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A B S T R A C T   

Background: Dyslipidemia is a crucial risk factor for cardiovascular diseases. Previous studies have suggested that 
air pollution is associated with blood lipids. However, little evidence exists in low- and middle-income regions. 
We aimed to investigate the association between air pollution and blood lipids in southwestern China. 
Methods: We included 67,305 participants aged 30–79 years from the baseline data of the China Multi-Ethnic 
Cohort (CMEC) study. Three-year average concentrations of particles with diameters ≤1 μm (PM1), particles 
with diameters ≤ 2.5 μm (PM2.5), particles with diameters ≤ 10 μm (PM10), nitrogen dioxide (NO2), and ozone 
(O3) were estimated using satellite-based spatiotemporal models. Individual serum lipids, including cholesterol 
(TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol 
(HDL-C), were measured. Linear, logistic, and quantile regression models were used to evaluate the association 
between ambient air pollution and blood lipids. 
Results: All five air pollutants in our study were associated with lipid levels. Increased air pollution exposure was 
associated with a high risk of dyslipidemia. Each 10 μg/m3 increase in PM2.5 was associated with 0.92% (95% 
confidence interval (CI): 0.64%, 1.20%), 2.23% (95% CI: 1.44%, 3.02%), and 3.04% (95% CI: 2.61%, 3.47%) 
increases in TC, TG, and LDL-C levels, respectively, and a 2.03% (95% CI: 1.69%, 2.37%) decrease in HDL-C 
levels, and high risks of dyslipidemia (OR = 1.14, 95% CI: 1.10, 1.18). Stronger associations of air pollution 
with blood lipids were found in participants with high lipid levels than in those with low lipid levels. 
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Conclusion: Long-term exposure to air pollutants was associated with blood lipid levels and the risk of dyslipi-
demia. People with high lipid levels were more susceptible to air pollution. Therefore, air pollution prevention 
and control may help reduce the incidence of dyslipidemia and the burden of CVDs.   

1. Introduction 

Dyslipidemia refers to an abnormal level of blood lipids, involving 
elevated levels of total cholesterol (TC), triglyceride (TG), and low- 
density lipoprotein cholesterol (LDL-C) and decreased levels of high- 
density lipoprotein cholesterol (HDL-C) (Reiner et al., 2011). More-
over, it is one of the most critical risk factors for cardiovascular diseases 
(CVDs) (Laslett et al., 2012), which are a leading cause of death, ac-
counting for 18.6 million deaths per year worldwide (Roth et al., 2020). 

As a major global environmental problem, ambient air pollution has 
been shown to promote the development of risk factors for CVDs (Brook 
et al., 2010, 2014; Cesaroni et al., 2014; Jiang et al., 2016) through 
multiple pathways, such as increased systemic inflammation and 
oxidative stress (Pope et al., 2004; Rajagopalan et al., 2018). 

In recent years, many studies have explored the associations between 
ambient air pollution and lipid profile parameters or dyslipidemia, but 
the results from these studies have been inconsistent (Bell et al., 2017; 
Kim et al., 2019; Mao et al., 2020; Rajagopalan et al., 2018; Sørensen 
et al., 2015; Wang et al., 2018). Additionally, most studies have been 
conducted in high-income countries, and evidence among people in low- 
and middle-income countries (LMICs) is limited, where air pollution is 
often more severe (Murray et al., 2020; Yusuf et al., 2020). The annual 
average population-weighted PM2.5 level in China was 52.7 μg/m3 in 
2017 (Yin et al., 2020), which was five times higher than the World 
Health Organization (WHO) air quality guideline (10 μg/m3). Moreover, 
the mean total-to-HDL cholesterol ratio, a predictor of CVD risk (Lew-
ington et al., 2007), has increased in China (Collaboration, 2020) due to 
dietary shifts and a lower treatment rate of dyslipidemia (Yang et al., 
2012; Zhai et al., 2014). Given the severity of both dyslipidemia (Zhang 
et al., 2018) and ambient air pollution, it is necessary to investigate how 
air pollution in China affects blood lipid markers. 

Previous studies focused primarily on the average lipid levels, but 
little is known about how the overall distribution of blood lipids is 
associated with ambient air pollution. Given that the occurrence and 
development of dyslipidemia is a continuous process, identifying 
whether specific individuals with different lipid levels are more sus-
ceptible to air pollution is of considerable public health significance. 
Koenker and Bassett introduced quantile regression as an extension of 
the traditional linear regression model in the 1970s (Koenker and Bas-
sett, 1978). Quantile regression could provide more comprehensive in-
formation by revealing the relationship between the dependent and 
independent variables at any quantile of the dependent variable (Staffa 
et al., 2019). In addition, quantile regression is a distribution-free 
method, making up for the limitations of traditional linear regression 
when blood lipid data fail to satisfy the normal distribution assumption 
(Bind et al., 2016). Therefore, we could use quantile regression to 
examine the relationship of air pollution with lipid levels across its 
distribution and develop more effective prevention strategies for pop-
ulations with different lipid levels. 

