tions contributed to multiple problems with sleep quality, judging from 
the multilevel model (Tables S9–11). However, in the negative control 
model, the likelihood of experiencing poor subjective sleep quality, 
daytime dysfunction, sleep medication use, and sleep disturbance were 
seldom affected by variations in common pollutant exposure, whereas 
the likelihood of sleep latency, sleep duration, and sleep efficiency 
continued to be affected by common pollutants in air (Table S10). 
Comparing the results from the multilevel model with those of the 
negative control method, the direction of air pollution remained con
stant, but the effect size in the negative control models changed, sug
gesting that the correlation results may be biased owing to uncontrolled 
measures (Tables S9 and S11). 

4. Discussion 

4.1. Association between air pollution exposure and subjective sleep 
quality 

We estimated the association between ambient air pollution expo
sure and subjective sleep quality by using a large sample of healthy 
residents in Shandong Province, China. Exposure to air pollution 
contributed to an increased likelihood of overall sleep quality (PSQI 
score >5). Sleep latency, duration, and efficiency were the sleep in
dicators affected in most cases. Nevertheless, associations between air 
pollution and sleep quality have been explored with inconsistent results. 
Many previous studies have been based on correlation analyses, and 
there is likely to be an endogeneity issue, resulting in inconsistent results 
(Heyes and Zhu, 2019). Many other factors associated with alterations in 
sleep quality have not been controlled in correlation studies, including 
our regression analysis. For instance, we did not ask about noise pollu
tion, the presence of curtains for bedroom windows, or the use of 
sleeping masks (Connelly et al., 2020; Bjorvatn et al., 2018). An extra 
bias is introduced by measurement error. For example, people staying 
indoors for long periods could lead to measurement errors owing to a 
lack of consideration for indoor conditions when assessing air pollution 
exposure (Li et al., 2020b). Although ambient air pollution is associated 
with indoor air quality, personal exposure to air pollution differs ac
cording to the indoor ventilation status, meteorological factors, and 
individual time-activity patterns (Gil et al., 1995; Lawrence et al., 2005; 
Li et al., 2020b). Owing to data limitations, we could not measure air 
pollution exposure accounting for indoor conditions. 

Due to potential endogeneity issues, we should be careful not to 
overinterpret the results. Heyes and Zhu (2019) used the instrumental 
variable method to solve this issue in a city-level analysis and identified 
air pollution as a cause of sleeplessness. Nevertheless, the assumptions of 
the instrumental variable are difficult to elucidate in the presence of 
strong confounding factors; therefore, the validity of the instrumental 
variable might be reduced (Martens et al., 2006). Our study used a 
negative control model to adjust for some unobserved confounders, of 
which the proportional effects on exposures did not change over time 
(Yu et al., 2021a). It is easy to obtain pre- and post-outcome exposures 
from environmental studies. Nevertheless, this method cannot eliminate 
unmeasured confounding issues and measurement error. Previous 
studies have found that humans, especially the elderly and women, 
spend more time indoors (Li et al., 2020b; Chen et al., 2019). For a 
robustness check, subgroup analyses found that overall poor sleep 
quality (PSQI score >5) was negatively affected by air pollution expo
sure, regardless of age, sex, or physical condition. 

Combined with a series of theoretical data and previous studies, air 
pollution exposure could negatively affect sleep quality. There are three 
potential pathways that could be involved. First, air pollution exposure 
may alter sleep through its effects on the central nervous system where it 
alters the expression and dysregulation of neurochemicals. PM2.5 
exposure could lead to lower serotonin levels, which modulate wake
fulness and circadian rhythms, and, in turn, is linked with increased 
sleepiness and sleep disturbances (Liu et al., 2020). In addition, central 
nervous system changes triggered by CO exposure may interrupt cell 
signaling in multiple brain regions and affect neural functions, pre
senting as increased frequency of arousal and light sleep. Another po
tential pathway from air pollution exposure (such as PM, NO2 and SO2) 
to sleep may arise from the effects on the physiology of the respiratory 
system, including cell damage, irritation, and obstruction of the airways. 
This creates restriction and obstruction of normal airflow, increasing the 
risk of apnea and hypoxia, thereby compromising sleep quality (Tang 
et al., 2020; Li et al., 2022). Furthermore, cohort studies have revealed 
that exposure to PM10, PM2.5, CO, and NO2 can reduce sleep quality by 
increasing depression and anxiety (Lo et al., 2021). Potential heteroge
neity in the effects of O3 has been reported in previous studies (Zhao 
et al., 2018), which may be partly explained by the strong association 

