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A B S T R A C T   

Respirable particles with aerodynamic diameters ≤ 10 µm (PM10) have important impacts on the atmospheric 
environment and human health. Available PM10 datasets have coarse spatial resolutions, limiting their appli-
cations, especially at the city level. A tree-based ensemble learning model, which accounts for spatiotemporal 
information (i.e., space-time extremely randomized trees, denoted as the STET model), is designed to estimate 
near-surface PM10 concentrations. The 1-km resolution Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) aerosol product and auxiliary factors, including meteorology, land-use cover, surface elevation, pop-
ulation distribution, and pollutant emissions, are used in the STET model to generate the high-resolution (1 km) 
and high-quality PM10 dataset for China (i.e., ChinaHighPM10) from 2015 to 2019. The product has an out-of- 
sample (out-of-station) cross-validation coefficient of determination (CV-R2) of 0.86 (0.82) and a root-mean- 
square error (RMSE) of 24.28 (27.07) μg/m3, outperforming most widely used models from previous related 
studies. High levels of PM10 concentration occurred in northwest China (e.g., the Tarim Basin) and the Northern 
China Plain. Overall, PM10 concentrations had a significant declining trend of 5.81 μg/m3 per year (p < 0.001) 
over the past five years in China, especially in three key urban agglomerations. The ChinaHighPM10 dataset is 
potentially useful for future small- and medium-scale air pollution studies by virtue of its higher spatial reso-
lution and overall accuracy.   

1. Introduction 

In recent years, several acute air pollution episodes have occurred in 
mainland China due partially to urban expansion and industrial devel-
opment (Chan and Yao, 2008; Ji et al., 2012; Xu et al., 2013; Sun et al., 
2016; Guo et al., 2017; Su et al., 2018), mainly involving coarse and fine 
particulate matter with aerodynamic diameters of no more than 10 μm 
(PM10) and 2.5 μm (PM2.5). While PM10 mainly comes from nature, e.g., 
dust, soil, and sea salt, anthropogenic activities also play an important 
role in the emission of PM10, such as construction-generated dust, 
insufficient combustion of fossil fuels, and discharge of industrial resi-
dues (Bi et al., 2007; Rohde and Muller, 2015; Wei et al., 2019a, b). PM10 
is thus of great concern to both the atmospheric environment (Choi 
et al., 2008; Qu et al., 2010) and human health, given its potential 

contribution to cancer, respiratory diseases, and heart diseases, espe-
cially in developing countries like China (Bartell et al., 2013; Xu et al., 
2013; Liu et al., 2019a). 

The Chinese Ministry of Environmental Protection has thus estab-
lished a national ground-based monitoring network to monitor typical 
air pollutants (e.g., PM10, PM2.5, ozone, and sulfur dioxide) in real time 
(Guo et al., 2009). However, these monitoring stations are sparsely and 
non-uniformly distributed across mainland China with large gaps in 
coverage. Satellite remote sensing has the advantage of providing 
complete and uniform coverage. Official aerosol optical depth (AOD) 
products have been derived from multiple satellite sensors, including, 
among many others, the Multi-angle Imaging SpectroRadiometer (Garay 
et al., 2020), the Moderate-resolution Imaging Spectroradiometer 
(MODIS; Levy et al., 2013; Wei et al., 2019c), the Visible Infrared 
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Imaging Radiometer (Hsu et al., 2019; Jackson et al., 2013), and the 
Himawari-8 Advanced Himawari Imager (Yoshida et al., 2018; Su et al., 
2020; Zhang et al., 2019). A positive relationship between AOD and 
near-surface PM concentrations has been shown (Guo et al., 2009) 
despite uncertainties due to various sources of the retrievals (Li et al., 
2009). As a result, these products have been employed to estimate near- 
surface PM concentrations (including PM1, PM2.5, and PM10) from 
regional to global scales (Ma et al., 2014; Franklin et al., 2017; Su et al., 
2017; Chen et al., 2018; Zang et al., 2018; Wei et al., 2019a, b; Yao et al., 
2019). At present, satellite-based PM estimation methods fall into four 
main categories: physical models (Koelemeijer et al., 2006; Emili et al., 
2010; Wang et al., 2014; Zhang and Li, 2015), chemical models (Ghotbi 
et al., 2016), statistical regression models (Nordio et al., 2013; Ma et al., 
2014; You et al., 2015), and artificial intelligence (Zaman et al., 2017; 
Chen et al., 2018; Zang et al., 2018; Zhang et al., 2018; Wei et al., 2019a, 
b). 

For near-surface PM10 species, an increasing number of studies have 
been carried out around the world over the years. Koelemeijer et al. 
(2006) and Emili et al. (2010) used the traditional physical method to 
derive 10-km-resolution PM10 concentrations over Europe from satellite 
AODs by correcting the planetary boundary layer height (BLH) and 
relative humidity (RH). Benas et al. (2013) used a nonlinear ACE algo-
rithm to predict PM10 concentrations in Athens, Greece, at a 10-km 
resolution. Nordio et al. (2013) applied the linear mixed-effect (LME) 
model to estimate PM10 concentrations in Lombardy, northern Italy, at a 
10-km resolution. Sotoudeheian and Arhami (2014) developed linear 
and non-linear multi-regression models to derive PM10 concentrations in 
Tehran, Iran, at 10-km and 17.6-km resolutions. Beloconi et al. (2016) 
estimated PM10 and PM2.5 concentrations in London, UK, using the 
mixed-effect model with day-specific random effects at a 1-km resolu-
tion. Ghotbi et al. (2016) used the Weather Research and Forecasting 
model to estimate PM10 concentrations at a 3-km resolution in Tehran, 
Iran. Zaman et al. (2017) adopted the multiple linear regression (MLR) 
and artificial neural network models to derive 10-km-resolution PM10 
concentrations in Malaysia. Stafoggia et al. (2019) developed a spatio-
temporal land-use random-forest model to estimate daily PM10 and 
PM2.5 concentrations in Italy at a 1-km resolution. 