This study aimed to explore the association of air pollutants (PM1, 
PM2.5, PM10, NO2, and O3) with lipid levels and dyslipidemia using 
baseline data from the China Multi-Ethnic Cohort (CMEC), a community 
population-based prospective observational study. We also applied 
quantile regression to explore the shape and strength of quantile-specific 
associations. 

2. Methods 

2.1. Study population 

The current study used data from the baseline of the CMEC study, 
which was described in detail previously (Zhao et al., 2020). The CMEC 
study recruited a total of 99,556 participants aged 30–79 years in 
Southwestern China by multistage, stratified cluster sampling method. 
Nine ethnic groups, including the Han in Basin (Chongqing, Chengdu), 
Han in Yunnan, Yi in Yunnan, Bai in Yunnan, Tibetans in Aba, Tibetans 
in Lhasa, Miao in Guizhou, Bouyei in Guizhou, and Dong in Guizhou, 
involving mixed groups of urban and rural residents in five provinces 
were selected. We excluded 1) people who did not have available resi-
dential address information; 2) Tibetans in Aba because they lived a 
nomadic life, migrating with the seasons, and had no fixed residence; 3) 
Tibetans in Lhasa because they had different genetic backgrounds and 
lived at high altitudes and thus were less comparable to people living in 
low and middle altitudes; 4) people who lived at their current residential 
address for less than three years; 5) people who did not have available 
information on blood lipids; 6) people who had self-reported dyslipi-
demia so that patients detected by clinical laboratory tests during our 
survey were newly-diagnosed patients; 7) pregnant women; and 8) 
people with missing information on covariates. Ultimately, this study 
included 67,305 participants. Ethical approval was received from the 
Sichuan University Medical Ethical Review Board (K2016038). 

2.2. Exposure data 

The daily average concentrations of PM1, PM2.5, and PM10 at a 1-km 
spatial resolution were predicted by the space-time extremely random-
ized trees model using aerosol optical depth, meteorological, topo-
graphical, and land-use data (Wei et al., 2019a, 2019b, 2020, 2021). In 
addition, NO2 and O3 were assessed using a random forest model at a 
10-km spatial resolution using ground-monitored air pollution data, 
aerosol optical depth data, and other spatial and temporal predictors (Li 
et al., 2020; Liu et al., 2019). According to geocoded residential ad-
dresses, we assigned daily PM1, PM2.5, PM10, NO2, and O3 concentra-
tions to participants. We calculated the previous 3-year average 
exposure concentrations of PM1, PM2.5, PM10, NO2, and O3 before the 
baseline survey time as a substitute for long-term air pollution exposure. 

2.3. Outcomes 

The CMEC collected participants’ blood samples after at least 8 h of 
fasting and measured levels of TC, TG, LDL-C, and HDL-C by an AU5800 
Automated Chemistry Analyzer (Beckman Coulter Commercial Enter-
prise, Shanghai, China). Hypercholesterolemia was defined as TC ≥
6.22 mmol/L, hypertriglyceridemia was defined as TG ≥ 2.26 mmol/L, 
hypoalphalipoproteinemia was defined as HDL-C < 1.04 mmol/L, and 
hyperbetalipoproteinemia was defined as LDL-C ≥ 4.14 mmol/L, ac-
cording to the Joint Committee for Developing Chinese Guidelines on 
Prevention and Treatment of Dyslipidemia in Adults (Joint Committee 
for Developing Chinese Guidelines on Prevention and Treatment of 
Dyslipidemia in Adults, 2007). Participants with one or more abnorm-
ities of these lipid levels above were defined as having dyslipidemia. 

L. Wang et al.                                                                                                                                                                                                                                   



Environmental Research 197 (2021) 111174

3

2.4. Covariates 

A standardized questionnaire was used to collect information 
including age, sex, highest educational completed, annual family in-
come, smoking status, secondary smoke, alcohol drinking status, dietary 
pattern, physical activity, indoor pollution, and ethnic group. Body mass 
index (BMI) was calculated based on measured height and weight. 
Temperature and relative humidity data were obtained from weather 
stations of China Meteorological Data Sharing Service System (htt 
p://data.cman.c/), and daily values of temperature and relative hu-
midity were interpolated by kriging for areas not covered by weather 
stations (Chen et al., 2018). The dietary pattern was evaluated by the 
Dietary Approaches to Stop Hypertension (DASH) diet score, which 
assessed fruit, vegetables, nuts, sodium, low-fat dairy, red and processed 
meats, and whole grain intake. Participants’ physical activity was esti-
mated by the metabolic equivalent tasks (METs) considering partici-
pants’ occupation, traffic, chores, and leisure time activities (Ainsworth 
et al., 2000). The degree of indoor air pollution was assessed as low, 
moderate, or high according to the frequency of cooking, cooking fuel, 
and the presence of smokestacks or smoke exhaust devices. 

