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ABSTRACT: Fine particulate matter (PM2.5) chemical composition has
strong and diverse impacts on the planetary environment, climate, and health.
These effects are still not well understood due to limited surface observations
and uncertainties in chemical model simulations. We developed a four-
dimensional spatiotemporal deep forest (4D-STDF) model to estimate daily
PM2.5 chemical composition at a spatial resolution of 1 km in China since
2000 by integrating measurements of PM2.5 species from a high-density
observation network, satellite PM2.5 retrievals, atmospheric reanalyses, and
model simulations. Cross-validation results illustrate the reliability of sulfate
(SO4

2−), nitrate (NO3
−), ammonium (NH4

+), and chloride (Cl−) estimates,
with high coefficients of determination (CV-R2) with ground-based
observations of 0.74, 0.75, 0.71, and 0.66, and average root-mean-square
errors (RMSE) of 6.0, 6.6, 4.3, and 2.3 μg/m3, respectively. The three
components of secondary inorganic aerosols (SIAs) account for 21% (SO4

2−), 20% (NO3
−), and 14% (NH4

+) of the total PM2.5
mass in eastern China; we observed significant reductions in the mass of inorganic components by 40−43% between 2013 and 2020,
slowing down since 2018. Comparatively, the ratio of SIA to PM2.5 increased by 7% across eastern China except in Beijing and
nearby areas, accelerating in recent years. SO4

2− has been the dominant SIA component in eastern China, although it was surpassed
by NO3

− in some areas, e.g., Beijing−Tianjin−Hebei region since 2016. SIA, accounting for nearly half (∼46%) of the PM2.5 mass,
drove the explosive formation of winter haze episodes in the North China Plain. A sharp decline in SIA concentrations and an
increase in SIA-to-PM2.5 ratios during the COVID-19 lockdown were also revealed, reflecting the enhanced atmospheric oxidation
capacity and formation of secondary particles.
KEYWORDS: PM2.5 composition, secondary inorganic aerosols, deep learning, remote sensing, China

1. INTRODUCTION
Fine particulate matter with diameters less than 2.5 μm
(PM2.5) poses a major environmental health risk around the
world, especially in low- and middle-income countries.1,2 Its
chemical composition includes organic matter, black carbon,
sulfate (SO4

2−), nitrate (NO3
−), ammonium (NH4

+), chloride
(Cl−), mineral dust, and trace elements, among others. These
components can be categorized into primary and secondary
aerosols. The former refers to fine particles directly emitted
from different pollution sources, and the latter refers to new
particles formed from gaseous or particulate pollutants through
photochemical and heterogeneous reactions. Secondary
inorganic aerosols (SIA = SO4

2− + NO3
− + NH4

+) are closely
associated with anthropogenic emissions from the energy,
industrial, and agricultural sectors.2−4 Cl− is an important
component of sea-salt aerosols, while anthropogenic sources
include coal/biomass combustion and industrial processes,

influencing aerosol particle growth, atmospheric chemical
reactions, PM2.5 and ozone air quality, especially in developing
countries.5−9 For effective policy-making, monitoring changes
in these inorganic components can better reflect changes in
specific aerosol sources relative to the total PM2.5.

10,11

PM2.5 composition has noticeable impacts on the ecological
environment, ambient air quality, and Earth’s climate. Acid rain
formed by sulfuric and nitric acid particles via the oxidation of
sulfur dioxide (SO2) and nitrogen oxides (NOx) affects plant
growth.12,13 The formation of SIA components is a main cause
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of severe haze pollution.14,15 Sulfate aerosols with moderately
long life cycles can cause significant local pollution and even
affect global climate change through atmospheric transport and
climate response.16 Different PM2.5 constituents impact human
health in different ways.17,18 Recent studies have suggested that
carbonaceous aerosols from agricultural residue biomass
burning and wildfires,19,20 ultrafine particles from automobile
exhaust,21,22 and severe haze episodes caused by fine
particles23,24 have strong toxicities. Despite the general
recognition of the strong health impacts of PM2.5, the possible
effects of chemical composition on these health hazards are less
clear, largely due to the lack of adequate monitoring in diverse
environments.
China is an emerging country with rapid industrialization

and economic development in recent decades, where PM2.5
pollution (especially SIAs) has always been a major concern in
urban air quality.25 Many studies have investigated the sources
and impacts of PM2.5 composition. However, most of these
studies have involved only a few individual observation stations
or specific observation periods in megacities or urban
agglomerations.26−30 Such studies likely have limitations in
spatial representation because they mostly reflect the
atmospheric composition around a ground site or during
short-term periods. Insights from atmospheric chemistry
models, e.g., Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2), Goddard Earth
Observing System (GEOS)-Chem, and Weather Research and
Forecasting-Community Multiscale Air Quality (WRF-
CMAQ), can provide regional-to-global perspectives of long-
term variations in different PM2.5 species but tend to be biased
toward certain species given limitations in main inputs such as
emission inventories.3,31 Also, model simulations are computa-
tionally costly and generally have a coarse horizontal grid
resolution of tens of kilometers, limiting their applications
across urban-residential scales.
PM2.5 has been estimated from satellite remote sensing of

