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Abstract. Hyperspectral remote sensing has been widely used in mineral identification using the
particularly useful short-wave infrared (SWIR) wavelengths (1.0 to 2.5 μm). Current mineral
mapping methods are easily limited by the sensor’s radiometric sensitivity and atmospheric
effects. Therefore, a simple mineral mapping algorithm (SMMA) based on the combined appli-
cation with multitype diagnostic SWIR absorption features for hyperspectral data is proposed.
A total of nine absorption features are calculated, respectively, from the airborne visible/infrared
imaging spectrometer data, the Hyperion hyperspectral data, and the ground reference spectra
data collected from the United States Geological Survey (USGS) spectral library. Based on
spectral analysis and statistics, a mineral mapping decision-tree model for the Cuprite mining
district in Nevada, USA, is constructed. Then, the SMMA algorithm is used to perform mineral
mapping experiments. The mineral map from the USGS (USGS map) in the Cuprite area is
selected for validation purposes. Results showed that the SMMA algorithm is able to identify
most minerals with high coincidence with USGS map results. Compared with Hyperion data
(overall accuracy ¼ 74.54%), AVIRIS data showed overall better mineral mapping results
(overall accuracy ¼ 94.82%) due to low signal-to-noise ratio and high spatial resolution.
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1 Introduction

In recent years, due to the continuous bands and high spectral resolutions, hyperspectral remote
sensing has been extensively developed in different scientific fields including mineral mapping,
disaster or environment monitoring, and vegetation parameter retrieval, among others.1–3 Based
on the remote sensing technology, mineral information can be efficiently extracted over large
spatial scales, which could save considerable manpower and shorten mapping time. Therefore,
hyperspectral remote sensing data have been widely applied to mineral exploration.

Traditional mineral mapping methods mainly include spectral matching, unmixing, and local
feature matching. Spectral matching is a well-known technology that identifies minerals through
the similarity between the spectra obtained from satellite remote sensing data and ground mea-
surements based on different distance functions.4,5 Chen et al.6 investigated the potential value of
some traditional methods, including the spectral angle mapper (SAM) method and the minimum
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distance method, for geological mapping at Cuprite, Nevada, which showed a good
classification performance. Bhattacharya et al.7 utilized the SAM method to map altered/
weathered and clay minerals over the Dongargarh area based on Hyperion data and collected
reference spectra. These methods can achieve a high precision in low vegetation coverage areas,
but the spectra can vary significantly due to mixed spectra, atmospheric factors and surface
structures, etc.8

Spectral unmixing is another standard technology for spectral mixture analysis using a linear
or non-linear model. Kruse et al.9 used linear spectral unmixing and a knowledge-based
expert system to automatically produce mineral maps based on airborne visible/infrared im-
aging spectrometer (AVIRIS) data in Death Valley, California, and Nevada. Wu and Alan10

estimated the impervious surface distribution from Landsat ETM+ data using a linear spectral
mixture model for spectral mixture analysis and achieved promising accuracy in Columbus.
Bioucas et al.11 described geometrical, statistical and spatial-contextual unmixing algorithms
as well as mathematical problems and potential solutions. Gonzalez et al.12 developed a paral-
lel field programmable gate array-based method for spectral unmixing using the image space
reconstruction algorithm, which can be used to estimate the abundance of endmembers in
hyperspectral images. Spectral unmixing can reduce the mixed spectra effects and has
been widely used in complex areas to separate mixed minerals in addition to applications
in other fields; however, it mainly relies on the identification of endmembers and spectral
differences.13

