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Abstract
Context: Particulate matter (PM) is an important risk factor for diabetes. However, its underlying mechanisms remain poorly understood. 
Although liver-derived biological intermediates may play irreplaceable roles in the pathophysiology of diabetes, few studies have explored this in 
the association between PM and diabetes.
Objective: We investigated the role of liver enzymes in mediating the relationship between PM exposure and diabetes.
Methods: We included a total of 7963 participants from the China Multi-Ethnic Cohort. Residential exposure to PM was assessed using a valid-
ated spatial-temporal assessment method. Diabetes was diagnosed according to the criteria from American Diabetes Association. Associations 
between PM, liver enzyme [including alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl 
transpeptidase (GGT)], and diabetes were estimated using multivariable regression models. The function of liver enzymes in the relationship 
between PM and diabetes was assessed using mediation analysis.
Results: PM exposure was positively associated with the odds of diabetes, with odds ratios of 1.32 (95% CI 0.83, 2.09), 1.33 (95% CI 1.07, 1.65), 
and 1.18 (95% CI 1.02, 1.36) for every 10-μg/m3 increment in ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) PM, respectively. ALT (4.47%) 
and GGT (4.78%) exhibited statistically significant mediation effects on the association between PM2.5 and diabetes, and the ALT (4.30%) also 
had a mediating role on PM10. However, none of the liver enzymes had a significant mediating effect on PM1.
Conclusion: The relationship between PM and diabetes is partially mediated by liver enzymes, suggesting that lipid accumulation, oxidative 
stress, and chronic inflammation in the liver may be involved in its pathogenesis.
Key Words: particulate matter, liver, diabetes, biomarkers, mediation, mechanisms

The ever-expanding pandemic of diabetes has caused a tre-
mendous public health burden around the world. In 2019, 
there were approximately 463 million diabetic individuals 
and around 4.2 million diabetes-related deaths worldwide 
(1). Therefore, it is vital to identify the hazardous factors and 
causative mechanisms of diabetes to enhance its prevention 
and delay its progression.

Ambient particulate matter (PM) has been recognized as 
an important risk factor for diabetes (2-5). Globally, ≤2.5 μm 
PM (PM2.5) has been implicated as the cause of approximately 
3.2 million diabetes cases (6). Although several studies have 
shown that PM exposure increases the risk of diabetes (7), the 
mechanisms underlying this association have not been fully 
established. Further investigation of this pathophysiology 
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may offer new ideas to inhibit the burden of PM-associated 
diabetes. Previous studies have hypothesized various plaus-
ible mechanisms (8, 9), including the primary initiation re-
sponse (eg, oxidative stress), transmission pathways (eg, 
biological intermediates), and end-organ effectors. However, 
existing epidemiological studies have mainly focused on the 
primary initiation response (10-12), whereas few studies have 
explored the importance of biological intermediates in the re-
lationship between PM and diabetes.

As biological intermediates, liver enzymes may play an es-
sential role in the association between PM and diabetes. First, 
inhaled PM can penetrate the alveoli and gain access into the 
systemic circulation and then transferring to distal organs 
(eg, the liver) for metabolism and biotransformation (13). 
Therefore, PM and its metabolites can directly or indirectly af-
fect liver function, as has been demonstrated in animal studies 
(14, 15). Epidemiological studies (16, 17) have shown that 
PM exposure is associated with abnormal liver enzyme levels. 
Second, as reflected by liver enzymes, steatosis, inflammatory 
reactions, and oxidative stress are all considered early events 
in the development of diabetes (18-19), suggesting that liver 
enzymes may be a link in the metabolic mechanism of dia-
betes (18). Recently, some relevant literature has verified liver 
enzymes as risk factors for diabetes in different populations 
(19-21). Finally, animal studies (22, 23) have established the 
mechanism of PM exposure → pathological degeneration of 
the liver → early events in diabetes. Although both animal evi-
dence and epidemiological evidence support the possible role of 
liver enzymes in the relationship between PM and diabetes, the 
extent to which this occurs in the population remains unclear.

This study assessed the relationship between PM exposure 
and diabetes and further analyzed whether liver enzymes me-
diate this relationship in Chinese adults. We aimed to eluci-
date the potential role of liver biomarkers and their related 
physiological changes from air pollution in diabetes and to 
provide insights into interventions and screening priorities for 
diabetes.

Materials and Methods
Study Population
Data were obtained from the China Multi-Ethnic Cohort 
(CMEC), which recruited 99  556 participants aged 30 to 
79 years in 5 provinces of southwest China through multi-
stage stratified-cluster sampling, taking into account ethnic 
features, population distribution, and chronic disease patterns 
(24). Between May 2018 and September 2019, all participants 
completed a baseline survey, including an electronic question-
naire (to obtain information on demographic characteristics, 
behavioral lifestyle, and health-related status), medical exam-
inations (to obtain relevant physical characteristics), and the 
administration of clinical laboratory tests for biological speci-
mens (to obtain biochemical indicators). From 2020 to 2021, 
all surviving participants were invited to resurvey based on 
a telephone follow-up and on-site repeat surveys. The latter 
was consistent with that of the baseline survey. The data were 
subjected to rigorous quality control measures, including 
on-site surveys by local people, audio quality control of the 
surveys, and a double-entry method for questionnaire verifi-
cation. All participants signed an informed consent form be-
fore the data were collected. Ethical approval was obtained 
from the Sichuan University Medical Ethical Review Board 
(approval nos. K2016038 and K2020022).