Many satellite-based PM10 estimation studies with a focus on China 
have also been performed due to the more serious air pollution problem 
in that country. Wang et al. (2014) developed an empirical method by 
correcting the RH to estimate 10-km-resolution PM10 concentrations in 
Beijing, China. You et al. (2015) applied the geographically weighted 
regression (GWR) model to estimate PM10 concentrations at a 10-km 
resolution in northwestern China, then developed a nonlinear empir-
ical model to derive PM10 concentrations (10 km) in a semi-arid area, i. 
e., Xi’an City in China (You et al., 2016). Meng et al. (2015) used the 
LME model to generate 3-km-resolution PM10 maps for Shanghai, China. 
Zhang et al. (2016) combined a physical model and the GWR model to 
derive 3-km-resolution PM10 concentrations across China. Zhang et al. 
(2018) developed a spatiotemporal land-use regression (LUR) model to 
estimate monthly PM10 concentrations at a 10-km resolution from 2014 
to 2016 in China. Chen et al. (2018) employed the random forest (RF) 
model to predict historical PM10 records at a horizontal resolution of 
0.1◦×0.1◦ from 2005 to 2016 in China. 

Despite these efforts, further improvements can be made in esti-
mating near-surface PM10 concentrations in China. First, traditional 
physical, chemical, and statistical regression models generally have less 
data mining abilities than do machine learning methods. The capability 
of the latter can be further improved by accounting for the spatiotem-
poral continuity (Li et al., 2017b; Wei et al., 2019a). Second, most 
previous studies employed MODIS AOD products generated from the 
Dark Target (DT) or Deep Blue (DB) aerosol algorithms at spatial reso-
lutions of 3–10 km. The coarse-resolution PM10 dataset generated thus 
has limited applications in medium- or small-scale areas such as urban 
regions where air pollution is much more locally concentrated than in 
rural regions. Last, PM10 is less intensively studied than PM2.5 in China, 
possibly because coarser particles have less impact on human health for 
the same mass concentration. However, the influence of PM10 on the 
atmospheric environment cannot be ignored. Therefore, a high- 
resolution, high-quality PM10 dataset is of potential use. 

To overcome these limitations, we have adopted here a more accu-
rate ensemble learning approach by integrating spatiotemporal infor-
mation, resulting in a method called the space-time extremely 
randomized trees (STET) (Wei et al., 2020). This method was used to 

Fig. 1. Spatial distribution of surface PM10 monitoring stations in China (purple dots). The background map shows digital elevation model data (unit: m). Colored 
boxes outline four regions of interest: the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD) region, the Pearl River Delta (PRD) region, and the 
Sichuan Basin (SCB). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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establish robust PM10-AOD relationships. A high-quality PM10 dataset at 
a spatial resolution of 1 km covering China was finally generated from 
the STET model, i.e., ChinaHighPM10, using the newly released MODIS 
1-km Multi-Angle Implementation of Atmospheric Correction (MAIAC) 
aerosol product (Lyapustin et al., 2018), along with meteorological, land 
use, topography, and population data as input. Section 2 introduces the 
data sources and integration, model development, and evaluation ap-
proaches. Section 3 evaluates the satellite-derived PM10 estimates from 
2015 to 2019 at different spatiotemporal scales, then investigates their 
spatiotemporal variations across China. Comparisons between the 
model performance of the STET model and that of traditional models 
presented in previous similar studies are also discussed. Section 4 
summarizes the study. 

2. Data and method 

2.1. Data sources and integration 

2.1.1. PM10 in situ data 
PM10 near the ground has been monitored across China by China’s 

National Environmental Monitoring Center (CNEMC) at 1480 stations in 
2015 then increased to 1605 stations in 2019. They are more evenly and 
densely distributed in eastern China than in western China (Fig. 1). 
Here, hourly PM10 measurements are first checked to remove outliers 
caused by instrument malfunction (Guo et al., 2009). Then valid hourly 
measurements are averaged to obtain daily means in a year for each 
monitoring station in China. 

2.1.2. MAIAC AOD product 
The Collection 6 MAIAC aerosol product at a 1-km spatial resolution 

(Lyapustin et al., 2018) is selected as a key input to estimate near-surface 
PM10 concentrations during 2015–2019 covering the whole of China. 
AOD data at 550 nm were derived from the MODIS onboard the Terra 
(10:30 am) and Aqua (1:30 pm) platforms passing the recommended 
data quality flags (i.e., QACloudMask = Clear and QAAdjacencyMask = Clear). 
They are averaged to obtain daily means, improving the spatial coverage 
by 23–27%. Note that the diurnal mean may, at times, be derived from a 
single sample when the other is unavailable due to clouds or for other 
reasons. In addition, this can also increase the number of PM10-AOD 
matchups (Wei et al., 2019a). 