Local spectral feature matching methods usually used unique spectral absorption features
embodied in different spectral wavelengths to identify specific mineral types. Commonly
used spectral diagnostic absorption features mainly include absorption band position, absorption
depth, absorption symmetry, absorption width, etc. For instance, Clark et al.14 introduced a spec-
tral feature fitting method for spectral matching between targets and reference spectra with spe-
cific absorption features. Abílio et al.15 proposed an analysis of the absorption band positioning
method that used the absorption band position to identify alteration minerals. van Ruitenbeek
et al.16 used the diagnostic spectral information of the mineral of interest through band ratios to
show predicted wavelengths of white mica in the areas of highest probability. Wei et al.17 used
the optimum index factor to determine the optimal combination of spectral absorption features
and performed the mineral mapping experiments with the pattern recognition method using the
AVIRIS data in the Cuprite mining district, achieving a high precision. In addition, automatic
absorption band methods such as the mapping of asymmetrical shape of absorption bands have
been extensively developed and they can achieve high mineral recognition accuracies in single
mineral areas.18,19 However, spectral absorption features are independently applied to mineral
mapping for specific minerals in local areas in early studies.

The above approaches demonstrated that they were influenced by mixed spectra and had
difficulty identifying different mineral types in complex regions. Therefore, to improve these
methods, a simple mineral mapping algorithm (SMMA) based on the combination of multitype
diagnostic spectral absorption features for hyperspectral data is proposed in this paper. Joint
application of them can make full use of their adaptability and sensitivity of local spectral
changes and can achieve mineral separation with a high precision in local areas with a variety
of minerals.

In the current study, two typical hyperspectral data, AVIRIS and Hyperion, of the Cuprite
mining district, Nevada, were selected. Multitype spectral absorption features of AVIRIS,
Hyperion images, and reference spectra data from the United States Geological Survey (USGS)
spectral library were calculated, and the mineral recognition model was built and applied to
the Cuprite to perform mineral mapping experiments. Later, the mineral mapping result pro-
duced by Clark et al.20 was selected and used to verify the experimental results.

2 Study Area

The Cuprite mining district is located on the border of Esmeralda and Nye counties in
southwestern Nevada, USA (37°28′ to 37°40′ N, 117°8′ to 117°20′ W) (Fig. 1). The elevation
of Cuprite ranges from 1420 to 1700 m above sea level. Cuprite has abundant mineral resources,
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with a wide variety of rock types exposed and sparse vegetation coverage (<15%) that includes
sheep grass, juniper, small cacti, and sagebrush. It is separated into two regions by highway
US-95. Cambrian metasedimentary rocks cover most of the western part of the Cuprite
area.21,22 The oldest Cambrian unit contains abundant muscovite, which exhibits an Al–OH
2.2-μm absorption feature, and calcite, which typically exhibits a (CO3) 2.33-μm spectral
absorption feature.23 The Tertiary volcanic rocks cover the central and eastern parts of the
study area and are divided into three parts, i.e., the argillaceous alteration belt, the silicified
alteration belt, and the opal alteration zone.21,22 The argillaceous alteration belt primarily consists
of alunite, dickite, and kaolinite, which exhibits doublet absorption features at 2.17 and 2.2 μm.
The silicic area forms a large irregular patch extending from the middle to the south of Cuprite,
including quartz. The opal alteration belt mainly contains opal. Silicified and opalized rocks
have a broad absorption feature centred at 2.26 μm.21–23 As a typical well-understood mineral-
ogical area, a wide range of research has been conducted, leading to extensive mineral
mapping.8–10,21,24–27

3 Data Sets and Processing

3.1 Data Sets

In this paper, ground measured reference spectra data and two sets of hyperspectral data are
employed. The ground measured spectra data were collected from the USGS spectral library,
and the hyperspectral data consist of AVIRIS and Hyperion data. The USGS spectral library is
oriented to mineral resources exploration based on the combination of the JPL standard spectra
database, released in September 2007. The spectra data are collected using a Beckman 5270
spectrometer, including 481 examples of typical minerals. Each mineral spectrum covers the
spectral range of 0.2 to 3.0 μm with a spectral resolution of 10 nm. Seven types of typical min-
erals, alunite, kaolinite, montmorillonite, muscovite, calcite, and chlorite, are selected in this
paper to perform mineral mapping experiments in the Cuprite mining district.