The current study included participants who received an 
on-site repeat survey, and it excluded (1) residents of Aba be-
cause they lived nomadically and had no fixed residence; (2) 
residents of Tibet because there was too few air pollution moni-
toring sites in Tibet to obtain accurate exposure data; (3) indi-
viduals with an incomplete residential address; (4) individuals 
who had lived at their current address for <2 years; (5) indi-
viduals with any reported physician-diagnosed liver diseases, 
including hepatitis, cirrhosis, and liver cancer; (6) individuals 
with diabetes, including physician-diagnosed and physical 
examination–diagnosed diabetes, at the time the baseline survey 
was administered; and (7) individuals without available or ac-
curate information on any exposure, mediator, outcome, or 
adjusted variable. After implementing these exclusion criteria, 
7963 participants were included in the current study (Fig. 1).

Air Pollution Exposure Assessment
Under a spatial resolution of 1 km × 1 km, the daily concen-
trations of ambient PM [including PM with aerodynamic 
diameters of ≤1  μm (PM1), ≤2.5  μm (PM2.5), and ≤10  μm 
(PM10)] from 2015 to 2018 were estimated using extremely 
randomized trees, a tree-based ensemble machine learning 
approach in which randomness goes 1 step further in way 
splits. Briefly, ground-based measurements of air pollutants 
were estimated through an extremely randomized tree model 
based on ground-based monitoring station data from the 
National Environmental Monitoring Center of China [see 
Supplementary Figure 1 (25)], meteorological information, 
land coverage information, satellite remote-sensing data, 
topographic information, population distribution data, pollu-
tion emission data, and other spatial-temporal predictors. The 
models have been validated using a 10-fold cross-validation 
approach, and the results showed that 10-fold cross-
validation root mean-square error (R2) values for the daily 
prediction of PM1, PM2.5, and PM10 were 0.77 (14.6 μg/m3),  
0.90 (10.01  μg/m3), and 0.86 (24.28  μg/m3), respectively. 
Details of the exposure data content and analysis process 
have been described in previous studies (26-28).

The residential locations acquired at baseline were 
geocoded, and the annual PM concentrations were subse-
quently calculated for all participants. The average con-
centrations of PM1, PM2.5, and PM10 at 2  years before the 
baseline survey were assigned to each participant as surrogate 
exposure variables.

Outcome and Mediator Ascertainment
Blood samples from all participants, taken after a fasting 
period of at least 8 hours, were collected on site by profes-
sionals and used for clinical laboratory tests according to a 
standard protocol. The tests included routine blood exam-
inations, blood lipid examinations, fasting blood glucose 
measurements, and liver function tests, which measured the 
fasting blood glucose, hemoglobin A1c (HbAlc), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), 
alkaline phosphatase (ALP), and γ-glutamyl transpeptidase 
(GGT) levels.

The levels of liver enzymes (ALT, AST, ALP, and GGT) 
measured in the baseline survey were estimated as mediators 
for this study. Diabetes status was assessed using criteria 
from the American Diabetes Association (29), and the diag-
noses included self-reported physician-diagnosed diabetes, a 
fasting blood glucose level of ≥7.0 mmol/L, and an HbAlc of 
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≥48 mmol/mol (6.5%), as observed during the repeat survey 
phase. This diagnostic criteria does not distinguish between 
diabetes types (type 1 or type 2).

Statistical Analysis
Descriptive Analysis
Descriptive and frequency statistics were generated for con-
tinuous and categorical demographic characteristics, lifestyle 
behaviors, environmental factors, and other information. 
Exposure maps were created based on the geographical loca-
tion and exposure concentrations of each study participant, 
and the overall distribution of the exposure was described for 
each survey site.

Regression Analysis
Multivariable linear regression models were used to assess the 
long-term effects of PM exposure and liver enzyme levels as 
continuous variables. Multivariable logistic regression models 
were used to estimate the PM exposure and 4 types of liver 
enzyme levels with diabetes as a dichotomous outcome. To 

normalize the distribution of the liver enzyme levels, a natural 
logarithmic transformation was required for analysis, but the 
results were reported after conversion to the original scale. 
Odds ratios (ORs) and unstandardized regression coefficients 
with 95% CIs were reported for dichotomous and continuous 
outcomes, respectively.

Three models were used to evaluate these associations: a 
crude model (Model 0) and 2 adjusted models (Models 1 and 
2). Model 0 was the initial crude estimated model; Model 1 
was adjusted for demographic characteristics (age, sex, an-
nual household income, ethnic group, and residential type), 
and Model 2 was additionally adjusted for lifestyle behaviors 
[smoking status, second-hand smoke status, alcohol consump-
tion, indoor pollution, physical activity, and Mediterranean 
diet (MED) score] and environmental factors (season and ni-
trogen dioxide (NO2)].