2.5. Statistical analysis 

Differences in essential characteristics between men and women 
were tested using Student’s t-test, the Wilcoxon rank-sum test, and the 
chi-square test. We applied linear regression models to assess associa-
tions between individual air pollutants (per 10 μg/m3 increase) and 
blood lipid levels (TC, TG, HDL-C, and LDL-C), which were naturally log- 
transformed in our regression models to achieve normal distributions. 
Association estimates were then back-transformed from the log scale 
using 100 × [exp(β)-1] and are presented as percent changes with the 
95% confidence intervals (95% CI) corresponding to each 10 μg/m3 

increase in ambient air pollutants. We also used logistic regression 
models to investigate associations of ambient air pollutants (per 10 μg/ 
m3 increase) with hypercholesterolemia, hypertriglyceridemia, hypo-
alphalipoproteinemia, hyperbetalipoproteinemia, and dyslipidemia. 
These results are presented as odds ratios (ORs) with corresponding 95% 
CIs. Additionally, we used quantile regression models to directly explore 
the association between air pollutants and different quantiles of blood 
lipid levels expressed in the original unit, as quantile regression is a 
distribution-free method (Koenker and Hallock, 2000) and 
log-transformation is not necessary. We performed subgroup analyses by 
sex (men, women), age (≥60 years, <60 years), BMI (≥25 kg/m2, <25 
kg/m2), and ethnic group (Han in Basin, Han in Yunnan, Yi in Yunnan, 
Bai in Yunnan, Dong in Guizhou, Bouyei in Guizhou, and Miao in 
Guizhou). Two-pollutant models were used to compare the results of 
single pollutant models. Additionally, we conducted sensitivity analyses 
by including participants with self-reported dyslipidemia, excluding 
participants who had diabetes or cardiovascular diseases, and we 
repeated the regression analyses applying different exposure terms (1 
year, 2 years, and 4 years). We subtracted the PM1 concentrations from 
the PM2.5 concentrations to obtain concentrations of PM1-2.5. A similar 
method was used to obtain concentrations of PM2.5-10. And we investi-
gated the effects of PM1-2.5 and PM2.5-10. All regression models were 
adjusted for the variables listed in the Covariates section. Data analysis 
was performed using R 4.0.2 (R Foundation for Statistical Computing), 
with a P value < 0.05 considered statistically significant for a two-tailed 
test. 

3. Results 

3.1. General characteristics 

Table 1 displays the essential characteristics of the 67,305 partici-
pants. The mean age of the study population was 51.97 years, and 
26,547 participants (39.4%) were men. Moreover, 37.1% of the 

Table 1 
Study population characteristics (n = 67,305).  

Variables Total (n 
= 67,305) 

Men (n =
26,528) 

Women 
(n =
40,777) 

P 

Age (years), mean ± SD 51.97 ±
11.36 

52.97 ±
11.66 

51.33 ±
11.12 

<0.001 

Ethnic group, n (%)    <0.001 
Han in Basin 33,194 

(49.32%) 
15,208 
(57.33%) 

17,986 
(44.11%)  

Han in Yunnan 9163 
(13.61%) 

3184 
(12.00%) 

5979 
(14.66%)  

Bai in Yunnan 5202 
(7.73%) 

1483 
(5.59%) 

3719 
(9.12%)  

Yi in Yunnan 5046 
(7.50%) 

1655 
(6.24%) 

3391 
(8.32%)  

Bouyei in Guizhou 4629 
(6.88%) 

1386 
(5.22%) 

3243 
(7.95%)  

Dong in Guizhou 5750 
(8.54%) 

2011 
(7.58%) 

3739 
(9.17%)  

Miao in Guizhou 4321 
(6.42%) 

1601 
(6.04%) 

2720 
(6.67%)  

Highest education 
completed, n (%)    

<0.001 

Illiteracy 15,940 
(23.68%) 

3338 
(12.58%) 

12,602 
(30.90%)  

Primary school 17,394 
(25.84%) 

6965 
(26.26%) 

10,429 
(25.58%)  

Junior high school 18,406 
(27.35%) 

8738 
(32.94%) 

9668 
(23.71%)  

High school 8092 
(12.02%) 

3916 
(14.76%) 

4176 
(10.24%)  

Junior college or higher 7473 
(11.10%) 

3571 
(13.46%) 

3902 
(9.57%)  

Annual family income (Yuan/year), n (%) <0.001 
<12,000 12,001 

(17.83%) 
4524 
(17.05%) 

7477 
(18.34%)  

12,000–20,000 11,748 
(17.45%) 

4025 
(15.17%) 

7723 
(18.94%)  

20,000–60,000 24,496 
(36.40%) 

9402 
(35.44%) 

15,094 
(37.02%)  

60,000–100,000 10,033 
(14.91%) 

4358 
(16.43%) 

5675 
(13.92%)  

≥100,000 9027 
(13.41%) 

4219 
(15.90%) 

4808 
(11.79%)  

Smoking status, n (%)    <0.001 
Never 49,975 

(74.25%) 
9686 
(36.51%) 

40,289 
(98.80%)  

Former 3261 
(4.85%) 

3184 
(12.00%) 

77 
(0.19%)  

Current 14,069 
(20.90%) 

13,658 
(51.49%) 

411 
(1.01%)  