aerosol optical depth (AOD), but little has been done with
regard to aerosol composition. The long-term evolution of
global PM2.5 components was assessed by integrating satellite
PM2.5 retrievals, GEOS-Chem-simulated PM2.5 composition
information and coincident profiles, and surface PM2.5 and
composition observations.10,32−34 PM2.5 composition was
estimated in other regions with moderate to high resolutions
incorporated with surface measurements, such as in southern
California at 4.4 km using a generalized additive model,35 in
the northeastern United States at 1 km combining a chemical
transport model and geographically weighted regression
model11 or a land-use regression model,36 and in North
America at different resolutions with spatially smoothing
models.37,38 However, PM2.5 composition may have strong
spatial gradients due to localized sources and short lifetimes,
leading to large estimation uncertainties, especially in regions
with sparse observations. This has also been the case in China,
where only a handful of studies relying strongly on model
simulations have been done.39,40

What are the concentrations of major species and their
proportions to total PM2.5 mass in China, and what are their
temporal changes and impacts on air quality? To address these
outstanding questions, we have generated a long-term, daily,
seamless PM2.5 chemical composition product in China at a 1-
km resolution by applying artificial intelligence to a large
ensemble of data sets consisting of ground-based observations
of aerosol composition, satellite-derived PM2.5 at a 1-km

resolution,25 and various auxiliary data, i.e., meteorological
reanalyses, pollution emission inventories, and model simu-
lations. Different from previous studies, a stronger deep forest
model, which takes advantage of multiple tree-based machine-
learning models, was adopted with extensions of multidimen-
sional spatiotemporal heterogeneity made to construct robust
nonlinear relationships between each PM2.5 component and
the total PM2.5 mass concentration. The applicability of this
unique data set is also demonstrated in the analysis of
atmospheric composition and changes during heavy haze
episodes and the coronavirus pandemic.

2. MATERIALS AND METHODS
2.1. Data Sources. 2.1.1. Ground-Measured PM2.5 and

Composition. Ground-based measurements of PM2.5 compo-
sition were collected from the Chinese Center for Disease
Control and Prevention network. The network includes 126
ground monitoring stations across mainland China, providing
long-term (2013 to present) and high-frequency daily
measurements of major water-soluble inorganic ions of
PM2.5, including SO4

2−, NO3
−, NH4

+, and Cl−. Most stations
of PM2.5 speciation are located in eastern China (Figure S1).
The network is relatively uniform with dense clusters located
in the three major economic zones (outlined by purple
delineates) centered around the major megacities in China,
where emissions are strong and more localized. The urban and
suburban/rural sites account for 61% and 39%, respectively. As
such, their spatial representativeness is sound overall, similar to
the national PM2.5 observation network.41 Quartz filter
membranes were used to collect PM2.5 samples, followed by
ion chromatography providing chemical composition informa-
tion about the samples after ultrasonic extraction with pure
water. For SO4

2−, NO3
−, NH4

+, and Cl−, the detection limits
are 0.03, 0.03, 0.02, and 0.01 μg/m3, and the relative standard
errors are 0.50−1.67%, 0.16−0.96%, 0.27−1.13%, and 0.21−
0.72%, respectively.42,43 Here, daily mean SO4

2−, NO3
−, NH4

+,
and Cl− concentrations at each station from 2013 to 2020 were
used for model training and validation. Besides, daily mean in
situ total PM2.5 concentrations, provided by the China
National Environmental Monitoring Centre network, were
collected. For spatial matching, ground measurements were
assigned to the nearest grid matching the individual site and 1-
km2 grid, and if there were two or more sites falling in the same
grid, additional averaging was done.
2.1.2. Satellite PM2.5 and Auxiliary Data. Our latest version

(V4) of the long-term (2000 to present) daily seamless data set
of ground-level PM2.5 across China, i.e., the ChinaHighPM2.5
data set from the ChinaHighAirPollutants (CHAP) database,
was used in this study. It was generated from the Moderate
Resolution Imaging Spectroradiometer (MODIS) Multiangle
Implementation of Atmospheric Correction (MAIAC) AOD
product at a 1-km resolution,44 together with ground-based
measurements of surface PM2.5 and ample auxiliary variables,
using a space-time extra-trees model.25 The data set is of high
quality with an out-of-sample cross-validated coefficient of
determination (CV-R2) of 0.92, an average root-mean-square
error (RMSE) of 10.76 μg/m3, and a mean absolute error
(MAE) of 6.32 μg/m3, compared to surface observations. It
has been widely used in studies concerning public health, the
environment, and the economy;45−49 thus, it is employed here
as the primary constraint of total PM2.5 mass for separating
different chemical components. Other satellite remote-sensing
products related to land surface cover, topography, and
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population density were also used, derived from MODIS
vegetation index (1 km), Shuttle Radar Topography Mission
(90 m), and LandScan (1 km) products, respectively.
2.1.3. Model and Reanalysis Data. Model data employed