Mediation Analysis
We defined, identified, and estimated mediating effects within 
the counterfactual framework of causal inference, a methodo-
logical estimation that relies exclusively on counterfactual 

Figure 1. Flow charts for participant enrollment.
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outcomes without referencing any specific statistical models 
(30, 31). On the technical level, for each candidate liver en-
zyme mediator, we fitted 2 linear regression models: (1) the 
mediator model, with the liver enzyme level as the outcome 
and PM exposure as a predictor, adjusting for age, sex, annual 
household income, ethnic group, residential type, smoking 
status, secondhand smoke status, alcohol consumption, phys-
ical activity, MED score, indoor air pollution, season, and 
NO2, and (2) the outcome model, with diabetes as the out-
come and PM exposure as a predictor, adjusting for liver en-
zyme mediators and covariates in the same manner as in the 
first model. A simulation-based mediation approach was used 
to estimate and test the mediating effect of liver enzymes on 
the link between PM and diabetes. We used 2000 simulations 
to obtain the estimates and 95% CIs. This method was imple-
mented using the mediation package in R (32). PM exposure 
and liver enzymes were included as the continuous variables, 
whereas diabetes was included as a dichotomous variable.

The previously described model can examine the direct ef-
fect of 2-year average PM concentration before the baseline 
survey on the risk of diabetes at follow-up, as well as the in-
direct effect of PM on the risk of diabetes via liver enzymes 
during the baseline investigation (Fig. 2).

Covariate Definitions
Based on previous literature, the adjusted model included 
the following covariates: age, sex (male or female), annual 
household income (<20 000 yuan, 20 000-99 999 yuan, or 
≥100 000 yuan), ethnic group [Han (basin), Han (highland), 
Buyi, Dong, Miao, Bai, or Yi), residential type (urban or 
rural), smoking status (nonsmoker, current smoker, or pre-
vious smoker), secondhand smoke status (yes or no), alcohol 
consumption (never, moderate, or high), physical activity, 
MED score, indoor air pollution (none, low/moderate, or 
high), season (spring, summer, autumn, or winter), and NO2 
(μg/m3). Alcohol consumption was classified according to the 
amount of alcohol consumed: “never” was defined as no al-
cohol consumed; “moderate” was classified as ≤25 g/day, and 
≤15 g/day of alcohol consumed for men and women, respect-
ively; and “high” was classified as >25 g/day and >15 g/day of 
alcohol consumed for men and women, respectively. Physical 
activities were qualified in terms of daily metabolic equivalent 
tasks, including occupation, transport, exercise, household, 
and leisure time activities. Indoor air pollution is made up of 
2 components, fuel type and fume extraction device settings: 
“none” if no fuel was used, “low/moderate” if clean energy 
or a fume extraction device was used, and “high” if nonclean 
energy (including firewood, charcoal, and coal) and no fume 
extraction device were used.

Sensitivity Analyses
In the sensitivity analysis, we assessed the linearity assump-
tion of the exposure-response relationship using a penalized 
spline model, including the associations of PM with diabetes 
and PM with liver enzyme levels. To ensure the stability 
of the study results, additional analyses were performed: 
(1) addition of family history of diabetes as a covariate 
in the fully adjusted model; (2) exclusion of participants 
with pregnancy, cancer, or tuberculosis (192 participants 
were excluded, 127 for tuberculosis, 64 for cancer, and 1 
for pregnancy); (3) exclusion of participants with suspected 
type 1 diabetes based on a diagnostic criteria (33) for using 
age at diagnosis and time to commencing insulin treatment 
from diagnosis (7 participants were excluded); and (4) use 
of the concentration of PM for 1-, 3-, and 4-year averages 
before the baseline survey to determine the long-term ef-
fects of PM.

All analytical processes were performed using the R soft-
ware (version 4.1.1). The significance threshold was set at 
0.05, and all significance assessments were 2-sided.

Results
Descriptive Analysis
A total of 7963 participants were included in this study. 
The average age of the participants was 51.11  years 
(SD = 10.73 years), and 62.2% (n = 4952) were female. The 
median (interquartile range) levels of the ALT, AST, ALP, and 
GGT were 19.00 U/L (12.00 U/L), 24.00 U/L (9.00 U/L), 
78.00 U/L (32.00 U/L), and 21.00 U/L (20.80 U/L), respect-
ively. Liver enzymes, demographic characteristics, lifestyle 
behaviors, environmental factors, and other information clas-
sified according to the disease state were shown in Table 1. 
The mean follow-up time was 1.99 years (SD = 0.29 years), 
and 345 (4.33%) participants developed diabetes during the 
follow-up period. A comparison between the 99 556 eligible 
participants and 7963 included participants was shown in 
Supplementary Table 1 (25).