2.1.3. ERA5 reanalysis product 
Most previous studies have mainly used the National Centers for 

Environmental Prediction (NCEP), Modern-Era Retrospective analysis 
for Research and Applications Version 2 (MERRA-2), and European 
Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis 
Interim (ERA-Interim) atmospheric reanalysis products to provide 
meteorological observations. However, they are generated at much 
coarser spatial resolutions (e.g., 0.5◦×0.5◦ and 2.5◦×2.5◦) and low 

temporal resolutions (e.g., 3–6 h) (Sun et al., 2018). By contrast, in our 
study, the latest release of the ERA5 atmospheric reanalysis product 
with high spatial (i.e., 0.1◦×0.1◦) and temporal (i.e., 1 h) resolutions are 
employed (Copernicus Climate Change Service, 2017). It includes the 
ERA5-Land hourly dataset beginning in January 1981 to the present at a 
horizontal resolution of 0.1◦×0.1◦ (released on 12 July 2019) and ERA5 
global hourly data on single or multiple pressure levels beginning in 
1979 to the present at a horizontal resolution of 0.25◦×0.25◦ (released 
on 14 June 2018). Here, five ERA5-Land variables, i.e., evapotranspi-
ration (ET), temperature at a height of 2 m (TEM), surface pressure (SP), 
and the u- and v-components of wind at a height of 10 m (WU and WV, 
respectively), and two ERA5 global variables, i.e., BLH and RH, are 
selected. Meteorological observations are averaged from 10:00 am to 
2:00 pm to obtain daily mean values. 

2.1.4. Auxiliary data 
Auxiliary data, including land use, topography, human population 

distribution, and pollution discharge, which have potential effects on 
PM10 pollution, are considered. Two land-use-related indices, i.e., the 
MODIS annual land-use cover and monthly Normalized Difference 
Vegetation Index (NDVI) products, and the Shuttle Radar Topography 
Mission (SRTM) surface elevation (DEM) data are also employed. The 
LandScanTM annual population distribution (POP; Dobson et al., 2000) 
product and the monthly pollutant emissions contributing to coarse 
particles (PM) from agriculture, industry, power, residential, and 
transportation from the multi-resolution emission inventory for China 
(MEIC; Zhang et al., 2007; Li et al., 2017a) are additional inputs. The 
emissions generally have much smaller-scale variations than meteoro-
logical variables. Similar to previous studies, all coarser-resolution 
meteorological and auxiliary data are resampled to the same 1-km 
spatial resolution using the bilinear interpolation method to be consis-
tent with the AOD product. Table 1 summarizes the data sources used in 
our study. 

2.2. Model introduction and validation 

2.2.1. Space-time extremely randomized trees 
A typical tree-based ensemble learning method, called the extremely 

randomized trees (extra-trees, ERT), was employed here (Geurts et al., 
2006). The ERT model consists of hundreds to thousands of decision 
trees that can be used for addressing regression and classification issues. 
It further strengthens the randomization of attribute selection and node 
splitting and can effectively reduce the model variance, differing from 
other popular models like the decision tree (DCT) and RF (Breiman, 
2001). 

More importantly, compared with deep learning and other tradi-
tional machine learning approaches, ensemble learning methods have 
unique advantages. The essential one is that they are not sensitive to 
multivariate collinearity variables and can process a large volume of 

Table 1 
Summary of data sources used in this study.  

Dataset Variable Content Unit Spatial Resolution Temporal Resolution Data Source 

PM10 PM10 PM10 μg/m3 In situ Hourly CNEMC 
AOD AOD MAIAC AOD – 1 km × 1 km Daily MCD19A2 
Meteorology ET Evapotranspiration mm 0.1◦×0.1◦ Hourly ERA5 

TEM 2-m temperature K 0.1◦×0.1◦ Hourly 
SP Surface pressure hPa 0.1◦×0.1◦ Hourly 
WU 10-m u-component of wind m/s 0.1◦×0.1◦ Hourly 
WV 10-m v-component of wind m/s 0.1◦×0.1◦ Hourly 
BLH Boundary layer height m 0.25◦×0.25◦ Hourly 
RH Relative humidity % 0.25◦×0.25◦ Hourly 

Land cover LUC Land-use cover – 500 m × 500 m Yearly MCD12Q1 
NDVI NDVI – 1 km × 1 km Monthly MOD13A3 

Topography DEM Surface elevation m 90 m × 90 m – SRTM 
Population POP Ambient population – 1 km × 1 km Yearly LandScanTM 

PM PM emission Mg/grid 0.25◦×0.25◦ Monthly MEIC  
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input data without the need for a reduction in data dimensionality. 
That is to say, they can mine valuable information and discard useless 
information internally during the model building, unlike traditional 
models (Breiman, 2001; Geurts et al., 2006). Therefore, all the above- 
mentioned variables, including MAIAC AOD, meteorology, pollution 
distribution and emission, land cover, and topography, are selected, 
together with PM10 ground measurements, as inputs into the ERT model. 

Furthermore, considering that PM10 concentrations exhibit notice-
able spatiotemporal heterogeneities, a new space-time tree-based 
ensemble learning approach was developed, i.e., the STET model (Wei 
et al., 2020), by incorporating spatial and temporal information into the 
original ERT model to improve the overall estimation accuracy of PM10 
estimates. The space term includes the linear latitude (X) and longitude 

(Y) of one point, and five additional non-linear spatial distance fields, i. 
e., distances to the upper-left (D1), upper-right (D2), lower-left (D3), 
lower-right (D4) corners, and the center (D5) of a circumscribed rect-
angle in the study area (Wei et al., 2021). They can be jointly used to 
explicitly describe the autocorrelated spatial position of one point in 
space (Krumbein, 1959; Behrens et al., 2018). These distances are 
great-circle distances between two points on a sphere, calculated using 
the Haversine approach (Eq. (1)). In addition, unlike other traditional 
statistical regression or artificial intelligence methods, the tree-based 
machine learning methods we used are supervised classification 
methods, whose basic unit is the decision tree. Although the distances 
can be calculated by longitude and latitude, all the input variables are 
totally independent, and no other combination operation is performed in 
the node splitting during the model training (Breiman, 2001; Geurts 
et al., 2006). The simplified time term is represented by the day of the 

year (DOY), which is used to mark each row of data records of one point 
in space on different days in a year during the tree-based ensemble 
model training because PM10 concentrations vary with location and day 
of the year (Wei et al., 2021). The PM10-AOD relationship (Eq. (2)) can 
then be established using the STET model: 

DISi,j,t = 2*r*asin
{

sqrt
[

sin2
(

Lati,j − Lat0

2

)

+ cos
(
Lati,j

)
cos(Lat0)sin2

(
Loni,j − Lon0

2

)]}

(1)    

where Lati,j, Loni,j and Lat0, Lon0 denote the latitudes and the longitudes 
of one point P(i, j) and the corner or centre P(0, 0) of a rectangle in space, 
r represents the earth’s radius (r = 6371 km), and DOY and N refer to the 
ith day and the total number of days of the year, respectively. 