Fig. 1. Association between one-month air pollution exposure and overall poor 
sleep quality (PSQI >5) using (a) multilevel model and (b) negative control 
model. OR: odds ratio; CI: confidence intervals. Age, sex, marital status, edu
cation, occupation, urbanicity, GDP per capita, greenspace coverage, and arti
ficial light at night exposure were controlled in multilevel models. 
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between O3 concentrations and the intensity of solar radiation. Exposure 
to sunlight has been shown to improve mental health (Wang et al., 2017; 
Son and Shin, 2021). Since inflammatory responses in the central ner
vous system and upper airway could occur due to air pollution within 
one month, and sleep quality of the participants 30 days prior to the 
survey date was measured in our study, we assessed the association 
between one-month air pollution exposure and sleep health (Tang et al., 
2020; Li et al., 2022). 

Notably, different mechanisms behind these results exist. Air pollu
tion is known to have significant day-night variations (Jalava et al., 
2015; Singh et al., 2020). Despite the mixed results obtained, studies 
have found heterogeneous intraday effects of air pollution. For example, 
PM2.5 exerted greater risks of upper respiratory infections and emer
gency department visits for acute myocardial infarction during the 
nighttime than during the daytime (Cheng et al., 2021a, 2021b). These 
health shocks may be related to the acute changes in sleep quality. As 
such, there could be differences between the daytime and nighttime 
effects of air pollution exposure on sleep quality. However, owing to 
data limitations, we only have daily air pollution data and cannot split 
the data into night and day air pollution exposure. Other hypotheses 
revealed that the relevance of long-term air pollution exposure to 
chronic health outcomes may lead to poor sleep quality (Cao et al., 2021; 
Liu et al., 2021a). A sensitivity analysis using the annual average values 
of air pollution exposure was consistent with the proposed hypotheses 
(Table S12). 

4.2. Association between variations in air pollution exposure and 
subjective sleep quality 

A key result of this study is that increases in air pollution variability 
can have a similar effect on sleep quality as do increases in mean con
centrations. Several studies have found that daily exposure to air 
pollution is associated with poor sleep health. Moreover, the effects can 
last for several days. For example, based on a large healthcare record 
system, Tang et al. (2020) observed that daily air pollution exposure was 
associated with sleep disorders in the elderly, with the strongest asso
ciations occurring for PM2.5, PM10, and NO2 and for SO2 and O3 2–3 and 
5 days prior to hospital visits for sleep disorders. As such, the sleep risks 
derived from air pollution could not only be associated with the 
one-month exposure level but also with temporal variation in daily air 

pollution exposure within the study period. 
As expected, we found that variability in common air pollutant 

concentrations (PM2.5, PM10, NO2, SO2, and CO) contributed to an 
increased likelihood of overall poor sleep quality (PSQI score >5). Our 
results are consistent with those of Xue et al. (2019), who found that a 
decline in mental health was associated with air pollution variability in 
China. As depression and anxiety may cause sleep problems, the bio
logical mechanism between sleep quality and air pollution variability 
may be mediated by increases in depression and anxiety (Wang et al., 
2021a; Geoffroy et al., 2020). Furthermore, discrepancies in sleep 
quality were found across trajectories of air pollution exposure. Partic
ipants were more sensitive to a trajectory of air pollution exposure with 
great variation, whereas they were less likely to be affected when the 
trajectory of air pollution exposure had a regular shape. A potential 
explanation for the divergence in sleep across air pollution trajectories is 
that it is easy to adapt to air pollution trajectories with a regular shape 
(Ji et al., 2022; Smithers and Smit, 1997; Madureira et al., 2021). When 
air pollution trends are predictable and depict a regular trend, people 
were more likely to take action to avoid air pollution, which could 
alleviate the health risks (e.g., depression and anxiety) resulting from air 
pollution exposure (Smithers and Smit, 1997; Madureira et al., 2021). 
This, in turn, reduces the likelihood of sleep disorders (Ji et al., 2022; Lo 
et al., 2021). 