The mean PM concentration in the 2  years before the 
baseline survey varied considerably among the study sites 
[Fig. 3; Supplementary Table 2 (25)]. The 2-year average 
concentrations for PM1, PM2.5, and PM10 were 27.33 µg/m3  
(SD = 6.29  µg/m3), 40.74  µg/m3 (SD = 14.04  µg/m3), and 
70.97 µg/m3 (SD = 20.72 µg/m3), respectively.

Regression Analysis
The relationship between PM and liver enzyme levels is 
shown in Table 2. In the fully adjusted model, increased 
levels of PM2.5 exposure were significantly associated with 
the increment of 4 liver enzymes. However, there was no 
statistically significant association between PM10 and the 
GGT level, and only the association between PM1 and the 
AST or ALP level was statistically significant. In PM2.5, 
a 10-µg/m3-increment was related to a 2.84% (95% CI 
0.78%, 4.94%), 5.23% (95% CI 3.91%, 6.58%), 11.18% 
(95% CI 9.91%, 12.47%), and 3.05% (95% CI 0.39%, 
5.77%) increase in ]ALT, AST, ALP, and GGT levels, re-
spectively. PM10 had a weaker relationship with the liver 
enzymes than did PM2.5. Each 10-µg/m3 increment in PM1 
led to a 4.39% (95% CI 1.56%, 7.31%) and 7.57% (95% 
CI 4.87%, 10.34%) increase in the AST level and ALP 
level, respectively.

Figure 2. The particulate matter-liver enzyme-diabetes mediation model 
and temporality relationships.
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Table 1. Characteristics of the participants according to the presence of diabetes

Characteristics  Overall  
(n = 7963) 

Diabetes  
(n = 345) 

Nondiabetes  
(n = 7618) 

P-valuea 

Liver enzyme

 ALT, U/L 19.00 (12.00) 21.00 (15.00) 18.50 (12.00) 0.001

 AST, U/L 24.00 (9.00) 25.00 (9.00) 24.00 (9.00) 0.002

 ALP, U/L 78.00 (32.00) 83.00 (35.00) 78.00 (32.00) <0.001

 GGT, U/L 21.00 (20.80) 28.00 (29.00) 21.00 (20.00) <0.001

Demographic characteristics

 Age at baseline, years 51.11 (10.73) 56.57 (9.97) 50.86 (10.70) <0.001

 Sex, female 4952 (62.2) 199 (57.7) 4753 (62.4) 0.088

 Annual household income, ¥    0.037

  <20 000 2354 (29.6) 123 (35.7) 2231 (29.3)  

  20 000-99 999 4281 (53.8) 172 (49.9) 4109 (53.9)  

  ≥100 000 1328 (16.7) 50 (14.5) 1278 (16.8)  

 Ethnic group    <0.001

  Han (basin) ethnicity 4480 (56.3) 159 (46.1) 4321 (56.7)  

  Han (highland) ethnicity 823 (10.3) 49 (14.2) 774 (10.2)  

  Buyi ethnicity 511 (6.4) 7 (2.0) 504 (6.6)  

  Dong ethnicity 541 (6.8) 31 (9.0) 510 (6.7)  

  Miao ethnicity 470 (5.9) 47 (13.6) 423 (5.6)  

  Bai ethnicity 739 (9.3) 28 (8.1) 711 (9.3)  

  Yi ethnicity 399 (5.0) 24 (7.0) 375 (4.9)  

 Rural 3724 (46.8) 169 (49.0) 3555 (46.7) 0.430

Lifestyle behaviors

 Smoking status    0.035

  Nonsmoker 6133 (77.0) 252 (73.0) 5881 (77.2)  

  Current smoker 1444 (18.1) 80 (23.2) 1364 (17.9)  

  Previous smoker 386 (4.8) 13 (3.8) 373 (4.9)  

 Secondhand smoke status 4069 (51.1) 168 (48.7) 3901 (51.2) 0.391

 Alcohol consumption    0.001

  Never 4343 (54.5) 177 (51.3) 4166 (54.7)  

  Moderate 3238 (40.7) 137 (39.7) 3101 (40.7)  

  High 382 (4.8) 31 (9.0) 351 (4.6)  

 Physical activity (METs/day) 26.59 (17.88) 24.75 (17.44) 26.67 (17.90) 0.051

 MED score 8.57 (2.44) 8.65 (2.51) 8.57 (2.44) 0.527

 Indoor pollution    0.230

  None 1330 (16.7) 56 (16.2) 1274 (16.7)  

  Low/moderate 6369 (80.0) 283 (82.0) 6086 (79.9)  

  High 264 (3.3) 6 (1.7) 258 (3.4)  

Environmental factors

 Season    0.001

  Spring 246 (3.1) 8 (2.3) 238 (3.1)  

  Summer 1001 (12.6) 67 (19.4) 934 (12.3)  

  Autumn 3025 (38.0) 123 (35.7) 2902 (38.1)  

  Winter 3691 (46.4) 147 (42.6) 3544 (46.5)  