Secondary smoke, n (%)    <0.001 
Yes 34,607 

(51.42%) 
12,816 
(48.31%) 

21,791 
(53.44%)  

No 32,698 
(48.58%) 

13,712 
(51.69%) 

18,986 
(46.56%)  

Alcohol drinking status, n (%) <0.001 
Never 37,513 

(55.74%) 
8397 
(31.65%) 

29,116 
(71.40%)  

Occasionally 20,509 
(30.47%) 

9997 
(37.68%) 

10,512 
(25.78%)  

Often 9283 
(13.79%) 

8134 
(30.66%) 

1149 
(2.82%)  

DASH score, mean ± SD 20.39 ±
4.48 

19.74 ±
4.45 

20.81 ±
4.45 

<0.001 

Physical activity (METs/ 
day), mean ± SD 

27.23 ±
18.45 

27.09 ±
19.04 

27.33 ±
18.05 

<0.001 

BMI (kg/m2), mean ± SD 23.91 ±
3.36 

24.15 ±
3.29 

23.75 ±
3.39 

<0.001 

Indoor pollution, n (%)    <0.001 
Low 10,753 

(15.98%) 
7873 
(29.68%) 

2880 
(7.06%)  

Moderate 53,060 
(78.84%) 

17,648 
(66.53%) 

35,412 
(86.84%)  

High 3492 
(5.19%) 

1007 
(3.80%) 

2485 
(6.09%)  

(continued on next page) 
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participants were minorities. Approximately half of them had a junior 
high school or higher education (50.4%). Only 13.4% of the participants 
had more than 100,000 Yuan annual family income. Regarding smoking 
and drinking status, 25.7% and 44.3% were smokers and drinkers, 
respectively. The prevalence of hypercholesterolemia, hyper-
triglyceridemia, hypoalphalipoproteinemia, and hyper-
betalipoproteinemia was 11.0%, 17.0%, 7.6%, and 8.4%, respectively. A 
total of 19,260 participants (28.6%) were classified as having dyslipi-
demia. The median concentrations of TC, TG, HDL-C, and LDL-C were 
4.92 mmol/L, 1.32 mmol/L, 1.46 mmol/L, and 2.87 mmol/L, respec-
tively. Differences in age, ethnic group, highest educational completed, 
annual family income, BMI, smoking status, secondary smoke, alcohol 
drinking status, DASH score, physical activity, and indoor pollution 
between men and women were statistically significant. The three-year 
average exposure concentrations of PM1, PM2.5, PM10, NO2, and O3 
were 27.70 μg/m3, 37.39 μg/m3, 64.09 μg/m3, 24.02 μg/m3, and 83.45 
μg/m3, respectively (Table 2). 

3.2. Associations between air pollutants and blood lipids 

Table 3 displays the associations between air pollutants and blood 

lipids. For all participants, each 10 μg/m3 increase in PM2.5 was asso-
ciated with 0.92% (95% CI: 0.64%, 1.20%) increases in TC levels, 2.23% 
(95% CI: 1.44%, 3.02%) increases in TG levels, 3.04% (95% CI: 2.61%, 
3.47%) increases in LDL-C levels and 2.03% (95% CI: 1.69%, 2.37%) 
decreases in HDL-C levels. PM10 had similar effects on lipid levels, while 
high PM1 exposure was associated with increased TG and LDL-C levels 
and reduced HDL-C levels but not with TC. For gaseous pollutants, each 
10 μg/m3 increase in NO2 was associated with a 0.56% (95% CI: 0.36%, 
0.76%) increase in TC levels, a 0.52% (95% CI: 0.22%, 0.83%) increase 
in LDL-C levels and a 0.85% (95% CI: 0.60%, 1.09%) decrease in HDL-C 
levels. High O3 exposure also showed statistically significant associa-
tions with increased TC and LDL-C levels and decreased HDL-C levels but 
not with TG. PM1-2.5, PM2.5-10 were both associated with increased TC, 
TG, and LDL-C levels, and decreased HDL-C levels (Table A1). The re-
sults remained basically stable in sensitivity analyses where participants 
with self-reported dyslipidemia were included (Table A3), participants 
with diabetes were excluded (Table A.5), participants with cardiovas-
cular diseases were excluded (Table A.7), and exposure data in different 
terms were applied (Table A.9). 