AVIRIS is jointly developed by the American space agency NASA and Jet Propulsion
Laboratory (JPL) and has been flown since 1987. The AVIRIS sensor acquires data in the spec-
tral range of 0.4 to 2.5 μm for a total of 224 spectral bands at a spectral resolution of 10 nm and a
spatial resolution of 3 to 15 m. NASA’s Earth Observing-1 (EO-1) Hyperion sensor has been in
continuous operation since November 2000. Hyperion data cover a spectral range of 0.4 to
2.5 μm, with a spectral resolution of 10 nm and a spatial resolution of ∼30 m from a 705-km
orbit, for a total of 242 spectral bands.28 The data are calibrated to radiance using both prem-
ission and on-orbit measurements. Table 1 shows a comparison of key features between AVIRIS
and Hyperion data.

Fig. 1 Geographical location of Cuprite mining district, Nevada, USA.
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3.2 Data Processing

For reference spectra data from the USGS spectral library, spectral resampling is required to
match the other hyperspectral data with different spectral resolutions. Spectral resampling is
usually based on a Gaussian function and uses the centre wavelength of full width of half maxi-
mum spectral response in an imaging spectrometer,

EQ-TARGET;temp:intralink-;e001;116;489ρ 0 ¼
XN

λ¼1

½βðλÞ × ρðλÞ�∕
XN

λ¼1

βðλÞ; (1)

where ρ 0 is the resampling spectra, ρðλÞ is the origin spectra, and βðλÞ is the weight of spectral
response function of each channel for different hyperspectral images.

For AVIRIS data, image processing mainly includes the invalid bands removal, radiometric
calibration, and atmospheric correction. Due to poor data quality, data processing required for
the Hyperion data mainly includes bad line and invalid band removal, atmospheric correction,
stripe removal, and spectra smoothing. Bad lines are removed using the neighbourhood averag-
ing method. Invalid spectral bands affected by atmospheric water absorption as well as low sig-
nal-to-noise ratio (SNR) are removed (bands 1 to 2, 105 to 115, 150 to 170, and 223 to 224 of
AVIRIS, bands 77 to 78 of Hyperion). For Hyperion data, some bands without radiation cal-
ibration should also be removed (bands 1 to 7, 58 to 76, and 225 to 242). In this study, 36 bands
of AVIRIS data and 87 bands of Hyperion data are removed.

To obtain land surface reflectance, atmospheric correction is necessary for both AVIRIS
and Hyperion data. In this paper, AVIRIS and Hyperion data were both converted to surface
reflectance using the fast line-of-sight atmospheric analysis of hypercubes (FLAASH) model
provided by the environment for visualizing images software. The FLAASH model is a type
of atmospheric correction method that is based on moderate resolution atmospheric transmission
(MODTRAN4) radiative transfer mode,29 suitable for different types of sensors. Table 2 provides
the main atmospheric correction parameters for both AVIRIS and Hyperion images. Figure 2
shows alunite spectra before and after atmospheric correction.

There are two obvious water vapor absorption bands approximately at 1350 to 1450 nm and
1800 to 1950 nm. However, most certainly alteration minerals have distinctive and unique
absorption features in the short-wave infrared (SWIR) range of 1900 to 2500 nm. In this paper,
considering the selected typical minerals spectra, 2000 to 2500 nm of AVIRIS, total of 50 spec-
tral bands, and the 1980 to 2400 nm of Hyperion, total of 35 bands are selected for mineral
mapping experiments.

There are different degrees of regular stripes appearing in most bands of Hyperion data due to
the Earth’s inherent features and inherent noise. In this paper, the global stripe method is selected
to remove stripes,30,31 which can better improve the image quality and retain the original spectral
information. Moreover, hyperspectral data are often affected by noise, and abundant researches
have been conducted on noise filtering.32 The hamming window filter is selected in this study to
smooth the spectra in order to reduce the noise influence for Hyperion data.33,34

Table 1 Comparison of key features between AVIRIS and Hyperion data.