 NO
2, μg/m3 30.04 (11.96) 27.02 (10.42) 30.18 (12.00) <0.001

Other information     

 Follow time, years 1.99 (0.29) 2.06 (0.31) 1.99 (0.29) <0.001

 Length of residence, years 17.49 (15.50) 21.65 (18.69) 17.30 (15.31) <0.001

Data are mean (SD) for continuous variables and number (percentage) for categorical variables. Liver enzymes do not follow a normal distribution, so the 
expression is the median (interquartile range).
Abbreviations: MET, metabolic equivalent task; MED, Mediterranean diet; NO2, nitrogen dioxide.
aP-values were based on the Wilcoxon rank-sum test for the liver enzyme, Pearson’s Chi-squared test for sex, annual household income, ethnic group, 
residential type, smoking status, secondhand smoke status, alcohol consumption, indoor pollution, and season; t-test for age, physical activity, MED score, 
NO2, follow time, and length of residence. All statistical tests were 2-sided.
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Table 3 showed the relationship between PM and diabetes. 
In the fully adjusted model, each 10-µg/m3 increment in PM2.5 
and PM10 was related to an increased likelihood of developing 
diabetes during the follow-up, with increases in the odds by 
approximately 33% (OR 1.33, 95% CI 1.07, 1.65) and 18% 
(OR 1.18, 95% CI 1.02, 1.36), respectively. The link between 
PM1 and diabetes risk was not statistically significant, al-
though it was in the direction of a risk indication (OR 1.32, 
95% CI 0.83, 2.09).

Increased levels of ALT or GGT were related to an increased 
odd of diabetes, with each 1-U/L increase leading to approxi-
mately 1.18-fold (OR 1.18, 95% CI 1.09, 1.28) and 1.18-
fold (OR 1.18, 95% CI 1.12, 1.25) increases, respectively. 

However, increases in the AST and ALP levels were not statis-
tically associated with the development of diabetes, although 
they were indicative of a risk of diabetes (AST: OR 1.07, 95% 
CI 0.95, 1.22; ALP: OR 1.12, 95% CI 0.97, 1.29).

Mediation Analysis
The results of the mediation analysis using each of the 4 liver 
enzymes as the only potential mediator in the model dem-
onstrated that the AST and ALP levels did not mediate the 
relationship between PM and diabetes risk and that the ALT 
and GGT levels partially mediated the association between 
PM2.5 or PM10 and diabetes risk (Fig. 4). The indirect effect 
of PM2.5 or PM10 on increasing diabetes risk through ALT 

Figure 3. Two-year average ≤1, ≤2.5, and ≤10 μm particulate matter concentrations before the baseline survey in this study.

Table 2. Association between long-term particulate matter exposure and serum liver enzyme levels

Particulate matter, 10 μg/m3 % Change (95% CI) in liver enzymea

Model 0b Model 1c Model 2d 

PM1    

 ALT, U/L −2.27 (−4.02, −0.49) 2.63 (−1.39, 6.82) 2.22 (−2.16, 6.80)

 AST, U/L −5.35 (−6.42, −4.27) 4.92 (2.30, 7.60) 4.39 (1.56, 7.31)

 ALP, U/L −2.86 (−3.90, −1.81) 9.31 (6.76, 11.92) 7.57 (4.87, 10.34)

 GGT, U/L −12.72 (−14.82, −10.56) 1.01 (−4.14, 6.42) 1.31 (−4.26, 7.20)

PM2.5    

 ALT, U/L −0.50 (−1.30, 0.31) 3.36 (1.43, 5.31) 2.84 (0.78, 4.94)

 AST, U/L −1.78 (−2.28, −1.28) 6.08 (4.83, 7.34) 5.23 (3.91, 6.58)

 ALP, U/L 0.00 (−0.48, 0.48) 12.75 (11.54, 13.98) 11.18 (9.91, 12.47)

 GGT, U/L −5.45 (−6.47, −4.41) 3.67 (1.15, 6.24) 3.05 (0.39, 5.77)

PM10    

 ALT, U/L −0.50 (−1.04, 0.05) 2.02 (0.78, 3.28) 1.61 (0.26, 2.99)

 AST, U/L −1.29 (−1.63, −0.95) 3.77 (2.97, 4.57) 3.15 (2.29, 4.02)

 ALP, U/L 0.00 (−0.33, 0.33) 7.57 (6.81, 8.34) 6.61 (5.79, 7.43)

 GGT, U/L −3.73 (−4.44, −3.01) 2.02 (0.40, 3.67) 1.72 (−0.03, 3.49)

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase.
aLiver enzymes were natural log-transformed to normalize the data for analysis, and then the original scale was transformed back to present the effects as 
the percentage difference in liver enzymes with 95% CI.
bModel 0, not adjusted for any covariates.
cModel 1, adjust for demographic characteristics, including age, sex, annual household income, ethnic group, and residential type.
dModel 2, additionally adjusted for lifestyle behaviors (smoking status, secondhand smoke status, alcohol consumption, indoor pollution, physical activity, 
and Mediterranean diet score), and environmental factors (season and nitrogen dioxide).
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was 2.21 × 10 and 1.24 × 10, with proportions mediated by 
4.47% and 4.30%, respectively. The indirect effects of PM2.5 
increasing the risk of diabetes through GGT was 2.35 × 10, 
with a proportion mediated by 4.78%.