3.3. Associations between air pollutants and dyslipidemia 

We found that ambient air pollutants (PM1, PM2.5, PM10, NO2, and 
O3) were associated with the risk of dyslipidemia. In detail, we detected 
that increased PM1 exposure was associated with high risks of hyper-
triglyceridemia (OR = 1.12, 95% CI: 1.03, 1.21) and hypo-
alphalipoproteinemia (OR = 1.20, 95% CI: 1.09, 1.32); increased PM2.5 
exposure was associated with high risks of hypercholesterolemia (OR =
1.12, 95% CI: 1.07, 1.18), hypertriglyceridemia (OR = 1.08, 95% CI: 
1.03, 1.12), hypoalphalipoproteinemia (OR = 1.14, 95% CI: 1.08, 1.20), 
and hyperbetalipoproteinemia (OR = 1.11, 95% CI: 1.04, 1.18); 
increased PM10 exposure was associated with high risks of hypercho-
lesterolemia (OR = 1.08, 95% CI: 1.05, 1.12), hypertriglyceridemia (OR 
= 1.04, 95% CI: 1.01, 1.07), hypoalphalipoproteinemia (OR = 1.09, 
95% CI: 1.06, 1.13), and hyperbetalipoproteinemia (OR = 1.10, 95% CI: 
1.06, 1.14); increased NO2 exposure was associated with high risks of 
hypercholesterolemia (OR = 1.04, 95% CI: 1.01, 1.08), and hypo-
alphalipoproteinemia (OR = 1.12, 95% CI: 1.08, 1.16); and increased O3 
exposure was associated with high risks of hypercholesterolemia (OR =
1.14, 95% CI: 1.04, 1.24) and hyperbetalipoproteinemia (OR = 1.31, 
95% CI: 1.19, 1.45) (Table 4). 

3.4. Quantile regression analyses 

Fig. 1 shows that the association between ambient air pollution and 
lipid levels varied with quantiles of lipid level distribution (with breaks 
at the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th percen-
tiles). The effects of all air pollutants in this study were strongest at the 
highest percentiles of HDL-C. For example, among participants with 
HDL-C levels in the 10th percentile, a per 10 μg/m3 increase in PM1 was 
associated with a 0.019 mmol/L (95% CI: 0.008, 0.029) decrease in 
HDL-C, whereas among subjects with HDL-C levels in the 90th 

Table 1 (continued ) 

Variables Total (n 
= 67,305) 

Men (n =
26,528) 

Women 
(n =
40,777) 

P 

Temperature, mean ± SD 17.14 ±
1.13 

17.24 ±
1.11 

17.08 ±
1.14 

<0.001 

Relative humidity, mean ± 
SD 

74.72 ±
7.04 

75.41 ±
6.63 

74.27 ±
7.26 

<0.001 

Blood lipids & dyslipidemia  
TC (mmol/L), median (P25, 

P75) 
4.92 
(4.34, 
5.58) 

4.94 
(4.35, 
5.57) 

4.91 
(4.33, 
5.59) 

0.260 

TG (mmol/L), median (P25, 
P75) 

1.32 
(0.95, 
1.92) 

1.41 
(0.98, 
2.13) 

1.27 
(0.93, 
1.81) 

<0.001 

HDL-C (mmol/L), median 
(P25, P75) 

1.46 
(1.22, 
1.73) 

1.34 
(1.13, 
1.62) 

1.52 
(1.30, 
1.79) 

<0.001 

LDL-C (mmol/L), median 
(P25, P75) 

2.87 
(2.36, 
3.43) 

2.91 
(2.40, 
3.46) 

2.84 
(2.34, 
3.41) 

<0.001 

Hypercholesterolemia, n (%) 7379 
(10.96%) 

2779 
(10.48%) 

4600 
(11.28%) 

0.001 

Hypertriglyceridemia, n (%) 11,465 
(17.03%) 

5789 
(21.82%) 

5676 
(13.92%) 

<0.001 

Hypoalphalipoproteinemia, n 
(%) 

5100 
(7.58%) 

3265 
(12.31%) 

1835 
(4.50%) 

<0.001 

Hyperbetalipoproteinemia, n 
(%) 

5649 
(8.39%) 

2208 
(8.32%) 

3441 
(8.44%) 

0.610 

Dyslipidemia, n (%) 19,260 
(28.62%) 

9160 
(34.53%) 

10,100 
(24.77%) 

<0.001 

Abbreviations: DASH, Dietary Approaches to Stop Hypertension; METs: meta-
bolic equivalent tasks; BMI, body mass index; TC, total cholesterol; TG, tri-
glycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; P25, 25th percentile; P75, 75th percentile. 

Table 2 
Three-year average concentrations of air pollutants.  

Pollutant Summary statistics Spearman correlation coefficients 

Mean SD Minimum P25 Median P75 Maximum PM1 PM2.5 PM10 NO2 O3 

PM1 (μg/m3) 28.22 6.65 11.09 21.56 27.70 33.58 53.57 1.00 0.95* 0.93* 0.83* − 0.19* 
PM2.5 (μg/m3) 41.93 16.01 16.49 26.02 37.39 55.62 105.29 0.95* 1.00 0.99* 0.81* − 0.10* 
PM10 (μg/m3) 72.08 23.85 33.26 51.82 64.09 91.98 165.19 0.93* 0.99* 1.00 0.80* − 0.03* 
NO2 (μg/m3) 27.66 11.11 9.99 20.10 24.02 33.09 63.32 0.83* 0.81* 0.80* 1.00 − 0.21* 
O3 (μg/m3) 83.15 3.22 73.87 80.92 83.45 85.11 97.14 − 0.19* − 0.10* − 0.03* − 0.21* 1.00 