For the STET model, daily PM10 ground-based measurements, AOD, 
along with 12 auxiliary factors, are first spatiotemporally collocated at 
each PM10 monitoring station in each year and are used to form the data 
samples. Second, a training set (n) is randomly selected from all data 
samples (N), and m features are randomly selected from all features (M) 
without replacement. Then a split (s*) is selected among all generated 
splits (S) according to the calculated scores (s*, S), and an extremely 
randomized tree is built based on the Classification And Regression Tree 
(CART) algorithm. Last, the above steps are repeated to construct 
numerous extremely randomized trees as weak classifiers, which are 
then combined to form a strong classifier. Geurts et al. (2006) provide 

Fig. 2. Flowchart describing how the ChinaHighPM10 dataset is generated.  

PM10(i,j,t) = fSTET [AODi,j,t,BLHi,j,t,DEMi,j,t,EPi,j,t, LUCi,j,t,NDVIi,j,t,PMi,j,t,POPi,j,t,RHi,j,t, SPi,j,t, TEMi,j,t,WUi,j,t,WVi,j,t,Loni,j,t,Lati,j,t,DISi,j,t,DOYi,j] (2)   
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detailed information about the ERT model. Fig. 2 shows a flowchart 
describing how the ChinaHighPM10 dataset was generated in our study. 

2.2.2. Evaluation and analysis approach 
In our study, two typical independent 10-fold cross-validation (CV) 

approaches (Rodriguez et al., 2010) based on all data samples (i.e., out- 
of-sample validation; Ma et al., 2014) and PM10 monitoring stations (i. 
e., out-of-station validation; Wei et al. (2020) are selected to validate the 
overall accuracy and spatial prediction ability of models, respectively. 
The data samples or monitoring stations are divided into ten random 
subsets, where nine (one) of the subsets are used for training (valida-
tion), in turn, ten times (Rodriguez et al., 2010). In addition, traditional 
statistical metrics, including the regression line, the coefficient of 
determination (R2), the mean absolute error (MAE), and the 
root-mean-square error (RMSE), are used to evaluate the overall accu-
racy and uncertainty. Daily PM10 maps are used to generate monthly, 
seasonal, and annual maps using the spatiotemporally average method. 
Temporal trends are calculated using the linear regression method based 
on deseasonalized monthly PM10 anomalies, and the trend significance 
is validated using the two-side test approach (Wei et al., 2019d). 

3. Results and discussion 

3.1. Validation against ground measurements 

3.1.1. Spatial-scale validation 
Fig. 3 illustrates the out-of-sample CV results of daily PM10 estimates 

in China from 2015 to 2019 using the STET model. The PM10-AOD 
matchups are densely distributed on both sides of the 1:1 line in each 
year, especially in the PM10 concentration range of 0 to 200 μg/m3, 
which has the largest data density. Despite some differences, satellite- 

derived PM10 concentrations agree well with the corresponding obser-
vations (CV-R2 = 0.83–0.87), with strong slopes of 0.78–0.82 and small 
intercepts of 15.2–22.7 μg/m3 among different years. There are overall 
low uncertainties with small RMSEs of 19.7–28.4 μg/m3 and MAEs of 
11.5–17.9 μg/m3. Overall, our model shows high accuracy in deriving 
daily PM10 concentrations, with a high out-of-sample CV-R2 of 0.86 
during 2015–2019 across China, and the average RMSE and MAE values 
are 24.28 μg/m3 and 14.52 μg/m3, respectively. 

Out-of-station CV results of daily PM10 estimates in China from 2015 
to 2019 using the STET model offer similar conclusions (Fig. 4). The 
STET-model-predicted daily PM10 concentrations correlate well with 
surface observations (CV-R2 = 0.79–0.84; Slope = 0.75–0.80) with small 
estimation uncertainties (RMSE = 21.8–31.4 μg/m3, MAE = 13.4–20.6 
μg/m3) among different years. Overall, the out-of-station CV-R2 is 0.82, 
and the RMSE and MAE are 27.07 μg/m3 and 16.86 μg/m3 during 
2015–2019 in China, respectively. The station-based performance did 
not deteriorate much, with small differences in most evaluation metrics 
compared to the sample-based performance in every single year in 
China. These results suggest that the STET model has a high spatial 
prediction ability and can estimate PM10 concentrations well for areas in 
China without monitoring stations. 