were hourly and every 3 h surface mass concentrations of
primary aerosol diagnostics (i.e., PM2.5 inorganic components)
derived from the MERRA-2 (∼0.625° × 0.5°) and GEOS-
forward processing (GEOS-FP) (∼0.3125° × 0.25°) models.
We also used monthly precursors of aerosol particles indicating
anthropogenic emissions and chemical reactions, including
ammonia (NH3), NOx, SO2, and volatile organic compounds
(VOCs) from the Copernicus Atmosphere Monitoring Service
(CAMS) monthly global emission inventories (∼0.1° ×
0.1°).50 Meteorological conditions affect the formation,
transport, and removal of air pollutants, as well as PM2.5
composition through particle hygroscopic growth and chemical
reaction rate. Thus, hourly meteorological data were employed
as model inputs, including temperature, precipitation, evapo-
ration, winds near the surface (10 m) and in the middle
troposphere (850 hPa), and surface pressure (∼0.1° × 0.1°)
from the ERA5-Land reanalysis,51 as well as boundary layer
height and relative humidity (∼0.25° × 0.25°) from the ERA5
climate reanalysis.52 All hourly level meteorological and
chemical composition simulations were averaged or accumu-
lated to obtain daily values. The finer-resolution input
parameters were aggregated, while the coarser-resolution
ones were resampled to the 1-km resolution (≈0.01° ×
0.01°) using the bilinear interpolation approach.25 Table S1
provides detailed information on all of the data used.
2.2. Methodology. 2.2.1. PM2.5 Composition Modeling

and Validation. Relative to PM2.5, sources and changes in its
chemical composition are more complex. To improve the
PM2.5-composition separation, adopted here is a more
powerful deep-learning model with a stronger data-mining
capability, i.e., deep forest.53,54 Similar to but different from the
deep neural network, it is constructed by relying on the
nondifferentiable decision tree instead of the differentiable
neuron, i.e., based on the forest model, stacking ensemble
learning with further optimization, solving the overfitting
problem occurring in the deep layer. The multi-grained
scanning method is applied to generate input features via the
sliding window. The deep forest framework is built in a cascade
forest structure adopting two kinds of forests, i.e., random
forests and completely random tree forests. Each layer of
training is independent supervised learning, and the number of
model layers can be adaptively determined through iterative
validation. The multilayer training results are integrated using
the Light Gradient Boosting Machine (LightGBM) model to
determine the final output. Compared with the traditional deep
learning of a neural network, it has a higher training speed and
uses fewer superparameters that do not need much adjustment.
Also, the complexity of the model can be automatically
adjusted.
Air pollutants are spatiotemporally heterogeneous, and

accounting for this in models can enhance the model
capability.55,56 Here, we extend the deep forest by optimizing
the way to determine spatiotemporal information on
independent variables, i.e., weighted effects referencing polar
coordinates compared to previous studies,54,56,57 leading to a
new model called the four-dimensional spatiotemporal deep
forest (4D-STDF) model (Figure S2). Unequal autocorrela-
tion and difference of points in space (Ps) are expressed in
Euclidean space with three spherical coordinates [S1, S2, S3]

(eq 1). The temporal characteristics of points (Pt) are
expressed by three helix-shape trigonometric vectors [T1, T2,
T3] (eq 2) to include both seasonal cycles and daily variations
of air pollution.58
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where Lon and Lat indicate the longitude and latitude of one
point in space, respectively, and DOY and N represent the day
of the year and the total number of days in a year, respectively.
Ground-based measurements of PM2.5 chemical components

are true values, and satellite-retrieved PM2.5 is taken as the
main input to the 4D-STDF model, together with all auxiliary
factors, including MERRA-2 and GEOS-FP simulations of
PM2.5 components, CAMS emission inventories, ERA5
meteorological fields, three surface-related and population
variables, and space-time terms, for training. Here, three widely
used 10-fold cross-validation approaches, i.e., out-of-sample,
out-of-station, and out-of-day procedures, performed by
randomly discarding 10% of the data samples (overall
accuracy), monitors (spatial prediction ability), and days
(temporal prediction ability), respectively, are used to generate
independent training and validation samples and characterize
the model performance in separating different PM2.5
components, respectively.17 The linear regression equation
and coefficient of determination (R2) are used to quantitatively
evaluate the model accuracy, and RMSE and MAE are used to
evaluate the model uncertainty.
2.2.2. Model Variable Importance. Our model is superior

in physical interpretation to traditional black-box deep-learning
models because it can quantitatively evaluate the contribution
(importance) of each input variable in separating PM2.5
composition. Being the sum of all species, PM2.5 carries the
bulk of changes and contributes 36−45% for the three SIA
components (Figure S3), followed by meteorological con-
ditions (importance score = 22−31%). The boundary layer
height is particularly critical by affecting the vertical
distribution and mixing of air pollutants. Spatiotemporal
information is important for modeling, accounting for 7−
11%. Emission inventory and model simulations also have large
impacts of 7−10% and 3−8%, respectively. The remaining
factors are less important but still contribute >1%, so they are
included in our model.