Abbreviations: PM1, particles with aerodynamic diameter ≤1.0 μm; PM2.5; particles with aerodynamic diameter ≤2.5 μm; PM10, particles with aerodynamic diameter 
≤10 μm; NO2, nitrogen dioxide; O3, ozone; SD, standard deviation; P25, 25th percentile; P75, 75th percentile. 
* Statistically significant correlation (P < 0.05). 
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percentile, the same exposure was related to a 0.061 mmol/L (95% CI: 
0.041, 0.081) decrease in HDL-C. A similar increasing trend was 
observed in the effects of air pollutants on TC levels. The results for TG 
and LDL-C levels were less consistent. For example, the associations of 
PM1, PM2.5, PM10, and O3 with TG levels were greatest for individuals 
with TG levels between the 70th and 80th percentiles, while NO2 
showed a decreasing trend across the whole distribution. For TG levels, 
the associations of PM1, PM2.5, PM10, and NO2 with LDL-C levels were 
greatest for individuals with LDL-C levels in the 80th percentile, while 
O3 showed a decreasing trend across the whole distribution. 

3.5. Stratified analyses 

In stratified analyses by age, the associations were greater among 
younger people (age <60 years). For example, each 10 μg/m3 increase in 
PM1 was associated with a 0.76% (95% CI: 0.16%, 1.37%) increase in TC 
among participants under 60 years old, while no statistically significant 
association was observed among participants over 60. In stratified an-
alyses by sex, the results were mixed. For example, the associations of 
NO2 with HDL-C were greater among men than among women. How-
ever, for TC, NO2 showed a statistically significant association only 
among women. In stratified analyses by BMI, associations of all air 
pollutants with HDL-C were consistently stronger in participants who 
were not overweight or obese. A 10 μg/m3 increase in PM2.5 was related 
to 2.28% (95% CI: 1.82%, 2.74%) and 1.29% (95% CI: 0.74%, 1.83%) 
decreases in HDL-C in normal participants (BMI < 25 kg/m2) and 
overweight/obese participants (BMI ≥ 25 kg/m2), respectively. In 
stratified analyses by ethnic group, we observed statistically significant 
interactions between air pollution and ethnic group on lipid levels, but 
the pattern was complex. For example, the association of PM10 with TC 
was stronger among Han in Basin, while the association of PM10 with 
HDL-C was stronger among Bai in Yunnan (Table A.11). 

3.6. Two-pollutant models 

Fig. 2. Showed the results of the two-pollutant models. The 

associations between O3 and blood lipid levels were most stable after 
adding the other pollutant in the models. The associations of NO2 with 
blood lipid levels also remained generally consistent after the inclusion 
of another pollutant. The associations of PM1 with blood lipid levels 
became weaker after adjusting PM2.5 or PM10. For example, PM1 was 
associated with a 2.63% (1.14%, 4.13%) increase in TG in a single 
pollutant model, while no statistically significant association was 
observed after the inclusion of PM2.5 or PM10. The associations between 
PM10 and TC, TG were weaker after adjusting PM2.5. However, The as-
sociations between PM10 and HDL-C and LDL-C were greater after 
adjusting PM2.5. 

4. Discussion 

To the best of our knowledge, the current epidemiological study is 
the largest to explore the associations between long-term ambient air 
pollution exposure and blood lipid levels and dyslipidemia in LMICs. We 
also revealed the quantile-specific associations between air pollution 
and blood lipids. As similar studies were all conducted in the U.S., our 
findings could fill in the gap among people in LMICs. 

The precise mechanism by which ambient air pollution affects lipid 
levels has not yet been fully characterized. One hypothesis indicated 
that air pollution could induce systemic inflammation and oxidative 
stress (Araujo et al., 2008; Chen et al., 2013b), leading to lipid meta-
bolism disorders (Zhang et al., 2003), including reduced HDL efflux 
capacity. Another theory suggested that exposure to ambient air pollu-
tion would result in abnormal DNA methylation (Bind et al., 2015; Chen 
et al., 2016), altering specific genes related to lipid metabolism (Bind 
et al., 2014). 

Several previous studies investigated associations between air 
pollution exposure and blood lipid levels or dyslipidemia. In accordance 
with our findings, a large nationally representative U.S. survey found 
that a per 11.1 μg/m3 increase in PM10 exposure was associated with 
1.43%, 2.42%, and 1.18% increases in TC, TG, and LDL-C levels, 
respectively (Shanley et al., 2016). Another cross-sectional study from 
China reported that high PM1 exposure was associated with elevated TC, 

Table 3 
Associations between per 10-μg/m3 increment in air pollutants and blood lipid levels (n = 67,305).  