Table 2 provides sample- and station-based CV results of daily PM10 
estimates derived from the STET model during 2015–2019 at the 
regional scale in China. Eastern China is a region where the STET model 
is overall more accurate with a stronger prediction ability than in 
western China, with a higher sample-based CV-R2 of 0.88 and station- 
based CV-R2 of 0.85 (0.82 and 0.76, respectively, in western China). 
The main reason is that the number of PM10 ground monitoring stations 
in eastern China is about four times that in western China. However, the 
STET model performs differently in different smaller regions. For 
example, it can well estimate and predict daily PM10 concentrations in 

Fig. 3. Density scatter plots of out-of-sample cross-validation results in daily PM10 estimates from 2015 to 2019 across China.  
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the Beijing-Tianjin-Hebei (BTH) region (i.e., sample-based CV-R2 = 0.89 
and station-based CV-R2 = 0.87). Here, more severe air pollution with 
high PM10 levels leads to relatively large RMSE and MAE values. By 
contrast, there are overall low correlations (i.e., sample- and station- 
based CV-R2 = 0.84 and 0.79, respectively) between PM10 estimates 
and measurements in the Pearl River Delta (PRD) region, with smaller 
estimation uncertainties due to lower PM10 levels. In general, the STET 
model shows similar performance with close statistical metrics between 
estimated and measured PM10 concentrations in the Yangtze River Delta 
(YRD) and the Sichuan Basin (SCB) regions. 

Fig. 5 illustrates the sample- and station-based accuracies and un-
certainties of the STET model in daily PM10 estimates from 2015 to 2019 
at each monitoring station in China. Concerning the out-of-sample 
validation, the STET model can well estimate daily PM10 concentra-
tions at most stations, where more than 86%, 90%, and 91% of the 
stations have CV-R2 values > 0.7, RMSEs < 30 μg/m3, and MAEs < 20 
μg/m3, respectively. Poor accuracies with large uncertainties are mainly 
found at several monitoring stations located in western China. The 
station-based validation results show similar spatial patterns as the 
sample-based validation results at the site scale across China. In general, 
the PM10 predictions are highly correlated to ground measurements with 
small CV-R2, RMSE, and MAE values at 81%, 85%, and 81% of the 
stations in China, respectively. The STET model shows a stronger spatial 
ability in predicting daily PM10 concentrations at most stations located 
in eastern China than in western China. The large difference in the 
number of monitoring stations between western and eastern China, as 
well as both natural and human influences, may explain this. 

3.1.2. Temporal-scale performance 
Fig. 6 shows the sample- and station-based CV results of all estimated 

daily PM10 concentrations from all monitoring stations on each DOY 

from 2015 to 2019 across China. There are abundant data samples 
ranging from 605 to 4046, with an average of 2218 samples for each day 
from 2015 to 2019. The STET model can well capture PM10 concentra-
tions on most days, with 95% and 75% of the days showing high sample- 
and station-based CV-R2 values, respectively, greater than 0.7. However, 
the STET model performs less well in the middle of the year, with overall 
low sample- and station-based CV-R2 values. The main reason is that 
there is a large data gap in the aerosol product caused by the presence of 
summertime clouds, seriously limiting the training ability of the model. 
In addition, the PM10 estimates (predictions) show low estimation un-
certainties on more than 87% (79%) and 95% (86%) of the days, with 
small RSMEs and MAEs < 30 μg/m3 and 20 μg/m3, respectively. The 
estimation uncertainties are generally large at the beginning and the end 
of the year, mainly due to frequent sandstorms and a large number of 
pollution emissions in spring and winter in northern China. 

Satellite-based monthly synthetic PM10 estimates were also validated 

Fig. 4. Same as Fig. 3 but for out-of-station cross-validation results.  

Table 2 
Statistics of out-of-sample and out-of-station cross-validation results in daily 
PM10 estimates in China and in each region of interest from 2015 to 2019. Units 
for RMSE and MAE values are μg/m3.  

Region N Out-of-sample validation Out-of-station validation 

R2 RMSE MAE R2 RMSE MAE 

ECHN 609,363 0.88 20.32 13.15 0.85 22.13 14.81 
WCHN 202,282 0.82 33.50 18.64 0.76 38.27 23.00 
BTH 122,927 0.89 24.81 15.99 0.87 26.28 17.28 
YRD 72,097 0.86 16.40 11.32 0.83 17.64 12.36 
PRD 31,910 0.84 12.06 8.44 0.79 13.69 9.69 
SCB 27,588 0.86 17.89 12.68 0.83 19.81 14.24 

BTH: Beijing-Tianjin-Hebei; ECHN: eastern China; PRD: Pearl River Delta; SCB: 
Sichuan Basin; WCHN: western China; YRD: Yangtze River Delta. 
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and compared with the corresponding monthly PM10 ground measure-
ments for each year in China (Fig. 7). Over the years considered, 
monthly PM10 estimates have high accuracies, with coefficients of 
determination ranging from 0.92 to 0.95 and overall small estimation 
uncertainties (i.e., RMSE = 8.4–13.7 μg/m3, MAE = 6.1–9.8 μg/m3). A 
total of 59,079 monthly PM10 matchups were collected from 2015 to 
2019 across China (Fig. 7f) which were highly consistent (R2 = 0.94), 
and with average RMSE and MAE values of 11.07 μg/m3 and 7.87 μg/ 
m3, respectively. These results suggest that the monthly synthetic data 
also yield high accuracies and can well capture the spatiotemporal 
variations of PM10 pollution across China. 

3.2. Spatiotemporal characteristics 

Here, the STET model is applied to generate a daily high-resolution 

(1 km) and high-quality PM10 dataset for China (i.e., ChinaHighPM10) 
from 2015 to 2019. Daily PM10 maps are then synthesized to obtain the 
monthly, seasonal, and annual mean PM10 maps, which are used to 
explore PM10 spatiotemporal characteristics across China. 

3.2.1. Spatial coverage and distribution 
Fig. 8 shows satellite-derived 1-km-resolution (≈ 0.01◦ × 0.01◦) 

annual mean PM10 maps from 2015 to 2019 across China, and Table 3 
summarizes the statistics for China and each region of interest. The STET 
model can generate spatially continuous PM10 maps and can cover most 
areas of China with an average spatial coverage of 99%. Although there 
are some differences in the spatial patterns among the years, the overall 
pollution level appears to have gradually decreased over the years. Note 
that there are large differences in PM10 concentrations over the years in 
the Tibetan Plateau, mainly due to the small number of sparsely 

Fig. 5. Spatial distributions of (a-c) out-of-sample and (d-f) out-of-station cross-validation (CV) results in daily PM10 estimates at each monitoring station from 2015 
to 2019 across China. Units for RMSE and MAE values are μg/m3. 