3. RESULTS AND DISCUSSION
Applying the 4D-STDF model to the aforementioned input
data sets, we have created a daily spatially complete (gapless)
data set of PM2.5 inorganic composition over China at a 1-km
resolution from 2013 to 2020 and extended the model to
reconstruct historical records dating back to 2000, called
ChinaHighPMC, one of a series of ChinaHighAirPollutants
(CHAP) data sets. Figure S4 shows the annual maps of four
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PM2.5 inorganic components averaged from daily data during
the last two decades in eastern China.
3.1. Evaluation of Separated PM2.5 Components. In

total, ∼220,000 data samples were acquired for the four
inorganic components from 2013 to 2020 at all available sites
in China. Our model can differentiate PM2.5 into different

species at varying spatial scales. Sample-based cross-validations
against ground measurements show a moderate correlation
coefficient (CV-R2 > 0.4) at approximately 89%, 95%, 88%,
and 80% of the stations for SO4

2−, NO3
−, NH4

+, and Cl−,
respectively (Figure 1). A few stations in northwest and central
China had large estimation uncertainties. In general, the

Figure 1. Overall accuracies of daily estimates (μg/m3) of PM2.5 inorganic components: (a) SO4
2−, (b) NO3

−, (c) NH4
+, and (d) Cl− at each

monitoring station (maps with colored dots) and for the whole of China (inserted density scatter plots) for the period 2013−2020.

Figure 2. Spatial distributions of annual mean 1-km-resolution total PM2.5 concentration (μg/m3, central panel), PM2.5 inorganic components (μg/
m3, left set of panels), and composition-to-PM2.5 ratios (%, right set of panels) of SO4

2−, NO3
−, NH4

+, and Cl− in eastern China averaged over the
period 2013−2020. The inserted pie charts in the middle figure show the proportions (%) of different PM2.5 components in eastern China
(ECHN) and three urban agglomerations (outlined by pink borders): the Beijing−Tianjin−Hebei (BTH) region, the Yangtze River Delta (YRD),
and the Pearl River Delta (PRD).
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national-scale daily estimates agree well with ground measure-
ments, with out-of-sample CV-R2 values of 0.74, 0.75, 0.71,
and 0.66, and low RMSEs (MAEs) of 6.0 (3.3), 6.6 (3.8), 4.3
(2.4), and 2.3 (1.0) μg/m3, for the four species, respectively.
Spatially and temporally based cross-validations illustrate
similar spatial patterns between daily retrievals and observa-
tions for PM2.5 components at the individual-site scale but with
an overall worse performance (Figures S5 and S6). A similar
conclusion can be drawn regarding the national accuracy, with
overall decreasing out-of-station CV-R2 values of 0.65, 0.67,
0.62, and 0.48, and increasing RMSEs (MAEs) of 6.9 (3.8), 7.6
(4.4), 4.9 (2.8), and 2.9 (1.3) μg/m3 for SO4

2−, NO3
−, NH4

+,
and Cl−, respectively. The out-of-day CV results are
comparable, with close CV-R2 values of 0.66, 0.66, 0.65, and
0.55, and RMSEs (MAEs) of 6.8 (3.8), 7.7 (4.5), 4.7 (2.7), and
2.6 (1.2) μg/m3, for the four species, respectively. They are
notably better at monthly (e.g., R2 = 0.84−0.87, 0.52−0.75,
and 0.74−0.81, and RMSE = 1.3−3.6, 2.1−4.8, and 1.6−4.3
μg/m3) and annual scales (R2 = 0.87−0.91, 0.66−0.73, and
0.82−0.85, and RMSE = 0.5−1.9, 1.0−2.9, and 0.9−2.2 μg/
m3) based on syntheses of daily values at each monitoring
station for sample, spatially, and temporally based CV results
(Figures S7−S9).
3.2. Spatiotemporal Characteristics of PM2.5 Compo-

sition. 3.2.1. Spatial Distribution and Proportion. Lack or
sparseness of ground observations in the period prior to 2013
or in western and northeastern China will inevitably incur large
estimation uncertainties. Our analysis is thus mainly
concentrated on eastern China, which has a much denser
station network, during the period 2013−2020. In general, the
four inorganic components have similar spatial patterns, with
high concentrations centered over the North China Plain
(NCP) (Figure 2), where SO4

2− has much higher levels in

nearby heavily industrialized zones, e.g., southern Hebei and
Shanxi and northern Henan provinces. NO3

− is mainly
distributed over the economically developed urban agglomer-
ations, e.g., the Beijing−Tianjin−Hebei (BTH) region and the
Yangtze River Delta (YRD), and in major cities like
Guangzhou and Wuhan. The spatial distribution of SO4

2−

reflects the dominant sources of SO2, with coal combustion
being a major source. Enhanced NO3

− mainly occurs in cities
and industrial centers, with large contributions from traffic and
industrial emissions of NOx.