Features AVIRIS Hyperion

Wavelength range (μm) 0.4 to 2.5 0.4 to 2.5

Number of channels 224 242

Spectral resolution (nm) 10 10

Spatial resolution (m) 3 to 15 30

Swath width (km) 10.5 7.5

SWIR SNR ∼500∶1 ∼50∶1

Wei et al.: Simple mineral mapping algorithm based on multitype spectral. . .

Journal of Applied Remote Sensing 026015-4 Apr–Jun 2017 • Vol. 11(2)

Downloaded From: http://spiedigitallibrary.org/ on 05/24/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



4 Methodology

4.1 Diagnostic Spectral Absorption Features Extraction

The diagnostic spectral absorption features used in this paper mainly include absorption band
position (P), absorption reflectance (Rp), absorption width (W), absorption symmetry (S),
absorption depth (H), absorption area (A), spectral absorption index (SAI), etc. They can be
extracted through the continuum removed reflectance spectra.

Continuum removal is a common spectral enhancement technology for hyperspectral data,
which can highlight the spectral absorption and reflection features effectively. With continuum
removal, absorption features were normalized to the same spectral features background, and the
absorption features can be extracted and applied to identify mineral types. The continuum-
removed spectrum is calculated by dividing the original reflectance values within the spectral
feature by the corresponding values of a continuum line established between the two end-
points of the feature.35,36 Figure 3 shows detailed definitions of different spectral absorption
features. Each absorption feature is composed of the spectral absorption valley point and
two shoulders.37,38

The absorption band position is located at the point P, which has the minimum spectral
reflectance. The absorption reflectance (Rp) refers to the corresponding reflectance of P.

(a) (b)

Fig. 2 Alunite spectra (a) before and (b) after atmospheric correction.

Table 2 Main atmospheric correction parameters used in FLAASH models.

Sensor type AVIRIS Hyperion

Scene center location Metadata Metadata

Sensor altitude (km) 20 705

Ground elevation (km) DEM DEM

Pixel size (m) 3 to 15 30

Fight date and time GMT Metadata Metadata

Atmospheric model Midlatitude summer/winter Midlatitude summer/winter

Aerosol model Rural Rural

Aerosol retrieval 2-band (K-T) 2-band (K-T)

Water retrieval Yes Yes

Water absorption feature 1135 nm 1135 nm

Initial visibility (km) 0 to 40 0 to 40

Other parameters Default values Default values
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The absorption width (W) is the difference in wavelengths between the two shoulders (S1 and S2)
of point P [Eq. (2)] and the spectral absorption symmetry (S) can be defined as Eq. (3). The
spectral absorption depth (H) is defined as the distance between Rp and 1 [Eq. (4)]. The spectral
absorption area (A) refers to the triangle area composed of the points Rp and two absorption
shoulders [Eq. (5)]. The band position of P is selected first as the initial value, then gradually
decreases (increases) from P toward the left (right) side until it first meets the Eq. (6). The values
on the left and right sides, respectively, represent the left (S1) and right (S2) absorption shoulder
positions. The SAI is defined as the reciprocal of the ratio between the reflectance of point P and
the corresponding value of the spectral absorption baseline [Eq. (7)]

EQ-TARGET;temp:intralink-;e002;116;406W ¼ λ2 − λ1; (2)

EQ-TARGET;temp:intralink-;e003;116;370S ¼ ðλ1 − λPÞ∕W; (3)

EQ-TARGET;temp:intralink-;e004;116;342H ¼ 1 − RP; (4)

EQ-TARGET;temp:intralink-;e005;116;314A ¼ H �W∕2; (5)

EQ-TARGET;temp:intralink-;e006;116;286j1 − ρj ¼ 0; (6)

EQ-TARGET;temp:intralink-;e007;116;258SAI ¼ ½S � R1 þ ð1 − SÞ � R2�∕Rp; (7)

where λ1, λ2 are the wavelength and R1, R2 are the reflectances of left (S1) right (S2) shoulder
positions for point P, λp is the wavelength of point P, ρ is the reflectance. In this study, a total of
nine spectral absorption feature parameters are calculated for AVIRIS, Hyperion, and reference
spectra from the USGS spectral library, respectively.