Fig. 6. Time series of the daily performance in PM10 (a) estimates and (b) predictions using the STET model from 2015 to 2019 across China. Units for RMSE and 
MAE values are μg/m3. 
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Fig. 7. Validation of monthly synthetic PM10 estimates against ground measurements from 2015 to 2019 across China.  

Fig. 8. Annual (a-e) and multiple-year (f) mean PM10 maps (1 km) from 2015 to 2019 across mainland China.  

J. Wei et al.                                                                                                                                                                                                                                      



Environment International 146 (2021) 106290

9

distributed ground-based monitoring stations, leading to inevitable 
differences from the actual situation, especially for the first few years. 
The annual mean PM10 concentration is 93.6 ± 43.3, 94.4 ± 52.8, 85.5 
± 44.6, 84.8 ± 56.0, and 69.0 ± 47.2 μg/m3 for each year from 2015 to 
2019, respectively, and the multi-year average is 85.4 ± 47.6 μg/m3 in 
China. 

Annual PM10 concentrations vary across mainland China. Northwest 
China has extremely high PM10 concentrations, especially in the Tarim 
Basin (e.g., PM10 > 250 μg/m3), because it is the main source area of 
sand/dust in China. The North China Plain, especially the BTH region, 
also has high PM10 concentrations (average = 93.0 ± 22.7 μg/m3). This 
is most likely due to construction-generated emissions or long-range 
transport of sand and dust (Sun et al., 2006; Chen et al., 2007; Huang, 
2010; Liu et al., 2014). By contrast, PM10 pollution is generally low in 
southwestern, northeastern, and southern China (e.g., PM10 < 80 μg/ 
m3), in particular, the PRD region (average = 60.0 ± 5.4 μg/m3), mainly 
due to less anthropogenic aerosols or more favorable meteorological 

conditions for the dispersion of pollution. In general, coarse-mode PM10 
concentrations have similar spatial patterns but with much higher 
values as fine-mode PM2.5 concentrations in most areas in China, like the 
Tarim Basin (Wei et al., 2019d). 

The STET model can generate almost full-scene PM10 maps with high 
spatial coverage ranging from 93% to 99% across China in different 
seasons (Fig. 9). However, there are unavoidable missing values in a few 
parts of southern China in summer and northern China in winter due to 
abundant clouds and permanent snow/ice. Furthermore, PM10 concen-
trations vary greatly and differently across China in different seasons. 
PM10 concentrations are much higher in spring (average = 101.2 ± 65.3 
μg/m3) and winter (average = 97.6 ± 44.6 μg/m3), especially in the 
BTH, PRD, and SCB regions (Table 3). In addition, PM10 concentrations 
are particularly high (i.e., PM10 > 200 μg/m3) in the Taklimakan Desert 
and in northwestern China throughout the year. This is because there are 
frequent sandstorms and dust, and these areas are mainly dominated by 
coarse particles, which can be suspended in the atmosphere for a long 
time (Ge et al., 2014). By contrast, PM10 pollution is lightest in summer 
(average = 69.4 ± 45.5 μg/m3) with low PM10 concentrations < 70 μg/ 
m3 in most regions. More precipitation and higher air humidity in the 
summer are instrumental in diffusing and removing atmospheric pol-
lutants (Li et al., 2017c; Su et al., 2017). 

3.2.2. Temporal variation and trend 
Fig. 10 shows the interannual variations in PM10 concentration from 

2015 to 2019 in China. PM10 pollution had a significant decreasing trend 
of 5.81 μg/m3/year (p < 0.001) across China during the five years 
considered. In general, PM10 concentrations showed significant down-
ward trends in most areas, especially in the North China Plain and the 
Qinghai-Tibet Plateau (i.e., trend < -8 μg/m3/year, p < 0.05). Therefore, 
we mainly focus on PM10 variations in eastern China, where the mean 
decreasing trend from 2015 to 2019 was 4.38 μg/m3/year (p < 0.001). 
In particular, PM10 concentrations decreased significantly (p < 0.001) in 
three major urban agglomerations in China, with an average annual 
decline of 6.16 μg/m3, 3.23 μg/m3, and 2.75 μg/m3 for the BTH, YRD, 
and PRD regions, respectively. The SCB also experienced a noticeable 

Table 3 
Statistics of annual and seasonal mean PM10 concentrations (μg/m3) in China 
and in each region of interest from 2015 to 2019.  

Region Annual Spring Summer Autumn Winter 

China 85.4 ±
47.6 

101.2 ±
65.3 

69.4 ±
45.5 

79.1 ±
40.0 

97.6 ± 44.6 

WCH 70.2 ±
21.4 

78.8 ± 22.8 46.7 ±
14.2 

66.4 ±
21.6 

87.2 ± 30.8 

ECH 94.8 ±
55.8 

115.1 ±
77.8 

81.0 ±
53.0 

86.9 ±
46.0 

104.4 ±
50.3 

BTH 93.0 ±
22.7 

109.5 ±
19.2 

67.5 ±
15.2 

86.9 ±
23.1 

108.3 ±
35.3 

YRD 76.1 ±
15.4 

80.7 ± 16.3 52.4 ±
10.7 

74.2 ±
16.0 

95.0 ± 18.2 

PRD 60.0 ± 5.4 64.1 ± 5.9 45.4 ± 6.0 58.5 ± 6.0 68.2 ± 8.4 
SCB 68.8 ±

15.2 
72.0 ± 14.7 46.5 ± 8.8 62.3 ±

14.7 
96.2 ± 25.5 

BTH: Beijing-Tianjin-Hebei; ECHN: eastern China; PRD: Pearl River Delta; SCB: 
Sichuan Basin; WCHN: western China; YRD: Yangtze River Delta. 