59−61 NH4
+ resembles the spatial

pattern of the above two species but with a lower
concentration because it mainly comes from agricultural
emissions of NH3 that neutralize SO4

2− and NO3
−.61,62 By

contrast, Cl− concentrations are usually less than 2 μg/m3 in
eastern China, 3−5 times lower in population-weighted mean
content than the other three inorganic components (Table
S2). High values are mainly localized to heavily industrialized
zones, such as BTH, and coastal areas, such as the Bohai Rim.
These areas have abundant coarse-mode particles, e.g., sea salt,
and fine particles produced by the combustion of fossil fuels
like coal and biomass burning.9

Similar to PM2.5, strong seasonal variations are revealed in
our estimates (Figure 3). All inorganic components are at their
highest levels in winter, especially in northern China, where
coal burning for heating is the primary source,63 compounded
by the low boundary layer height.64,65 By contrast, population-
weighted mean concentrations are 1.4−3.3 times lower in
summer than in winter in eastern China, especially NO3

− in
the Pearl River Delta (PRD, 4 times lower) (Table S2), mainly
due to evaporative loss under high-temperature conditions.66

There are also significant north−south differences due to
different meteorological conditions, e.g., more abundant
precipitation promoting the wet removal of particulate

Figure 3. Spatial distributions of seasonal mean 1-km-resolution PM2.5 inorganic components (μg/m3, left set of panels) and composition-to-PM2.5
ratios (%, right set of panels) of SO4

2−, NO3
−, NH4

+, and Cl− in eastern China averaged over the period 2013−2020.
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pollutants in southern China.67,68 Spring and autumn have
similar spatial patterns and pollution levels in eastern China
and three typical urban agglomerations.
Regarding the proportions of inorganic components to total

PM2.5 (Figures 2 and 3), SO4
2− accounts for 20.5% in eastern

China and higher values in the south compared to the north,
e.g., PRD is 1.4 times that of BTH. The SO4

2− contribution
reaches a maximum of 27.6% in summer (Table S3), especially
in Shanxi Province, where high amounts of SO2 are emitted
from coal power plants.41 The high temperature and stronger
radiation also significantly enhance the chemical conversion
from SO2 to SO4

2−.10,39,69 NO3
− accounts for 19.8% of the

total PM2.5 but has opposite seasonal changes to that of SO4
2−,

with the lowest value in summer (15%) and higher values in
cold seasons in eastern China (Figure 3). This is explained by
lower temperatures and more available NH3-neutralizing
sulfates that favor nitrate aerosol partitioning.61,70 The annual
NH4

+ fraction is 13.9% in eastern China, showing a weaker
seasonal contrast, with a somewhat higher value of ∼14% in
summer, presumably due to higher NH3 emissions from
agricultural sources.62,71 NH4

+ resides mostly in the form of
ammonium sulfate in summer but in ammonium nitrate in
winter.61 Annual and seasonal Cl−-to-PM2.5 ratios are much
smaller (average = 3−4.6%) than those of the other three
inorganic species. In winter, the Cl− contribution is higher in
the northern and western vast regions and major urban areas

due to the saline-alkali soils with dry meteorological conditions
and large emissions from anthropogenic sources like coal
combustion and residential biomass burning.7−9 In general, the
four main inorganic aerosols account for 58.1% of the total
PM2.5 in eastern China, of which the fraction of SIA is more
than half (54.2%), reaching a maximum of 56.6% in summer
while a minimum of 49.4% in winter. This dominant presence
of SIAs calls upon the need for the persistent regulation of
emissions of relevant precursor gases (i.e., SO2, NOx, and
NH3).
3.2.2. Temporal Variation and Trend. Steady declines are

seen in the concentrations of the four inorganic components
from 2013 to 2020 in eastern China at the annual rates of
−0.63, −0.5, −0.34, and −0.11 μg/m3 for SO4

2−, NO3
−, NH4

+,
and Cl− (p < 0.001), respectively, especially in the BTH
(−0.19 to −1.06 μg/m3/year, p < 0.001) (Figure 4). This is
highly consistent with the significant decline in total PM2.5
(−2.78 to −5.44 μg/m3/year, p < 0.001) attributed to
substantial reductions in anthropogenic emissions benefiting
from the implementation of new national environmental
protection policies.25,72 While the SO4

