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Background: Ozone (O3) has become a prominent air pollutant problem as other pollutants concentrations have
decreased obviously since China published Air Pollution Action Plan Pollution Prevention Action Plan in 2013.
Few studies examined the association between O3 and diabetes especially in developing countries. This study
was designed to investigate the above topic in China.
Methods: We conducted a prospective cohort study based on a nationwide survey of 13,548 adults from China
Health and Retirement Longitudinal Study. City-level exposure to ozone for each participant was matched
through ChinaHighO3 dataset. Time-varying cox proportional hazard regressionmodelwas applied to determine
the association. Stratification analyses were conducted to explore potential effect modification.
Results: The annual mean concentration of O3 was 86.6 μg/m3. A 10 μg/m3 increase in 1-year average O3

concentration was associated with 5.7% (95% CI: 1.004–1.114) relative increment in hazards ratio of diabetes
incidence in the fully adjusted model. Results stayed stable when controlling for physical activity, PM2.5 and
mean temperature.
Conclusions: Our findings provided initial support for a positive and robust association between long-term expo-
sure to O3 and diabetes incidence in a developing country.More scientific and social attention should be attached
to the ozone-induced risks of diabetes occurrence.
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1. Introduction

Driven by clean air policies (China's Air Pollution Action Plan
Pollution Prevention Action Plan published in 2013), the air quality in
Chinahas improved rapidly since 2013 (Xue et al., 2021). The annual av-
erage concentrations of PM2.5, PM10, SO2 and COdecreased in the 74 key
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cities. However, no significant change was seen in annual average
concentrations of ozone (20.4% increase; 95% CI: -30.1-7.0) (Huang
et al., 2018). For a long period of time in the future, O3 will become
a prominent problem that affects ambient air quality after PM10

and PM2.5. Ozone is an important trace and greenhouse gas in the
atmosphere yet and it can elicit a wide range of adverse effects
on human health. Epidemiologic and experimental studies have
proved that higher and worsening O3 pollution especially in
densely populated areas of China does harm to pulmonary function
disorder, respiratory disease hospital admission, induction and ex-
acerbation of asthma, and risks for diabetic deaths (Berman et al.,
2012; Mustafic et al., 2012; Parrish et al., 2012; Turner et al.,
2016; Vinikoor-Imler et al., 2014).

Diabetes is a major risk factor for morbidity and mortality world-
wide (Roglic and Unwin, 2010). The past two decades have witnessed
a concerning rise in the incidence of diabetes (Bragg et al., 2017). Air
pollution has accounted for nearly 40% of all studies that explore envi-
ronmental determinants of diabetes (Dendup et al., 2018). Among
them, there existed published literature reporting that air pollution is
a contributor to the risk and progression of diabetes, especially type 2
diabetes (Eze et al., 2015). A meta-analysis reviewing 17 studies found
significant associations between six air pollutants (PM10, PM2.5, NO2,
O3, sulphate and SO2) and diabetes with pooled relative ratios or
mortality risk ratios ranging from 1.01 to 1.07 per 10 μg/m3 increases
in pollutants (Janghorbani et al., 2014), while no study focused on
ozone was conducted in Asia. Moreover, only 2 cross-sectional studies
in the included literature examined the association between long-
term exposure to traffic-related pollutant and diabetes. Evidence on
the long-termeffect of ozonewas lacked. Briefly,most published papers
were from theNorth American andWestern European populations (Eze
et al., 2015; Janghorbani et al., 2014; Wang et al., 2014), associations
between O3 exposure and diabetes have been scarcely studied in
developing countries. Notably, east Asian populations (e.g., China)
were different in their risk profile for diabetes compared with
American and European populations (Hu and Jia, 2018; Kodama et al.,
2013). To sum up, China, known for the highest prevalence of diabetes
worldwide and high ozone pollution, is in urgent need to investigate
the association between long-term ozone exposure and diabetes inci-
dence (Dzhambov, 2018).