Pollutant TC TG HDL-C LDL-C 

% changes (95% CI)a P % changes (95% CI)a P % changes (95% CI)a P % changes (95% CI)a P 

PM1 0.48 (− 0.04, 1.01) 0.069 2.63 (1.14, 4.13) <0.001 − 2.39 (− 3.03, − 1.75) <0.001 2.17 (1.36, 2.98) <0.001 
PM2.5 0.92 (0.64, 1.20) <0.001 2.23 (1.44, 3.02) <0.001 − 2.03 (− 2.37, − 1.69) <0.001 3.04 (2.61, 3.47) <0.001 
PM10 0.57 (0.40, 0.75) <0.001 1.18 (0.69, 1.68) <0.001 − 1.85 (− 2.07, − 1.63) <0.001 2.62 (2.35, 2.89) <0.001 
NO2 0.56 (0.36, 0.76) <0.001 − 0.30 (− 0.86, 0.25) 0.285 − 0.85 (− 1.09, − 0.60) <0.001 0.52 (0.22, 0.83) 0.001 
O3 1.34 (0.81, 1.87) <0.001 − 1.28 (− 2.71, 0.17) 0.083 − 5.16 (− 5.78, − 4.53) <0.001 9.46 (8.60, 10.33) <0.001 

Abbreviations: PM1, particles with aerodynamic diameter ≤1.0 μm; PM2.5; particles with aerodynamic diameter ≤2.5 μm; PM10, particles with aerodynamic diameter 
≤10 μm; NO2, nitrogen dioxide; O3, ozone; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol. 

a Adjusted for age, sex, ethnic group, highest education completed, annual family income, body mass index, smoking status, secondary smoke, alcohol drinking 
status, DASH score, physical activity, indoor pollution, temperature, relative humidity. 

Table 4 
Associations between per 10-μg/m3 increment in air pollutants and dyslipidemias (n = 67,305).  

Pollutant Hypercholesterolemia Hypertriglyceridemia Hypoalphalipoproteinemia Hyperbetalipoproteinemia Dyslipidemia 

OR (95% CI)a P OR (95% CI)a P OR (95% CI)a P OR (95% CI)a P OR (95% CI)a P 

PM1 1.03 (0.94, 1.14) 0.492 1.12 (1.03, 1.21) 0.006 1.20 (1.09, 1.32) <0.001 1.06 (0.94, 1.19) 0.339 1.13 (1.06, 1.21) <0.001 
PM2.5 1.12 (1.07, 1.18) <0.001 1.08 (1.03, 1.12) 0.001 1.14 (1.08, 1.20) <0.001 1.11 (1.04, 1.18) 0.001 1.14 (1.10, 1.18) <0.001 
PM10 1.08 (1.05, 1.12) <0.001 1.04 (1.01, 1.07) 0.003 1.09 (1.06, 1.13) <0.001 1.10 (1.06, 1.14) <0.001 1.09 (1.07, 1.12) <0.001 
NO2 1.04 (1.01, 1.08) 0.020 0.99 (0.96, 1.02) 0.501 1.12 (1.08, 1.16) <0.001 1.01 (0.97, 1.05) 0.716 1.05 (1.03, 1.08) <0.001 
O3 1.14 (1.04, 1.24) 0.003 0.99 (0.91, 1.07) 0.768 1.10 (0.98, 1.23) 0.093 1.31 (1.19, 1.45) <0.001 1.15 (1.08, 1.22) <0.001 

Abbreviations: PM1, particles with aerodynamic diameter ≤1.0 μm; PM2.5; particles with aerodynamic diameter ≤2.5 μm; PM10, particles with aerodynamic diameter 
≤10 μm; NO2, nitrogen dioxide; O3, ozone. 

a Adjusted for age, sex, ethnic group, highest education completed, annual family income, body mass index, smoking status, secondary smoke, alcohol drinking 
status, DASH score, physical activity, indoor pollution, temperature, relative humidity. 
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TG, and LDL-C levels and decreased HDL-C levels (Yang et al., 2018). A 
recent study in a Chinese rural area showed a negative association be-
tween NO2 and TG levels (Mao et al., 2020). A meta-analysis found that 
a 10 mg/m3 NO2 increase was associated with a 3.14% increase in TG 
levels (Gaio et al., 2019), while there was no similar statistically sig-
nificant association observed in our results. The reasons underlying the 
inconsistent results across studies may be the differences in exposure 
concentration and exposure period. In addition, adjusted confounders 

varied across these studies, such as family income, educational attain-
ment, race, and eating habits, leading to heterogeneity in the results. 

We additionally examined the heterogeneity of the relationship be-
tween air pollution and blood lipids by applying quantile regression 
models. Our results showed an increasing trend for the associations of all 
the air pollutants with TC and HDL-C levels. An individual with high 
lipid levels was more susceptible to air pollutants than one with low 
lipid levels. Compared with the results of traditional linear models, we 

Fig. 1. Associations between per 10-μg/m3 increment in air pollutants and quantiles of blood lipid levels 
Abbreviations: PM1, particles with aerodynamic diameter ≤1.0 μm; PM2.5; particles with aerodynamic diameter ≤2.5 μm; PM10, particles with aerodynamic diameter 
≤10 μm; NO2, nitrogen dioxide; O3, ozone; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol. 
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also found that quantile regression can reveal some hidden associations. 
For example, there was no statistically significant association between 
PM1 and TC for the linear regression models, while a statistically sig-
nificant association was observed in individuals in the higher quantiles 
of TC levels for the quantile regression models. To our knowledge, only 
two previous studies have investigated quantile-specific associations 
between air pollutants and blood lipids. A study in elderly American 
men revealed that the effects of PM2.5 on TG, HDL, and LDL levels were 
strongest in the highest percentiles of these outcomes (Bind et al., 2016), 
which is consistent with our study. Another recent study in patients 
undergoing cardiac catheterization also found an increasing trend be-
tween PM2.5 and TC and LDL-C (Shanley et al., 2016). Both studies were 
from the U.S. and focused on specific populations; to generalize the 
findings to broader populations, more studies conducted in different 
areas are warranted. 