2− contribution
decreased sharply in Beijing, Tianjin, and surrounding areas,
it increased rapidly in the south. The former decrease may
have stemmed from the reduction of flue gas desulfurization
from coal-fired boilers as coal combustion shifted to gas and
electricity during the heating season in northern China.73−75

Figure 4. Spatial distributions of temporal trends of total PM2.5 concentration (μg/m3/year, central panel), PM2.5 inorganic components (PMC,
μg/m3/year, set of panels to the left), and composition-to-PM2.5 ratios (CPR, %/year, set of panels to the right) of SO4

2−, NO3
−, NH4

+, and Cl− in
eastern China from 2013 to 2020. Note that only trends significant at the 95% (p < 0.05) confidence level in areas with population density >10
people per km2 are shown. The line charts (top and bottom panels) show the time series of monthly PM2.5 concentrations (μg/m3) stacked by
different chemical components from 2013 to 2020 in eastern China (ECHN) and three urban agglomerations (outlined by pink borders in the
central panel): the Beijing−Tianjin−Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). Colored numbers
give the temporal trends (μg/m3/year) of different PM2.5 species during the period 2013−2020, where *** indicates that the trends are significant
at the 99.9% (p < 0.001) confidence level.
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The proportion of NO3
− also greatly increased in eastern

China (0.36%/year, p < 0.001), especially since 2018 in BTH
(0.81%/year, p < 0.001), highlighting the importance of NH3
and NOx controls for preventing future PM2.5 pollution.

76 The
NH4

+-to-PM2.5 ratio increased at a rate of 0.26% per year (p <
0.001) in eastern China as a result of the combined effects of
changes in SO4

2− and NO3
−, which was higher in the south

where the fractions of both anions increased. The Cl−
contribution overall did not change much over time. The
increase in the inorganic-to-PM2.5 ratio may reflect the faster
decline in other components (−1.54 to −4.10 μg/m3/year, p <
0.001), especially the significant reduction in primary PM2.5
emissions (mostly organic carbon) following nationwide
regulations after 2013.59,60,72,77 Increased oxidation rates due
to rising surface ozone levels could also speed up the formation
of SIAs.17,78 In addition, this may be partly attributed to
reduced dust because coarse-mode aerosol particles (PM10,
PM2.5−10) were observed to have declined considerably.79,80

In general, annual population-weighted mean concentrations
of inorganic chemical composition dropped by 40−43% in
eastern China from 2013 to 2020, with the largest declines in
SO4

2− in BTH (by 54%) and NO3
− in the PRD (by 51%).

Seasonally, SO4
2− and NH4

+ always decreased the most in
summer in eastern China and three key regions (by 40−58%
and 40−53%, respectively), while NO3

− dropped the most in
autumn by 45−52% (Figure S10). By contrast, the SIA
contribution has been continuously increasing in eastern China
during the last eight years (slope = 0.9%, R2 = 0.95), with
SO4

2− still being the main secondary component in 2020
(population-weighted mean concentration = 6.9 μg/m3 and
SO4

2−-to-PM2.5 ratio = 21.7%), 8% higher in concentration and
1.6% higher in proportion than NO3

−. Nevertheless, NO3
−

(slope = 0.36%, R2 = 0.96) gradually approached SO4
2− (slope

= 0.29%, R2 = 0.86). However, great contrasting regional
differences exist, e.g., SO4

2− remained dominant in the PRD
(slope = 0.43%, R2 = 0.8), while NO3

− continuously

Figure 5. Typical example of satellite-derived (background maps) and ground-measured (colored dots) concentrations (μg/m3) of PM2.5, SO4
2−,

NO3
−, NH4

+, and secondary inorganic aerosols (SIAs) during a severe haze episode that occurred during December 16−22, 2016, in the North
China Plain.
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contributed the most in the YRD (slope = 0.43%, R2 = 0.93).
In BTH, the SO4

2− contribution has been declining (slope =
−0.13%, R2 = 0.28), while the NO3

− contribution has been
rapidly rising (slope = 0.54%, R2 = 0.9), becoming the
dominant component since 2016 (Figure S11).
For policy implementations (Figure S12), the decline in

PM2.5 inorganic components was most dramatic during the
Clean Air Action Plan (2013−2017) in eastern China,
especially for SO4

2− and NO3
− (−0.72 and −0.60 μg/m3/

year, p < 0.001) (Table S4), with SO2 and NOx emissions
falling by 59% and 21%, respectively.60,81 The largest
downward trends occurred in the NCP, consistent in spatial
pattern with the changes in SO2 and NO2 concentrations at the
surface.41,82 However, during the Blue Sky Defense War
(2018−2020), the downward trends slowed significantly. Areas
with significant decreases shrank in size, mainly located in a
handful of provinces (e.g., Beijing and Anhui) and urban
agglomerations (e.g., PRD and YRD). In particular, SO4