Sensitivity Analysis
The results of the penalized spline models regarding the asso-
ciations of PM with diabetes and liver enzymes were shown 
in Supplementary Figure 2 (25). The results showed that the 
linearity assumption of the exposure-response relationship 
was appropriate, except for the association between PM and 
diabetes, which was mildly nonlinear. Given the presence of 
mild nonlinearity, we further assessed this association using 
the PM quartile as an exposure variable. Results were shown 
in Supplementary Table 3 (25). The findings indicated that 
the association of PM2.5 and PM10 with diabetes was con-
sistent with continuous exposure, but PM1 changed from not 
statistically significant to statistically significant. The results 
of other sensitivity analyses are presented in Table 4. We ob-
served that the results of the proportion-mediated value re-
mained robust after adjusting for a family history of diabetes 
and restricting the sample for the analysis. When excluding 
patients with suspected type 1 diabetes, the mediating role 
of liver enzymes in PM-associated diabetes remained stable. 
When using the average concentrations of PM from a series of 
exposure windows, the mediated results for PM1 were more 
variable but still not statistically significant, while the medi-
ated results for PM2.5 and PM10 exhibited a U-shaped relation-
ship with the time of accumulation.

Discussion
Principal Findings
This longitudinal study demonstrated that long-term PM ex-
posure was associated with elevated serum liver enzyme levels 
and positively associated with subsequent diabetes risk. To 
our knowledge, this is the first epidemiological study to pro-
vide evidence of the mediating role of altered liver enzymes in 
the association between PM and diabetes. Mediation analysis 
revealed that the serum ALT and GGT levels had a statis-
tically significant mediating effect on diabetes risk associated 

with PM2.5 or PM10. Our findings highlight the significance 
of the potential application of tools or drugs associated with 
liver biomarkers for the prevention and treatment of air 
pollution-induced diabetes.

Comparison With Other Studies
The statistically significant association of diabetes with 
long-term exposure to PM2.5 and PM10 was in line with the 
previous studies (5, 34, 35). Meta-analysis indicated that a 
10-μg/m3 increase in PM2.5 concentration led to an increase 
in the risk of type 2 diabetes by 39% (95% CI 14%, 68%) 
(34). Another cohort study found that the risk of diabetes in-
creased by 17% (hazard ratio 1.17, 95% CI 1.08, 1.26) for 
each 10-μg/m3 increment in ambient PM10 (35). However, 
few studies have investigated the association between PM1 
and diabetes. A  study conducted in rural China observed 
that a 1-μg/m3 increase in PM1 was positively associated 
with a 4.0% (95% CI 2.6%, 5.4%) increase in the odds 
of type 2 diabetes (36). However, our study only showed a 
positive, but not statistically significant, association between 
PM1 exposure and diabetes risk. This contradiction is found 
at present owing to the diversity in research objects, research 
areas, pollutant composition, or sources. In this study, we 
observed a stronger association of diabetes with PM2.5 than 
with PM1 or PM10. Studies have confirmed that the diameter 
of the PM directly determines where it can enter the body, 
and particles with smaller diameters are more likely to enter 
the deep layer (37). However, the virulence of PM depends 
not only on its diameter but also on the various substances 
it carries (38). Moreover, some sources of PM2.5 may be en-
riched with factors that can lead to adverse health effects 
compared to PM1 (38).

Our study found that long-term exposure to PM was asso-
ciated with elevated liver enzyme levels, which is consistent 
with most published studies. A study (16) revealed that AST, 
ALT, and GGT levels increased by 0.02% (95% CI −0.04%, 
0.08%), 0.61% (95% CI 0.51%, 0.70%), and 1.60% (95% 
CI 1.50%, 1.70%), respectively, for every 10-µg/m3 increase 
in PM2.5 annual average concentration (2  years). However, 
Markevych et  al (39) demonstrated that only PM2.5 was 
related to GGT, and there was no significant correlation 

Table 3. Odds ratios (95% CIs) of diabetes are associated with particulate matter exposure and liver enzyme

 OR (95% CI)

 Model 0 a Model 1 b Model 2 c 

Exposure, 10 μg/m3    

 PM1 0.71(0.59, 0.84) 1.07 (0.70, 1.63) 1.32 (0.83, 2.09)

 PM2.5 0.90 (0.83, 0.97) 1.19(0.97, 1.45) 1.33 (1.07, 1.65)

 PM10 0.93 (0.88, 0.98) 1.08 (0.95, 1.24) 1.18 (1.02, 1.36)

Liver enzyme, 1 U/L

 ALT 1.14 (1.06, 1.23) 1.18 (1.09, 1.27) 1.18 (1.09, 1.28)

 AST 1.20(1.07, 1.33) 1.08 (0.95, 1.22) 1.07 (0.95, 1.22)

 ALP 1.33 (1.17, 1.51) 1.11 (0.97, 1.28) 1.12 (0.97, 1.29)

 GGT 1.22 (1.16, 1.28) 1.20 (1.14, 1.27) 1.18 (1.12, 1.25)