Among the existed original studies concentrated on the long-term
exposure to ozone and diabetes, 33-communities study by Yang com-
prehensively explored the associations of long-term exposure to
ozone with diabetes prevalence (Yang et al., 2018), but its cross-
sectional design made it difficult to establish a causal association and
the study samples only covered 5 cities in Liaoning province lack of rep-
resentation. The cohort study in 105 United States cities reported posi-
tive association between long-term ozone exposure with a hazard ratio
for mortality of 1.07 (95% CI: 1.05–1.10) for diabetes (Zanobetti and
Schwartz, 2011). Liu et al. reported no significant association between
long-term exposure to O3 and type 2 diabetes prevalence (Liu et al.,
2016), while a cohort study of African American women indicated the
opposite result for incident diabetes (Jerrett et al., 2017), which showed
inconsistent results. Besides, the concentration of long-term ozone
ranged from 26.6 to 71.4 μg/m3 in the above studies which was below
the annual level in China.

Our study aims to provide population-based evidence on the associ-
ation between long-term exposure to ozone based on a longitudinal
cohort in China. We further test the modification effect of a variety of
factors including personal characteristics, comorbidities and area-level
environmental variables. Nowadays, public health policies on the
environmental issues are made under uncertainty, especially when
prevention is better than cure for chronic non-communicable diseases.
The public health implication of our study is to provide scientific
evidence of potentially detrimental metabolic effects of air pollution
which should be communicated with stakeholders. The evidence of
detrimental metabolic effects of ozone would lend further support to
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public health issues on the control of ozone pollution and prevention
of diabetes.

2. Methods

2.1. Study population

The study population was from the China Health and Retirement
Longitudinal Study (CHARLS). CHARLS was launched in 2011, covering
150 counties, 450 villages, and about 17,000 individuals in 10,000
households. Follow-ups have been conducted in 2013, 2015, and 2018.
A set of questionnaires on demographics, health status and function, be-
havioral habits and socio-economic information aimed to collect high-
quality data representing the families and individuals of middle-aged
and elderly people aged 45 and above in China. The subjects aged
45 years or more and recruited from baseline of cohort in 2011 to the
first occurrence of diabetes or end of follow-up were included so that
we used the data of fixed cohort to the analysis. 13,548 individuals
were included from 27 provinces, municipalities, and autonomous re-
gions, 123 cities and autonomous prefectures in China. The flowchart
of study participants recruitment in the analysis was shown in Fig. A.1.

2.2. Estimation of air pollution and meteorological factors

We collected the ozone data from ChinaHighO3 dataset, which
generated from OMI Total-column O3 products together with other
auxiliary data (e.g., ground-basedmeasurements, satellite remote sens-
ing products, atmospheric reanalysis, and model simulations) using ar-
tificial intelligence by considering the spatiotemporal heterogeneity of
air pollution (Wei et al., 2021; Wei et al., 2022). The data we obtained
was the OMI Level 3 (L3) yearly 0.25 degree (≈25 km) gridded
ground-level O3 concentration measurements in China from 2010 to
2017, averaged from the Level 2 daily (local time 13:30) products
(Wei et al., 2021; Wei et al., 2022). This dataset had high accuracy
with a cross-validation coefficient of determination (CV-R2) of 0.84
and a root-mean-square error (RMSE) of 20.11 μg/m3 on a daily basis.
Annual PM2.5 concentrations and trends using advances in satellite
observations, chemical transport modeling, and ground-based
monitoring PM2.5 data was extracted from research output by
Hammer and his colleagues (Hammer et al., 2020). The resultant
annual mean geophysical PM2.5 estimates are highly consistent
with globally distributed ground monitors (R2 = 81%; slope =
0.90). Temperature data was obtained from the China Meteorologi-
cal Data Sharing Service System.

The effects of exposure to O3 on diabetes incidence weremodeled as
time-varying variables, as itmay bemore informative to have long-term
ozone measurements before the survey for several years. Specifically,
we merged the grid cells of the 0.25-degree gridded ground-level O3

products over the study period with the boundaries of China's adminis-
trative divisions, with individuals who resided in the same city sharing
the same exposure levels. The modeled exposures were recorded as
city-level averages and we calculated the one-year average concentra-
tions before the year of outcome occurrence or end of follow-up as indi-
cators of the long-termexposure. Similarly,we estimated 1-year average
city-level concentration of PM2.5 and temperature asmeasurements into
the models.