2−

decreases occurred mainly in the core urban areas of central
Shanxi province after 2018 due to the enforcement of the clean
heating policy,83−85 leading to a sharp reduction of 33% in
surface SO2 pollution.41 Except for Cl−, increases in the SIA
proportion have accelerated overall in recent years. However,
this was not seen in densely populated large cities like Beijing
and Guangzhou, where the SIA proportion remained relatively
stable from 2018 to 2020.
To validate the data reliability, we further compared national

and regional PM2.5 components and their ratios to total PM2.5
calculated from surface observations (Tables S2 and S3). They
are highly consistent, with little differences at both annual and
seasonal levels. However, specific differences exist with average
results from satellite retrievals, increasing as the region
expands, e.g., eastern China, caused by significant differences

in spatial representations.25 Also, considering the large
difference in sampling time between satellite-derived and
ground-based observations, to be a fair comparison, we
calculated their temporal trends with collocated data at each
site (Figure S13). Results illustrate that our data set can
accurately capture the variations of aerosol components (R2 =
0.85) and reproduce well the changes in the proportion of
PM2.5 species (R2 = 0.8).
3.2.3. Preliminary Investigation before 2013. Using our

newly developed model, we also reconstructed historical data
records of PM2.5 chemical composition before 2013 to fill gaps
in surface observations. Figure S14 shows the multiyear mean
and annual temporal trends of the four inorganic components
during 2000−2012. Their spatial patterns are particularly
similar to those of 2013−2020 in eastern China, but 16%, 7%,
7%, and 13% higher in population-weighted mean concen-
trations of SO4

2−, NO3
−, NH4

+, and Cl−; differently, these four
components show significant increasing trends at the annual
rates of 0.15, 0.11, 0.07, and 0.03 μg/m3 (p < 0.001),
respectively. Highly polluted conditions and greater trends
were observed in the NCP, associated with the significant
increase in total PM2.5, mainly due to more anthropogenic
emissions of major pollutants caused by the rapid economic
growth of the country.25,39 Similar findings were also reported
from previous model simulated studies.39,77 Nevertheless,
given the absence of historical observations, an independent
analysis is needed to validate the reliability of data records
estimated for the prior period.
3.3. Short-Term Changes in PM2.5 Composition.

3.3.1. Haze Episode in the North China Plain. The unique
advantage of the daily seamless data set enables us to capture
short-term episodes of heavy PM2.5 pollution and analyze their
causes with the help of chemical composition and its changes.

Figure 6. Relative differences (%) in PM2.5 inorganic components (PMC, μg/m3; top row) and composition-to-PM2.5 ratios (CPR, %; bottom row)
of SO4

2−, NO3
−, NH4

+, and secondary inorganic aerosols (SIAs) from January 26 to February 17 (lockdown period) between the year of the
COVID-19 epidemic (2020) and the normal year of 2019 in areas with population density >10 people per km2 in eastern China. The red border
and black star indicate Hubei Province and Wuhan City, respectively.
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Figure 5 illustrates a typical example of a severe wintertime
haze episode that occurred during December 16−22, 2016, in
the NCP. Our satellite-derived results are highly consistent
with ground-based observations in terms of spatial pattern and
amplitude of change. In particular, we filled spatial gaps,
providing a seamless insight into this pollution episode where
observations of PM2.5 components were scarce. Here, overall
low concentrations of PM2.5 and inorganic components at the
initial stage were captured as moderate pollution gradually
formed near the major cities of Tianjin, Baoding, and
Shijiazhuang. Subsequently, atmospheric pollution increased
substantially, spreading rapidly to surrounding areas and finally
to the entire NCP. Pollution reached its peak around
December 20. Heavy pollution broadly affected several
provinces, including Beijing, Tianjin, Hebei, Henan, Shandong,
and even Hunan in southern China. Extremely high SO4

2−

hotspots are seen in heavily industrial cities like Shijiazhuang
and Zibo, while NO3

− hotspots were observed in core hub
cities like Beijing and Tianjin mainly due to differences in main
secondary pollutant emission sources (e.g., heavy industrial
production and transportation) in local areas. After December
20, high concentrations of PM2.5 and its components covered
less area, finally dropping to background levels over the NCP.
A meta-analysis of multiple cases of heavy haze episodes

from 2013 to 2020 (population-weighted mean PM2.5 = 155.6
μg/m3) illustrates that SIA fractions varied from 39.8% to
49.8%, with an average of 45.9%, of which NO3

− and SO4
2−

were the two dominant components, accounting for 18.2% and
16.2% of the total PM2.5 mass, respectively (Table S5). This
suggests the important role of these two PM2.5 components in
regional pollution due to intensive anthropogenic emissions.86

The continuous growth of SIA fractions (slope = 1.46%, R2 =
0.87) became the main driver for winter haze in the NCP. In
particular, NO3

− (slope = 0.96%, R2 = 0.72) became
increasingly prominent over SO4

2− (slope = 0.17%, R2 =
0.18), with their rapid rises proving to be the key factors for
the explosive growth of PM2.5 pollution.