4.2 Simple Mineral Mapping Algorithm

4.2.1 Spectral analysis

Figure 4 shows the typical mineral spectra of the spectral ranges from 2000 to 2500 nm after
continuum removal. Three types of clay minerals, kaolinite, montmorillonite, and chlorite,
show relatively complex spectra. Kaolinite shows a strong double absorption approximately
at 2180 and 2210 nm, and montmorillonite has a close absorption feature distributed around

Fig. 3 Definition of multitype spectral diagnostic absorption features.
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2220 nm. The absorption feature of chlorite is approximately at 2320 nm. Muscovite is
part of the phyllosilicate group with a strong absorption feature approximately at
2200 nm and a large absorption symmetry. Calcite, a type of carbonate mineral, has a
close absorption feature distributed at 2330 to 2340 nm, showing a greater difference
from the other minerals. Alunite is characterized by absorption features due to the OH fre-
quency stretching at 2150 to 2170 nm, and an approximately symmetrical shape at 2100 to
2250 nm, with a second broad absorption at 2320 nm, and a third broad absorption at
2420 nm. However, a vibrational absorption feature at 2160 nm is the main diagnostic spec-
tral absorption feature distinguishing alunite from other clay minerals, as well as the lower
absorption reflectance.

4.2.2 Decision-tree rules generation

Based on the spectral analysis, the mineral mapping accuracy can be improved by using a variety
of spectral absorption features. Table 3 shows distribution ranges of multitype spectral absorp-
tion features of different mineral types calculated from the USGS spectral library.

It is observed that different minerals show different distribution ranges on certain spectral
absorption features. Alunite has an absorption position (P) approximately at 2166 nm, with a low
absorption reflectance (R < 0.65), SAI, and small left absorption shoulder position (S1) less
than 10, respectively. Kaolinite has a similar P ∼ 2208 nm with montmorillonite
(P ∼ 2212 nm) and muscovite (P ∼ 2203 nm), but a stable absorption width (W) ranging from
350 to 380 and a smaller S1 than alunite. However, montmorillonite has a wideW range (W ∼ 90

to 250) and a high reflectance (R > 0.70). It also has a small absorption depth (H) and absorption
area (A) less than 0.30 and 20, respectively. Muscovite has a relatively wider range of A ∼ 20 to
50 and absorption symmetry (S ∼ 0.3 to 0.8) than other minerals. Calcite and chlorite show
similar absorption positions approximately at 2337 and 2324 nm, whereas calcite has a stable
W ranging from 280 to 310 and a smaller right absorption shoulder position (S2 < 40) than
chlorite. According to the above analysis, a decision-tree model of mineral recognition is con-
structed as

Alunite: P ∈ ð2158; 2168Þ and W ∈ ð200; 250Þ and R < 0.65 and SAI < 0 and S1 < 10,
Kaolite: P ∈ ð2200; 2210Þ and W ∈ ð350; 380Þ and S1 < 10,
Muscovite: P ∈ ð2190; 2210Þ and A ∈ ð20; 50Þ and S ∈ ð0.3; 0.8Þ,
Kaolite + Muscovite: P ∈ ð2190; 2210Þ and W ∈ ð280; 360Þ and S > 030 and S1 < 10,
Montmorillonite: P ∈ ð2200; 2220Þ and W ∈ ð90; 250Þ and R > 0.70 and H < 0.30 and

A < 20,
Calcite: P ∈ ð2330; 2340Þ and W ∈ ð280; 310Þ and S < 0.25 and S2 ∈ ð30; 40Þ,
Chlorite: P ∈ ð2310; 2330Þ and S2 > 40.

Fig. 4 Continuum removed spectra of typical minerals in Cuprite.
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5 Results and Discussion

5.1 Mineral Mapping Experiments

The mineral recognition model is applied to five AVIRIS images and two Hyperion images in the
Cuprite mining district. A total of seven types of minerals, alunite, kaolinite, montmorillonite,
muscovite, calcite, chlorite, and a mixture of kaolinite and muscovite, are identified in Cuprite
mining district using the SMMA algorithm. Figure 5 shows the mineral mapping results.