2.3. Diabetes definition

Incidence cases of diabetes were confirmed by self-report of doctor
diagnosed diabetes or high blood sugar during 3 waves of follow-up ac-
cording to the questionnaire. The prevalence of diabetes during 2011
and 2018 was 11.5%, which was in line with the latest data (11.2%)
reported in a large national cross-sectional survey during 2015 and
2017 including 75,880 adults ≥18 years old in China (D. B. o. C. M.
Association, 2021; Society, 2021). Thus, we believed that our study



Table 1
Characteristics of the study population and diabetes incidence in the CHARLS Longitudinal
Study cohort.

Characteristics Level Total
(N = 13,548)

Cases Incidence
(%)

Age (mean (SD)) Overall 59.0 (9.5) 1209 8.9
Gender (n, %) Female 7017 (51.8) 720 10.3

Male 6531 (48.2) 489 7.5
Smoking status (n, %) Current or ever 5089 (37.6) 369 7.3

Never 8459 (62.4) 840 9.9
Alcohol status (n, %) Frequent or rare 5688 (42.0) 439 7.7

Never 7860 (58.0) 770 9.8
Income (n, %) High 6853 (50.6) 616 9.0

Low 6695 (49.4) 593 8.9
Education (n, %) Primary 9222 (68.1) 828 9.0

Middle or high 4326 (31.9) 381 8.8
Cooking fuels (n, %) Solid 7455 (55.0) 682 9.1

Clean 6093 (45.0) 527 8.6
Disability (n, %) Yes 2334 (17.2) 233 10.0
Social activity (n, %) Yes 6327 (46.7) 569 9.0
Body barriers (n, %) Yes 8744 (64.5) 882 10.1
Obesity (n, %) Yes 625 (4.6) 123 19.7
Hypertension (n, %) Yes 1944 (14.3) 425 21.9
Chronic lung diseases (n, %) Yes 933 (6.9) 136 14.6
Liver diseases (n, %) Yes 432 (3.2) 75 17.4
Stomach or digestive diseases (n, %) Yes 1217 (9.0) 233 19.1
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population was representative of the Chinese population aged 45 years
or older.

We did additional sensitivity analyses using different definitions of
diabetes. According to the recommendations of the American Diabetes
Association and Guidelines for the Prevention and Treatment of Type
2 Diabetes in China (2020) (A. D. Association, 2013), the glycosylated
hemoglobin (HbA1c) was used as supplemental indicator of diabetes.
Unlike fasting and postprandial blood glucose that reflect immediate
blood glucose levels, HbA1c reflects the subject's blood glucose control
during the past 2 to 3 months. Therefore, HbA1c is considered to be
the gold standard for assessing the long-term blood glucose control
level and the management of diabetes. As we aimed to evaluate the
long-term impact of ozone exposure, self-reported diabetes, and/or
HbA1c ≥6.5% were selected as diagnosis definition in the sensitivity
analysis. Due to the data availability of blood tests, sensitivity analysis
could merely be conducted with data from 2011 and 2015.

2.4. Statistical analysis

We fit time-varying cox proportional hazard regression models and
estimated hazard ratios (HR) and 95% confidence intervals (CI) to assess
the association between long-term exposure to ozone and diabetes
incidence per 10 μg/m3 increment. Time-varying effect emerges when
the proportional hazards assumption is not fulfilled. So, to identify
time-varying coefficients is actually to test the proportional hazards as-
sumption after fitting a Cox proportional hazard model (Zhang, 2017).
The proportional hazards assumptions were assessed by analyzing
Schoenfeld residuals. The time varying coefficient can be described
with a step function or a parametric time function through time-
varying cox proportion hazard regression models (Zhang, 2017).