We found stronger associations between air pollutants and HDL-C 
levels among normal participants than among overweight or obese 
participants in stratified analyses. We suspected that this is because BMI 
might increase the risk of dyslipidemia through the same oxidative stress 
and inflammation pathways (Fernández-Sánchez et al., 2011). Among 

overweight or obese participants, BMI might dominate the main effect 
on blood lipids. Therefore, additional exposure to air pollutants does not 
further enhance the effects in these participants as much as it does 
among normal participants. We also found that the associations were 
stronger among younger people, possibly because younger people spent 
more time outdoors than elderly people, increasing exposure to air 
pollutants. The modification effects of sex in our results were mixed. A 
cross-sectional study in the U.S. reported a greater association between 
PM10 and TC among men (Shanley et al., 2016), while another study 
found that the association between PM2.5 and HDL-C was stronger in 
women (Bell et al., 2017). It has been suggested that air pollution may 
interfere with estrogen-mediated regulation of lipid metabolism (Chen 
et al., 2013a; Zore et al., 2018), whereas lifestyle differences, such as 
smoking and drinking, are more common among men and would also 
affect the associations of air pollution with lipid levels. The differences 
between Han and other ethnic groups may be related to genetic pre-
disposition and socioeconomic status. Besides, the sources of pollutants 
differed from site to site, which complicated the interaction effects of 
ethnic group and air pollutants on lipid levels. The results of 
two-pollutant models showed the associations of gaseous pollutants (O3, 

Fig. 2. Associations between per 10-μg/m3 increment in air pollutants and blood lipid levels in single pollutant models and two-pollutant models 
Abbreviations: PM1, particles with aerodynamic diameter ≤1.0 μm; PM2.5; particles with aerodynamic diameter ≤2.5 μm; PM10, particles with aerodynamic diameter 
≤10 μm; NO2, nitrogen dioxide; O3, ozone; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol. 
Note: Square: % changes in the blood lipid levels in the single-pollutant models; Circles: % changes in the blood lipid levels in the two-pollutant models. 
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NO2) with lipid levels were generally consistent after controlling for 
particulate pollutants (PM1, PM2.5, PM10), indicating that the effects of 
gaseous pollutants and particulate pollutants might be independent. 
However, the effects of PM1 became weaker after the inclusion of the 
other particulate pollutants. This finding suggests that the effects of 
particulate pollutants on blood lipids are mainly caused by PM2.5 and 
PM10. 

Our study has several strengths. First, this analysis was based on a 
large sample from southwestern China, which could provide new evi-
dence for the adverse effects of air pollution on blood lipids in LMICs. 
Second, the wide concentration range of air pollutants in our study has 
implications for both high- and low-pollution areas. Third, unlike most 
previous studies, which focused only on the average lipid levels, our 
study also examined the effects of air pollution on different quantiles of 
lipid levels to identify sensitive populations. 

Our study also has some limitations. First, the cross-sectional 
research limited our exploration of the causal relationship between 
ambient air pollution and blood lipids. However, we excluded people 
who had lived at their current residence for less than three years and 
people who had self-reported dyslipidemia; thus, exposure was most 
likely to occur prior to the outcome. Second, we assigned exposure to 
participants based on residential addresses and did not consider the 
exposure of individuals in the workplace, leading to some exposure 
misclassification. Third, we used LDL-C, which reflected the cholesterol 
content of LDL particles, rather than the total number of LDL particles as 
the outcome measure. However, some researchers have suggested that 
LDL particle number may be a better discriminator of CVDs (Blake et al., 
2002; Brunzell et al., 2008); thus, more sensitive and clinically signifi-
cant biomarkers indicating CVD risk are needed in further studies to 
fully and accurately explore the associations of air pollution with blood 
lipids. Finally, although some confounders were adjusted in this 
research, some unmeasured or unknown confounders were not included, 
such as nephrotic syndrome, renal failure, systemic lupus erythemato-
sus, and myeloma, which would affect blood lipids as well. 

5. Conclusions 

Our findings suggest that long-term exposure to ambient air pollu-
tion is associated with altered lipid levels and the risk of dyslipidemia. 
People with already high blood lipid levels should pay more attention to 
protective measures to reduce air pollution exposure. This study was 
expected to provide references for further studies on the associations 
between ambient air pollution and blood lipids and to provide a scien-
tific basis for relevant departments to make policies, thus reducing the 
disease burden of CVDs and promoting population health through 
feasible and achievable targeted interventions. However, considering 
the limitations of our study, future population-based longitudinal 
studies are warranted to provide more definitive evidence on the asso-
ciation between ambient air pollution and blood lipids. 
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