Fig. 9. Seasonal mean PM10 maps (1 km) from 2015 to 2019 across mainland China.  
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decreasing trend of 4.85 μg/m3/year (p < 0.001) in PM10 concentration. 
These decreasing trends are mainly due to a series of environmental 
protection measures implemented by the Chinese government (Zhang 
et al., 2019). 

3.3. Discussion 

3.3.1. Importance of the feature variables 
Tree-based ensemble learning methods allow quantitative evalua-

tions of the importance of each input feature variable to the predictor (i. 
e., PM10), expressed by an importance score. This score is calculated 
using the Gini index (Jiang et al., 2009; Calle and Urrea, 2011), used to 
represent the average contributions of features to the model perfor-
mance in the tree node splitting rather than the physical mechanism. 
Fig. 11 shows the sorted importance scores for all features used in the 
STET model to estimate PM10 concentrations in China. AOD is clearly 
the most critical variable, and its importance score reaches 18%. This is 
followed by space and time, with importance scores of 13% and 10%, 
respectively. This indicates the importance of spatiotemporal informa-
tion in improving model performance. In addition, all meteorological 
variables (especially ET and TEM), DEM, and NDVI have impacts on 
PM10 with varying importance scores ranging from 4% to 10%. The 

Fig. 10. Spatial distributions of linear trends of monthly PM10 concentrations (μg/m3/year) from 2015 to 2019 across China (background map). Inset figures show 
time series of the monthly mean anomalies in four regions of interest: (a) the Beijing-Tianjin-Hebei (BTH) region, (b) the Yangtze River Delta (YRD) region, (c) the 
Pearl River Delta (PRD) region, and (d) the Sichuan Basin (SCB). The red and blue lines represent the linear regression and y = 0 lines, respectively. The green areas 
in the lower right inset figure represent trends that are significant at the 95% (p < 0.05) confidence level. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 11. Sorted importance scores for each feature considered for estimating 
PM10 concentrations in China using the STET model. 

Table 4 
Comparison of the STET model with and without considering spatial distances in 
PM10 estimates in China. Data are from 2019.  

Model Out-of-sample validation Out-of-station validation 

R2 RMSE MAE R2 RMSE MAE 

STETNo Distance 0.856 20.441 12.124 0.827 22.428 13.840 
STETFull 0.866 19.757 11.530 0.835 21.856 13.453  
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remaining four variables have relatively low importance scores, mainly 
due to their low spatiotemporal resolutions. Nevertheless, all selected 
features contribute to PM10 (i.e., importance scores > 1%) and should 
not be ignored. 

We also performed a simple comparison between the performance of 
our STET model with and without considering spatial distances using the 
same input data from 2019 in China (Table 4). Incorporating spatial 
distances into the model leads to improvements in the overall accuracy 
and spatial prediction ability, demonstrated by increasing CV-R2 values 
and decreasing estimation uncertainties, i.e., RMSE and MAE. This in-
dicates that the combination of spatial distances and longitude/latitude 
information can describe the spatial location of a point in space more 
accurately, helpful for training a more accurate model (Behrens et al., 
2018). 

3.3.2. Comparison with traditional models 
First, we compared the performance of our STET model with tradi-

tional linear regression, statistical regression, and machine learning 
models using the same input dataset from 2019 in China (Table 5). 
Results suggest that PM10 concentrations derived from the MLR model 
do not agree well with ground measurements (e.g., slope = 0.31, CV-R2 

= 0.30), showing large estimation uncertainties. The generalized addi-
tive model (GAM), GWR, and LME models can improve the overall ac-
curacy of PM10 estimates, as shown by better regression lines, increasing 
CV-R2 values, and decreasing estimation errors. The two-stage model 
can also generate more accurate PM10 estimates (e.g., slope = 0.67, CV- 
R2 = 0.65) with smaller estimation uncertainties (e.g., MAE = 20.21 μg/ 
m3) by combining two different statistical regression models (i.e., LME 

and GWR). However, among the three popular tree-based machine 
learning models, the RF and ERT models perform better in estimating 
PM10 than can the original DCT model because they are ensemble 
learning approaches developed from the decision tree. They also 
outperform the statistical regression models considered in Table 5. More 
importantly, by introducing spatiotemporal information, the perfor-
mances of the STDT, STRF, and STET models is improved significantly 
with overall better statistical metrics (CV-R2 = 0.69–0.87, RMSE =
19–30 μg/m3, and MAE = 11–18 μg/m3). In particular, the STET model 
performs the best with all the best evaluation indicators among all 
models considered. 

3.3.3. Comparison with previous studies 
We then compared our results with results from previous related 

studies on PM10 estimations from regional to national scales in China 
(Table 6). The STET model performs better than the traditional physical 
model in the BTH region (Wang et al., 2014) and the LME model in the 
YRD region (Meng et al., 2015). The STET model also outperforms the 
GWR model (Zhang et al., 2016), the nonlinear exposure-lag-response 
model (Chen et al., 2018), the GAM model (Chen et al., 2018), the RF 
model (Chen et al., 2018), and the LUR model (Zhang et al., 2018) across 
the whole of China. Overall, the STET model results are superior to those 
from previous studies chiefly because previous studies have mostly used 
traditional statistical regression and conventional machine learning 
methods. They either have low data mining abilities or do not consider 
the spatiotemporal characteristics of air pollution, leading to less robust 
PM10–AOD relationships. Moreover, the AOD products used in previous 
studies were generated from either the DT or DB algorithms, with large 
estimation uncertainties, especially over bright surfaces (Sayer et al., 
2014; Wei et al., 2019c, 2020). By contrast, the AOD product we used 
was generated from the new MAIAC algorithm, which has proven to be 
much more accurate than the popular DT and DB algorithms, with 
significantly smaller estimation uncertainties, especially over hetero-
geneous urban surfaces (Liu et al., 2019b; Mhawish et al., 2019; Wei 
et al., 2019e). 