The analyses began with a basic model adjusted for age, gender and
health-related factors. Health-related factors included smoking status, al-
cohol status, disability, social activity and body barriers. Prior comments
pointed out that high concentrations of air pollutionmight inhibit the op-
portunities for outdoor recreation, social interaction, and commuting or
leisure time, thereby raising the risk of diabetes (Dzhambov, 2018).
Also, walkability may influence the incidence of diabetes so that social
activity and body barriers were included in the basic model. Model 2
was based on model 1 plus social-economic factors which included
household income, education and cooking fuels. Additionally, model 3,
the fully-adjustedmodel contained the covariates inmodel 2 and comor-
bidities including hypertension, chronic lung diseases, liver diseases and
stomach or digestive diseases which shared similar behavioral and die-
tary patterns with low physical activity, smoking, alcohol consumption
and high fat or sugar intake diet in contrast with diabetes. Adjusting for
these covariates, we were able to perceive the potential confounding ef-
fect of the unmeasured individual risk factors.

We assigned data fromCHARLS to each study participant for the pre-
dicted concentrations of household annual income. Self-reported data
on age, gender, smoking status, alcohol status, disability, social activity
and body barriers were obtained at baseline in 2011. Hypertension,
chronic lung diseases, liver diseases and stomach or digestive diseases
were time-varying variables considered as comorbidities in the year of
outcome diagnosis. Among them, all the variables were categorized
into the stratification analyses except age as the continuous variable
(converted to categorical variable with 60 years in the stratification
analyses). Given earlier findings on modification effects of nitrogen di-
oxide and temperature on the health effect of ozone (Jerrett et al.,
2017; Turner et al., 2016), we further estimated the effect under differ-
ent PM2.5 and mean temperature levels.

To test the robustness of the association, we subsequently added
several variables into the sensitivity analysis of three models including
body mass index (BMI), physical activity, the co-pollutant PM2.5 and
mean temperature, as potential confounders. BMI and physical activity
could only be in the sensitivity analysis due to the incompleteness of in-
formation for most of the participants.
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All analyses were performed using ‘survival’ package in R 4.1.0 with
a priori α level of 0.05 to determine statistical significance.

3. Results

We recruited 13,548 individuals to the study which was composed
of adult participants with an average age of 59.0 years (SD: 9.5) and a
roughly equal sex distribution (male:female=1:0.9). 1209 incident
cases appeared during 7-year follow-ups and the incidence of diabetes
in the study population was 8.9%, which generally corresponded to
the results from a multi-level spatial analysis of data from 98,058
adult subjects based on 2010 China Chronic Disease Surveillance Report
(8.3%–12.7%).

Table 1 summarizes the characteristics of the study population and
diabetes incidence in the CHARLS Longitudinal Study cohort. 37.6% of
participants had smoke history and 42.0% had alcohol assumption.
There existed 625 individuals with obesity and 64.5% with difficulty to
walk 100 m. Co-existing comorbidities were found in 14.3% of study
population with hypertension, 6.9% with chronic lung diseases, 3.2%
with liver diseases and 9.0%with stomach or digestive diseases. Fig. 1 il-
lustrates the annual ground-level O3 concentration in the CHARLS Lon-
gitudinal Study during 2011 and 2018. The average air pollution
exposures from 2011 to 2018 were 86.6 μg/m3 for O3 and 45.0 μg/m3

for PM2.5. The annual mean temperature was 15.04 °C. On average, the
O3 exposure level was 89.5 μg/m3 among diabetes patients, slightly
higher than that among non-diabetes patients (86.5 μg/m3).

For diabetes per 10 μg/m3 increase in O3, we observed positive
associations of diabetes with long-term exposure to ozone in three
models. The hazard ratio of incident diabetes increased by 7% over a
10 μg/m3 increment (95% CI: 1.018–1.125). After controlling for social-
economic factors, the effect estimate decreased slightly but still held
statistical significance (HR = 1.066, 95% CI: 1.013–1.121). The HR esti-
mate still had a tiny decline to 1.057 (95% CI: 1.004–1.114) in the fully
adjusted model additionally controlling for 4 comorbidities. With fur-
ther control for BMI), the effect was reduced in model 1 and 2, while
lost statistical significance in model 3. Regarding the physical activity,
there was no indication of change of results in each model. When in-
cluding PM2.5 and mean temperature into the model, the HR estimates
stayed relatively stable shown in Table 2.