87,88

3.3.2. Impacts of the COVID-19 Lockdown. This data set
allows us to quantify changes in PM2.5 composition more
accurately during dramatic short-term events at a fine scale and
investigate their influential factors and mechanisms. Figure 6
compares changes in SIA components and proportions during
the COVID-19 lockdown in eastern China, where the former
significantly decreased by 16.8% (especially NO3

− by 19.7%)
and the latter increased by 3.5% (especially SO4

2− by 7.3%) as
a whole (Table S6). The spatial patterns are striking: drastic
declines of more than 20% in all SIA components in central
(e.g., Henan, Hubei, Shandong, Jiangsu, and Anhui) and
southern (e.g., Guangdong) China, in contrast to significant
increases of more than 40% in the north and northeast (e.g.,
Beijing, Tianjin, northeastern Hebei, and western Liaoning)
and parts of the southeast and southwest. The main reason was
strict domestic restrictions on industry and transportation that
sharply reduced anthropogenic emissions, e.g., NOx and SO2,
by 36% and 27%, respectively.54,89,90 Adverse meteorological
conditions, which offset or even reversed the effect of
anthropogenic emissions on air quality, may explain the
anomaly in the north.91−94 By contrast, the ratios of SIA
components to PM2.5 increased across most of the mapping
domain, especially in the north, with the exception of the PRD,
where they decreased (Table S6). Regarding the NO3

−

fraction, opposite declines were observed in the worst-hit
areas by the epidemic, i.e., Hubei province (↓ 2.4%) and

surrounding areas (e.g., Anhui), due to rapid reductions in
NOx, CO, and VOC emissions. These led to a significant
increase in surface ozone in northern China, saturating NOx

95

and greatly enhancing the atmospheric oxidation capacity and
the formation of secondary PM2.5. For the NOx-controlled area
in southern China, the impact was the opposite.17,96,97

3.4. Comparison with Related Data Sets and Previous
Studies. We first compared our data set with model
simulations of PM2.5 inorganic composition by collecting
daily mean surface mass concentrations (kg m−3) of SO4

2−,
NO3

−, NH4
+, and Cl− from the GEOS-FP reanalysis and SO4

2−

and Cl− from the MERRA2 reanalysis and validating against
ground-based measurements from 2013 to 2020 in China
(Figure S15). Besides coarse spatial resolutions (0.25°−
0.625°), the chemical transport models did a poorer job in
simulating PM2.5 inorganic components, seriously under-
estimating the concentrations with stronger deviations,
especially for SO4

2− and Cl− (e.g., R2 ≤ 0.05, slope ≤0.18).
By contrast, our estimates improved the spatial resolution
drastically by 25−63 times, increasing the correlations by 3−66
times and reducing the RMSE (MAE) values by 36−61% (40−
65%) compared to chemical-model simulations, benefiting
from the integration of big data and deep learning.
Two previous estimates of SIAs over China were derived

from chemical transport modeling data with composition-
specific conversions based on satellite AOD or PM2.5 estimates
but showed poor agreement with in situ measurements (R2 =
0.38−0.56) for daily SIA estimates of SO4

2−, NO3
−, and NH4

+

components at a 10-km resolution.39,40 We also made a
comparison with an open-access source, namely, Tracking Air
Pollution (TAP) in China (http://tapdata.org.cn),77 at the
same monitoring stations over the same period (2013−2020),
showing an average R2 of 0.37−0.44 and RMSE of 6.4−10.4
μg/m3 between daily estimates (10 km) and surface
observations of SO4

2−, NO3
−, and NH4

+ components (Figure
S16). Compared to these studies, our new ChinaHighPMC
data set has a ten times higher spatial resolution (1 km) and
higher data quality (R2 = 0.71−0.75 and RMSE = 4.2−6.7 μg/
m3) for the three SIA components; our data set also includes
another inorganic component, i.e., Cl−. One reason for the
better performance of our model is that it relies on a denser
network of direct ground-based observations rather than on
the more dependent chemical model conversion. Another
reason is the stronger data-mining ability of our deep-learning
model.
3.5. Limitations and Prospects. Despite the encouraging

results, limitations still exist. The in situ PM2.5 composition
network is much sparser than that of total PM2.5, resulting in
insufficient spatial representation. Some input parameters
simulated by chemical transport models also suffer from
large biases in regions without observations. They undoubtedly
bring significant uncertainties to our estimates. The current
study only focuses on the inorganic composition of PM2.5,
while a future study will be investigated focusing on the
organic parts as well as black carbon, which may have greater
toxicity and environmental effects. More detailed satellite-
based aerosol information, such as those (e.g., aerosol shape,
size, and extinction) conveyed in NASA’s Multi-angle Imaging
SpectroRadiometer (MISR) products, will be explored to
improve the estimation in the future.
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