The spatial resolution of the MAIAC AOD product (1 km) is much 
higher than the widely used DT/DB products (3–10 km). Accordingly, 
the spatial resolution of our generated PM10 dataset has been improved 
to 1 km. To stress the advantage of this finer resolution, Fig. 12 shows 1- 
km PM10 estimates in four hot spots that people pay close attention to, i. 
e., BTH, YRD, PRD, and SCB. The 1-km ChinaHighPM10 dataset provides 
more spatial details and can provide clearer air pollution information in 
these typical regions than can the 3-km and 10-km estimates reported by 
others (e.g., Wang et al., 2014; Meng et al., 2015; Zhang et al., 2016; 
Chen et al., 2018; Zhang et al., 2018), especially at small to medium 
scales, such as prefecture-level cities. These results further illustrate that 
the ChinaHighPM10 dataset is potentially useful for future urban air 
pollution and environmental health studies. 

Table 5 
Model performances of the STET model and traditional models using the same 
input dataset in China, where bold values indicate the optimal value of each 
column. Data are from 2019.  

Model Spatial resolution Regression Line Model Validation 

Slope Intercept R2 RMSE MAE 

MLR 1 km 0.31 53.07 0.30 24.41 27.95 
GAM 1 km 0.36 54.05 0.32 31.31 32.55 
GWR 1 km 0.54 37.00 0.50 30.64 25.53 
LME 1 km 0.58 32.43 0.57 25.68 21.55 
Two-stage 1 km 0.67 25.90 0.65 26.60 20.21 
DCT 1 km 0.63 30.96 0.53 37.79 22.54 
RF 1 km 0.69 24.96 0.76 25.46 16.19 
ERT 1 km 0.70 24.16 0.79 24.33 15.45 
STDT 1 km 0.73 23.69 0.69 30.00 17.71 
STRF 1 km 0.79 17.12 0.84 20.67 12.73 
STET 1 km 0.81 15.26 0.87 19.76 11.53 

DCT: decision tree; ERT: extra-trees; GAM: generalized additive model; GWR: 
geographically weighted regression; LME: linear mixed-effect; MLR: multiple 
linear regression; RF: random forest; STDT: space-time decision tree; STET: 
space-time extremely randomized trees; STRF: space-time random forest. 

Table 6 
Model performances from similar previous studies focused on China.  

Model Spatial Resolution Model Validation AOD Product Study region Literature 

R2 RMSE MAE 

Physical 10 km 0.68 – – DT BTH Wang et al. (2014) 
LME 10 km 0.87 19.20 – DT YRD Meng et al. (2015) 
LUR 10 km 0.64 – – DT China Zhang et al. (2018) 
NLELR 10 km 0.47 48.96 – DT/DB China Chen et al. (2018) 
GAM  0.50 47.40 – DT/DB   
RF  0.78 31.54 – DT/DB –  
GWR 3 km 0.81 – – DT China Zhang et al. (2016) 
STET 1 km 0.89 24.81 15.99 MAIAC BTH This study   

0.86 16.40 11.32 MAIAC YRD    
0.86 24.28 14.52 MAIAC China  

DB: Deep Blue; DT: Dark Target; GAM: generalized additive model; GWR: geographically weighted regression; LME: linear mixed-effect; LUR: land-use regression; 
MAIAC: Multi-Angle Implementation of Atmospheric Correction; NLELR: nonlinear exposure-lag-response; RF: random forest; STET: space-time extremely randomized 
trees. 
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4. Summary and conclusion 

In view of the low spatial resolutions of current air pollution datasets, 
a tree-based ensemble learning method, which accounts for spatiotem-
poral information (i.e., space-time extremely randomized trees, or STET, 
model), was designed to derive near-surface PM10 concentrations using 
remote sensing technology. For this purpose, and based on the newly 
released MAIAC 1-km-resolution aerosol product and PM10 ground ob-
servations, together with auxiliary data, i.e., meteorological, emission, 
land cover, topography, and human activity data, a daily high-resolution 
(1 km) and high-quality PM10 dataset in China (i.e., ChinaHighPM10) 
from 2015 to 2019 was produced. The ChinaHighPM10 dataset is highly 
accurate, with high out-of-sample and out-of-station cross-validation R2 

values of 0.86 and 0.82, respectively, and low RMSE values of 24.28 μg/ 
m3 and 27.07 μg/m3, respectively, at the national scale. In addition, the 
STET model outperforms most traditional physical, statistical regres-
sion, and machine learning models. 

High PM10 concentrations are mainly observed in northwestern 
China and the North China Plain, while low concentrations are always 
found in southwestern, northeastern, and southern China. However, 
PM10 concentrations have significantly decreased over the past five 
years in China, with an average trend of − 5.81 μg/m3 (p < 0.001), 
especially in the Beijing-Tianjin-Hebei region (trend = 6.16 μg/m3, p <

0.001). The Tarim Basin, though, still has high PM10 concentrations >
250 μg/m3 because this area is mainly dominated by coarse particles, 
and sandstorms are common throughout the year. In general, the Chi-
naHighPM10 dataset can provide information useful for future related 
air pollution studies in small- and medium-scale regions such as urban 
areas. 
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