Fig. 2 demonstrates a forest plot of effect modification of the
association between ozone exposures and incidence of diabetes in the



Fig. 1. The annual ground-level O3 concentration in the CHARLS Longitudinal Study during 2011 and 2018.
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CHARLS Longitudinal Study cohort. Although a stronger relationship
was also found in some subgroup, no significant difference was ob-
served.We discovered that the increase in diabetes hazards was greater
for the elderly (>60 years) and women. When stratified for health-
related factors and social-economic factors, the association for ozone
was mainly higher for the non-smokers, non-drinkers, participants
with body barriers, participants with low income level or low education
status, participants using solid cooking duels. Those diagnosed with
chronic lung diseases, without liver disease and stomach or digestive
disease, O3 also showed higher effect estimate. We further estimated
the effect modification of PM2.5 and mean temperature, and the
results revealed a greater relationship when the mean temperature
was below the median (HR = 1.088, 95% CI: 1.010–1.173). Plus, the
effect estimate was stronger in the high PM2.5 level compared to low
PM2.5 level (HR = 1.066, 95% CI: 1.012–1.122) with no between-
group significance.

Additional sensitivity analyses based on several different definitions
for diabetes generated similar relative ratio around 1.1 (Table A.2). Both
results from cross-sectional study in 2011 or 2015 and longitudinal
study from2011 to 2015 reported robust association between ozone ex-
posure and diabetes incidence. For example, when self-reported diabe-
tes and/or HbAlc ≥ 6.5% were considered as definitions of outcome, the
prevalence was 14.9%, comparable to previous study (p = 15.8% in
4

Kan's study (Liu et al., 2016), p = 10.9% in Yang's study (Yang et al.,
2018)). The relative ratio of diabetes was 1.063 (95% CI: 1.002–1.127),
which stayed consistent with the results in main analysis.

4. Discussion

Toour knowledge, this has been thefirst longitudinal cohort study to
date to investigate the associations of ambient ozone pollution with di-
abetes in Asia. Significant and robust associations of long-term exposure
to O3with diabetes incidence in Chinawere observed. In conclusion, we
believed that chronic effect of ambient ozone exposure could contribute
to diabetes formation.

So far, the published review indicated positive pooled estimates
about the impact of air pollutants on diabetes risk (Eze et al., 2015;
Janghorbani et al., 2014). Our results were in accordance with previous
reviews. A 4.9% increase of the pooled risk ratio ormortality risk ratio of
diabetes associated with O3 was estimated (95% CI: 1.018–1.081)
summarized by Janghorbani et al. (2014). The prospective analysis in
a large cohort of African American women reported a HR of 1.18 (95%
CI: 1.04–1.34) per 6.7 ppb increase of ozone (Jerrett et al., 2017). Rele-
vant studies conducted in Rome assessing the association between
long-term exposure to O3 and occurrence of type 2 diabetes also
proved a significant effect (1.015, 95% CI: 1.002–1.027) per 10 μg/m3



Table 2
Association between ozone exposure and incidence of diabetes in the CHARLS Longitudi-
nal Study. HR and 95% CI per 10 μg/m3 increment.

HR 95% CI p value

Model 1 1.070 1.018–1.125 0.008
+BMI 1.061 1.009–1.115 0.021
+Physical activity 1.070 1.018–1.125 0.008
+PM2.5 1.072 1.019–1.128 0.007
+Average temperature 1.068 1.016–1.123 0.010

Model 2 1.066 1.013–1.121 0.014
+BMI 1.057 1.005–1.112 0.032
+Physical activity 1.066 1.013–1.121 0.014
+PM2.5 1.068 1.015–1.123 0.012
+Average temperature 1.064 1.012–1.119 0.016

Model 3 1.057 1.004–1.114 0.036
+BMI 1.052 0.999–1.109 0.056
+Physical activity 1.057 1.003–1.114 0.037
+PM2.5 1.056 1.003–1.113 0.040
+Average temperature 1.057 1.003–1.114 0.037