4.3. Policy implications 

First, the question of whether and to what extent air pollution in 
developing countries with relatively high pollution levels can cause 
sleep problems remains unanswered (Liu et al., 2021a). This study offers 
evidence that air pollution management can improve sleep quality. 
Because sleep latency, sleep duration, and sleep efficiency may be more 
likely to be affected by ambient air pollution, particular attention should 
be paid to these indicators. Second, our findings highlight the fact that 
fluctuations in ambient air quality can lead to changes in sleep quality. 
As such, our findings provide justification for interventions that target 
variations in air quality and alert individuals to these irregular changes. 
Third, given that the common pollutant exposure in air pollution has 
different impacts on sleep, more precise measures should be determined 
and implemented according to the characteristics of these pollutants. 
The concentrations of PM10 and PM2.5 were significantly higher than the 

Fig. 2. Associations between trajectory of one-month 
air pollution exposure and overall poor sleep quality 
(PSQI >5). Reference group for each air pollution 
exposure trajectory: good air quality and stable. In 
each panel, black dots with error bars: odds ratios 
(OR) of the air pollution with their 95% confidence 
intervals (CI) estimated by the multilevel logistic 
model. Age, sex, marital status, education, occupa
tion, urbanicity, GDP per capita, greenspace 
coverage, and artificial light at night exposure were 
controlled in multilevel models.   

L. Wang et al.                                                                                                                                                                                                                                   



Environmental Pollution 312 (2022) 120020

8

national standard, and they should be more strictly controlled by 
properly implementing the existing protection standards. Meanwhile, 
the monthly mean concentrations of CO, SO2 and NO2 met the national 
standard criteria but still negatively impacted sleep quality. We may 
need to announce their potential to jeopardize sleep quality to the 
public. 

4.4. Contributions and limitations 

To the best of our knowledge, this study makes three major contri
butions to the existing literature. First, the association of air pollution 
concentration and its temporal variability with sleep health was assessed 
for the first time, which helped us to comprehensively understand the 
association with sleep health. Second, we proposed an enhanced semi- 
individual study linking individual survey dates with township-level 
air pollution data to differentiate individual environmental exposures. 
This is an attempt to collect individual ecological exposures for a large 
sample of healthy community dwellers. Third, the effects of multiple 
pollutants on sleep quality were estimated using the same sampled 
population, with a negative control model used to adjust for unobserved 
confounders that satisfied certain conditions. 

However, this study has some limitations. First, we used Shandong 
Province, China, as the research area, which is not nationally repre
sentative. However, from east to west in Shandong Province, the envi
ronmental and sociodemographic characteristics are similar to those in 
China as a whole. Data spanning a wide range of economies and envi
ronments provide a good sample for analyzing the association between 
air pollution and sleep. Second, the indicators used to measure sleep 
quality were obtained through a retrospective self-evaluation. Future 
studies using objective sleep measures should improve the generaliz
ability of these results. Third, owing to limited available data, we could 
not identify long-term effects and the divergence resulting from day- 
night variations and indoor-outdoor stays. This limitation may have 
led to biased results and unclarified mechanisms. Finally, the results of 
this study, in which the air pollution level was high, may not be 
generalizable to other countries. Although a negative relationship be
tween air pollution exposure and sleep health was found in populations 
across different age groups, countries, and measures, conducting a 
comparison of the effect sizes was not plausible because of the mixed 
study methods. 

5. Conclusion 

To the best of our knowledge, this is the first study to document an 
association between variability in ambient air pollution exposure and 
subjective sleep quality. PM2.5 and PM10 had high concentrations. A one- 
point increases in the one-month mean concentration of PM2.5 and PM10 
led to 0.4% (95% CI: 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) 
increases in the likelihood of overall poor sleep quality (PSQI score >5), 
respectively. For NO2, SO2, and CO, the mean concentrations met the 
national standard; however, NO2, SO2, and CO exposure contributed to 
the likelihood of overall poor sleep quality (PSQI score >5). Further
more, variability in air pollution exposure increased the likelihood of 
overall poor sleep quality (PSQI score >5). The odds ratios of a heavy 
pollution day with PM2.5 and PM10 were 2.2% (95% CI: 1.012–1.032) 
and 2.2% (95% CI: 1.012–1.032), respectively. A trajectory of air 
pollution exposure with great variability was associated with the highest 
likelihood of overall poor sleep quality (PSQI score >5). Sleep latency, 
duration, and efficiency were affected in most cases. Our findings on the 
effects of variability in ambient air pollution exposure suggest that air 
quality guidelines based on the mean concentrations of air pollutants 
may be inadequate to protect sleep health. 
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