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase; OR, odds 
ratio; PM1, particulate matter with aerodynamic diameters ≤ 1 μm; PM2.5, particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, particulate 
matter with aerodynamic diameters ≤ 10 μm.
aModel 0, not adjusted for any covariates.
bModel 1, adjust for demographic characteristics, including age, sex, annual household income, ethnic group, and residential type.
cModel 2, additionally adjusted for lifestyle behaviors (smoking status, secondhand smoke status, alcohol consumption, indoor pollution, physical activity, 
and Mediterranean diet score) and environmental factors (season and nitrogen dioxide).
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between other types of liver enzymes or pollutants. However, 
the results are not comparable, as the study was conducted in 
Germany, where the mean PM concentrations are significantly 

lower than those in the current study area. In conclusion, ex-
isting studies have indicated that PM showed a stable posi-
tive correlation with elevated liver enzymes in different 

Figure 4. Mediating effect of liver enzymes on the particulate matter–associated diabetes. PM1, particulate matter with aerodynamic diameters ≤ 1 μm; 
PM2.5, particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, particulate matter with aerodynamic diameters ≤ 10 μm. Abbreviations: ALP, 
alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase; PM, proportion mediated; RD, 
risk difference.
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populations, including the elderly (40), newborns (41), and 
the general population (16).

This study also found that alterations in liver enzymes 
were related to the development of diabetes; however, only 
2 enzymes, ALT and GGT, had statistically significant associ-
ations. To date, a strong link between diabetes risk and liver 
enzymes has been established in a large number of studies 
(42, 43). Most of the existing studies have concentrated on 
the relationship between ALT or GGT and diabetes, and 
studies have found ALT and GGT to be independent risk pre-
dictors for diabetes, which is consistent with the findings of 

this study. Few studies have elucidated the function of ALP 
in diabetes risk, with 1 cohort study conducted in China 
showing a positive association between baseline serum ALP 
levels and new-onset diabetes in patients with hypertension 
(20). As the participants in the study were patients, the dis-
tribution of health status and relevant characteristics of the 
population were not consistent with our study, causing results 
that are not comparable. In addition, our diagnostic criteria 
for diabetes were different from those of the study (excluding 
HbA1c), which may have led to the underdiagnosis of dia-
betic patients.

Table 4. Sensitivity analyses for mediation effect (%, proportion mediated) of serum liver enzyme levels on particulate matter exposure with risks of 
diabetes

 Liver enzyme

ALT AST ALP GGT 

PM1

 Main analysesa 2.63 1.93 5.83 1.77

 Additional adjustments for:

  Family histories of diabetes 2.28 2.04 6.04 1.42

 Restricted to:

  Those without pregnancy, cancer, or tuberculosis 2.92 2.03 7.61 2.35

  Those without suspected type 1 diabetes 2.48 1.81 5.94 1.50

 Exposure windows

  1 year before the baseline survey 1.34 1.34 7.71 0.80

  3 years before the baseline survey 2.89 1.35 2.53 1.52

  4 years before the baseline survey 2.09 0.94 0.19 1.06

PM2.5

 Main analyses a 4.47b 2.75 7.97 4.78b

 Additional adjustments for:

  Family histories of diabetes 4.22c 2.58 8.13 4.73b

 Restricted to:     

  Those without pregnancy, cancer, or tuberculosis 4.63b 2.80 9.79 5.02b

  Those without suspected type 1 diabetes 4.10b 2.52 8.66 4.52b

 Exposure windows

 1 year before the baseline survey 3.70b 2.88 8.31 3.96

 3 years before the baseline survey 3.81c 2.24 6.42 4.79b

 4 years before the baseline survey 4.58b 2.80 8.55 5.46b

PM10

 Main analyses a 4.30b 3.08 9.03 4.66

 Additional adjustments for:

  Family histories of diabetes 4.44b 3.12 9.78 4.63

 Restricted to:

  Those without pregnancy, cancer, or tuberculosis 4.83b 3.54 11.57 5.05

  Those without suspected type 1 diabetes 4.03b 2.90 9.55 4.24

 Exposure windows

  1 year before the baseline survey 5.22 5.42 15.31 5.11

  3 years before the baseline survey 5.43b 3.69 10.50 5.95b

  4 years before the baseline survey 6.92b 4.52 12.80 7.27

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase; PM1, 
particulate matter with aerodynamic diameters ≤ 1 μm; PM2.5, particulate matter with aerodynamic diameters ≤ 2.5 μm; PM10, particulate matter with 
aerodynamic diameters ≤ 10 μm.
aModel was adjusted for demographic characteristics (age, sex, annual household income, ethnic group, and residential type), lifestyle behaviors (smoking 
status, second-hand smoke status, alcohol consumption, indoor pollution, physical activity, and Mediterranean diet score), and environmental factors 
(season and nitrogen dioxide).
bP-value < 0.05. 
cP-value < 0.01.
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Potential Mechanism
The exact biological mechanisms by which PM induces dia-
betes remain unclear. Published studies have proposed a var-
iety of potential pathways, such as oxidative stress response, 
proinflammatory mechanisms, and endothelial dysfunction. 
Recent findings, including animal experiments and epi-
demiological investigations, have indicated that changes in 
the physiological response within the liver may be another 
important mechanism. Reactive oxygen species (ROS) affect 
the liver. Excessive ROS levels disrupt liver homeostasis and 
increase oxidative stress in the liver. Some studies have hy-
pothesized that exposure to ambient PM could activate ROS 
production (44) and enhance systemic stress (45), which 
can directly affect the normal metabolic process of the liver. 
Another reasonable assumption is that PM may also play a 
role in the pathology of liver diseases by altering lipid metab-
olism and inducing a proinflammatory environment, thereby 
indirectly affecting liver function (13). Impairment of liver 
function, which is responsible for detoxification, metabolism, 
bile secretion, and immune defense, can directly increase the 
risk of developing metabolic diseases such as diabetes. As a 
biomarker of liver injury, fluctuations in liver enzymes dir-
ectly reflect physiological changes within the liver. Elevated 
liver enzyme levels may be the first response to air pollution 
in the liver.

This study focused on the role of 4 different liver enzymes, 
and the results suggest that ALT and GGT may partially me-
diate the association between PM and diabetes, which is con-
sistent with the findings of several studies (43, 46, 47). ALT, a 
specific marker of hepatic fat accumulation, is related to hep-
atic insulin sensitivity, and fat changes are a specific response 
of the liver to proinflammatory cytokines (48). Furthermore, 
as a gluconeogenic enzyme, elevated ALT levels may indicate 
an insulin signal block. Therefore, fat changes and concomi-
tant ALT elevation may reflect liver inflammation, which may 
damage local and systemic insulin-related signal transduc-
tion. Elevated GGT levels are a response to oxidative stress 
(21). Pancreatic β cells, which play an important role in the 
regulation of insulin secretion, are specifically susceptible to 
oxidative reactions because they contain fewer antioxidant 
enzymes (49). Oxidative stress is known to reduce insulin 
secretion by damaging the pancreatic β cells. In addition to 
this, GGT may also affect insulin secretion by regulating the 
activity of fat metabolism-related factors such as leptin and 
lipocalin, disrupting the normal feedback axis and leading to 
insulin resistance and diabetes (50). Taken together, our study 
suggests that liver enzymes have a significant and logical 
mediating role in the association between PM and diabetes, 
but the proportion of mediation suggests that liver enzymes 
have a limited mediating role, which may be related to the 
fact that the 4 liver enzymes in our study did not fully respond 
to all physiological changes within the liver.

Strengths and Weaknesses
This study has some limitations. First, we calculated the PM 
exposure concentration based on the participant’s residential 
address rather than individual exposure (without consider-
ation of travel and activity patterns). However, evidence sug-
gests that this type of misclassification usually biases the effect 
estimates to null (51), indicating that our results were prob-
ably conservative. Second, liver enzyme levels were measured 
at only 1 time point, and this single measurement may bias 

the assessment of liver abnormalities owing to the presence 
of other nonpathological elevations. However, rigorous meas-
urement procedures and quality control may reduce potential 
bias to some extent. Third, this study did not adjust for other 
environmental factors associated with diabetes such as traffic 
noise and green spaces. Furthermore, we made partial adjust-
ments to the area-level socioeconomic status via adjusting 
for ethnic group (province and ethnic agglomerations) and 
residential type (rural and urban) but not for neighbor-
hood socioeconomic status, which might bias the study re-
sults somewhat. Finally, not differentiating between type 1 
and type 2 diabetes based on the gold standard may cause 
biases in interpreting the mechanism between PM and dia-
betes, even though the prevalence of type 1 diabetes was very 
low. Despite these limitations, this is the first and currently 
the largest epidemiological study to clarify the mediating role 
of liver enzymes in the association between ambient PM ex-
posure and diabetes. A considerable sample size, strict inves-
tigation process, high-quality data, and the definition of the 
same outcome enabled us to acquire reliable and stable ef-
fect estimates. Furthermore, this study was longitudinal with 
a clear temporal relationship between exposure, mediators, 
and outcomes, which can address the problem of causal in-
version in cross-sectional studies. This chronological relation-
ship can further ensure the plausibility of this result. Finally, 
the sufficient diversity of the population and heterogeneity of 
environmental exposure from multiple sites increased the re-
peatability of our findings.

Future Research
Current studies have focused on the mediating role of liver 
enzymes in PM-related diabetes; however, the liver enzymes 
included in this study were primarily markers of liver injury. 
In addition, markers of liver function such as albumin, bili-
rubin, and prothrombin time may also reflect physiological 
changes in the liver. Therefore, the role of other liver bio-
markers in the association between PM and diabetes should 
be investigated in the future.

Conclusion
This longitudinal study demonstrated that liver enzymes 
can partially mediate the relationship between long-term ex-
posure to ambient PM and diabetes. These findings extend 
the knowledge of the current mechanisms of air pollution-
induced diabetes and provide new insights into preventing 
diabetes and screening those at risk of diabetes.
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