Model 1: Basic model, adjusted for age, gender and health-related factors. Health-related
factors included smoking status, alcohol status, disability, social activity and body barriers.
Model 2: Model 1 plus social-economic factors. Social-economic factors included income,
education and cooking fuels included solid or clean fuels.
Model 3: Fully adjustedmodel,model 2 plus comorbidities. Comorbidities includedhyper-
tension, chronic lung diseases, liver diseases and stomach or digestive diseases.
Abbreviations: HR, hazard ratio; CI, confidence interval; PM2.5, particulate matter with an
aerodynamic diameter less than or equal to 2.5 μm.
Note: Categories for variables were dichotomized: gender (male or female); smoking sta-
tus (yes: current or ever; no: never); alcohol status (yes: frequent or rare; no: never); dis-
ability (yes or no); social activity (yes, no ormissing); body barriers (yes or no); BMI (with
obesity: >30, according to WHO definition; without obesity: ≤30); income (low: below
median; high: above median); education (low: illiterate or primary; high: middle or
high); cooking fuels (solid: coal or firewood; clean: electricity, solar power or natural
gas); comorbidities (yes, no or missing); PM2.5 (low: below 10 μg/m3; high: above
10 μg/m3, according to WHO guideline value).

Fig. 2. Forest plot of effectmodification of the association between ozone exposures and incidence
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increment (Renzi et al., 2018). Besides, the cross-sectional study in 33-
communities ChinaHealth Study provided evidence of a positive associ-
ation between long-term exposure to O3 and incident diabetes that the
adjustedORper 22 μg/m3 incrementwas 1.14 (95% CI: 1.05–1.25) (Yang
et al., 2018). Our study detected a 7% increase in the basic model and a
5.7% increase in the fully adjusted model (95% CI: 1.004–1.114) per
10 μg/m3 increment of O3. The magnitudes were comparable to prior
studies. In sum, chronic diabetogenic effect of ozone exposure could
be implied according to the overall evidence.

The biological mechanism behind depended on multiple evidence.
Animal experiments suggested that O3 exposure may also have the
capacity to induce metabolic insulin resistance. For instance, sub-acute
exposure to O3 for 4 days developed elevations in fasting glucose
levels and rats' body insulin resistance (Vella et al., 2015). Scholars
additionally pointed out the hypothesis that air pollution would lead
to heavy oxidative stress and adipose tissue inflammation resulting in
endoplasmic reticulum stress, insulin signaling abnormalities and
apoptosis, which might insulin resistance (Andersen et al., 2012;
Fleisch et al., 2014). Plus, O3 could cause adverse systemic metabolic
responses via activation of the sympathetic nervous system, by
hypothalamic inflammation or both (Bass et al., 2013).

In the stratified analysis, we did not find an effect modification for
any variable as no significant difference was observed between the
subgroups. Nevertheless, the effect estimate was significant in one
subgroup and the subgroup result gave enlightenment to the identifica-
tion of sensitive population. Effects were enhanced in the elderly
(>60 years), showed discrepancy with previous result of age-stratified
analysis in Yang's study and Renzi's study (Renzi et al., 2018; Yang
et al., 2018). Yang's study concentrated on six pollutants except for
ozone and Renzi's study was conducted in Rome where the IQR of
of diabetes in the CHARLS Longitudinal Study cohort. HR and 95% CI per 10 μg/m3 increment.
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O3 was 5.5 μg/m3 (17.7 μg/m3 in our study). Besides, the female, the
nonsmokers and nondrinkers showed higher effect estimates,
consistent with existed literature (Andersen et al., 2012).
Actually, the smoking pattern showed a large difference between
women and men, with most smokers being men (Wang et al.,
2018). The adverse effect of smoking on the respiratory system
may, to some extent, mask that of air pollution among men. In
addition, men spent more time working outside and were more
exposed to ambient air pollution so the different time-activity pat-
terns might have a key role in the observed difference.

The associations for ozone with diabetes were generally stronger
in the subjects who were less educated and possessed lower income
lack of statistical significance. People with low levels of education
and income were more likely to have chronic diseases and limited
access to health services (Kan et al., 2008). Furthermore, enhanced
air pollution effects were not seen with higher BMI. The diabetes
risk factors accumulated with advancing BMI and obscured the effect
of ozone in population with obesity. Those who without obesity
would be more affected by O3 exposure. Last but not least, the
prevalence of diabetes among the obese groups was much higher
than the subjects without obesity so the obese groups were more
likely to use anti-diabetes medication, which might attenuate the
glycaemic effect of air pollutants. Notably, the sub-population with
chronic lung diseases also showed stronger relationship between ozone
and diabetes, in accordance with similar study (Renzi et al., 2018),
which was in biologically plausible. As Rao et al. asserted that long-
term exposure to ozone may induce diabetes through similar pathways
as PM2.5 that the pollutant may lead to oxidative stress in the lungs if
sustained over time, generating systemic pro-inflammatory and auto-
nomic responses linked to adverse health outcome (Rao et al., 2015).
Still, previous studies showed that chronic respiratory disease patients
are more likely to live in areas with higher air pollution levels than the
rest (Andersen et al., 2011; J. et al., 2011).

Cooking fuel was a representative of indoor pollution indicator.
Solid cooking fuels included coal or firewood biomass burning,
which may cause severe indoor air pollution. In the prior report,
South Asia showed the highest regional concentration of ambient
PM2.5 from household cooking (8.6 μg/m3) (Chafe et al., 2014).
And PM2.5 emissions from household cooking constituted an
important portion of ambient PM2.5 concentrations in many places
including China (Chafe et al., 2014). Exposure to PM2.5 impaired
glucose and insulin tolerance through cardiometabolic pathways
and lead to systematic pro-inflammatory and autonomic responses
linked to adverse health outcomes such as diabetes if sustained over
time (Rajagopalan et al., 2020). We also detected that the effect was
greater under high PM2.5 concentration level which proved the above
discovery at the same time. Besides, the associations were stronger
when the temperature was low although there existed no significance
between two temperature levels. In the air health index study recently
published by Zhang et al., the average daily percentage of excess
mortality related to air pollution and non-optimum temperature was
28.23%, among which non-optimum temperature accounted for 23.47%
(Zhang et al., 2021). Also, published literature pointed out that the cold
effect occupied the main role in the adverse health effect of temperature
(Gasparrini et al., 2015). Cold induces bronchoconstriction and sup-
presses mucociliary defences and other immunological reactions, result-
ing in local inflammation whichmay lead to adverse systemic metabolic
responses (Gasparrini et al., 2015).

The present study held several strengths. First, this has been the
first nationwide prospective cohort study to date to investigate the
association of ambient ozone pollution and incident diabetes in
China, which provided novel epidemiological knowledge on the haz-
ardous effects of ozone exposure especially against the backdrop of
increase in ambient ozone pollution concentration. Second, we
added the mean temperature, indicators of walkability (disability
and body barriers), indoor pollution (cooking fuels) and social
6

interaction (social activity) to the analysis which corresponded to
the advice proposed by previous remarks (Dzhambov, 2018) and
confirmed the power of evidence.

Limitations also existed in our study. On the first hand, according to
the unavailability of personal address information in the CHARLS Longi-
tudinal Database, the air pollution measurement in our study was city-
level and more precise estimation in prospective cohort study were
warranted to avoid the exposure misclassification. On the other hand,
the study cities were mainly located in the eastern region of China so
that our results should be cautious to be generalized to overall popula-
tions in China. Plus, due to the characteristics of the database, the study
population focused on the people over 45 years old so that the present
discovery was mostly in connection with the middle-aged and elderly
people. Finally, the residual confounding caused by area-level potential
confounders like GDP, noise and green space may have an influence on
the results. Nevertheless, our study was a prospective cohort study
based on a nationwide database which provided a scientific basis for
formulating and improving relevant policies so that it would have im-
portant implications for diabetes prevention and for public health pro-
tection, especially with the development of the increase of ozone
concentration.

5. Conclusions

In conclusion, this prospective cohort study suggested that long-
term exposure to O3 might increase the risk of diabetes occurrence in
China. Our findings demonstrated that ozone was an important modifi-
able environmental risk factor contributing to the incidence of diabetes
in China. No significant difference was observed in the stratification
analyses so that no susceptible populations could be determined. The
evidence of detrimental metabolic effects of ozone should be heralded
and communicated to stakeholders.
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