Figure 6 shows the common region of mineral mapping results in the Cuprite from AVIRIS
and Hyperion data. It is observed that the mineral recognition model can adequately identify

Table 3 Distribution ranges of multitype spectral absorption features.

P R W

Min Max Mean Min Max Mean Min Max Mean

Alunite 2158 2168 2166 0.28 0.66 0.53 209.89 249.98 236.65

Kaolinite 2208 2208 2208 0.58 0.69 0.65 359.18 379.23 367.20

Montmorillonite 2207 2217 2212 0.74 0.97 0.80 99.82 239.24 147.01

Muscovite 2197 2207 2203 0.59 0.80 0.69 199.78 408.65 260.44

Kao+Mus 2197 2208 2203 0.58 0.75 0.67 280.32 360.23 312.62

Calcite 2337 2337 2337 0.67 0.73 0.70 289.24 309.26 299.28

Chlorite 2317 2327 2324 0.55 0.80 0.66 239.12 328.61 278.87

H A S

Min Max Mean Min Max Mean Min Max Mean

Alunite 0.21 0.72 0.43 22.26 82.53 51.24 0.37 0.48 0.40

Kaolinite 0.31 0.42 0.35 33.05 68.07 53.36 0.25 0.58 0.46

Montmorillonite 0.03 0.26 0.20 2.99 20.16 13.70 0.27 0.62 0.49

Muscovite 0.20 0.41 0.31 21.85 48.05 35.03 0.38 0.79 0.53

Kao+Mus 0.15 0.41 0.34 23.45 54.26 40.02 0.30 0.64 0.48

Calcite 0.27 0.33 0.30 39.34 48.80 45.13 0.17 0.21 0.19

Chlorite 0.20 0.45 0.34 23.78 74.05 48.47 0.36 0.59 0.45

SAI S1 S2

Min Max Mean Min Max Mean Min Max Mean

Alunite −11.34 −1.33 −3.78 1 5 1 24 26 25

Kaolinite 1.44 1.72 1.54 3 6 5 25 41 35

Montmorillonite 1.03 1.35 1.26 5 16 13 26 39 28

Muscovite 1.25 1.68 1.46 5 14 9 27 48 33

Kao+Mus 1.32 1.70 1.51 5 8 7 28 44 34

Calcite 1.37 1.48 1.43 8 10 9 38 39 39

Chlorite 1.25 1.82 1.53 14 21 17 41 48 45
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most minerals in Cuprite. Mineral mapping results showed that the west area of Cuprite mainly
includes alunite, kaolinite, montmorillonite, muscovite, and a certain amount of calcite and chlo-
rite. The east area mainly contains alunite, kaolinite, and a small amount of montmorillonite.
Alunite, kaolinite, and muscovite are widely distributed and concentrated in Cuprite, yet the
montmorillonite, calcite, and chlorite are overall small and fragmented. Visual comparisons indi-
cate that AVIRIS can identify similar types of minerals and produce similar mineral mapping
results as Hyperion; however, Hyperion shows overall worse mapping results than AVIRIS.

5.2 Mineral Mapping Accuracy Assessment

For comparative purposes, a mineral map produced by the USGS library (USGS map)20,39 is
selected in this paper, which is used to map different minerals presented in Cuprite (Fig. 7).
This USGS map is generated using the USGS tricorder algorithm with technologies of waveform
matching, least square fitting, and diffraction analysis based on AVIRIS data. Moreover, it is
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Fig. 6 Common mineral mapping results in Cuprite for (a) AVIRIS and (b) Hyperion images.
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Fig. 5 (Left) False color synthesis images and (right) corresponding mineral mapping results
in Nevada, USA of (a) f060502t01p00r04, f060502t01p00r05, f060502t01p00r06, and
f060502t01p00r07, AVIRIS; (b) f060920t01p00r05, AVIRIS; (c) E01H0410342001204111P1
and E01H0410342011037110KF, Hyperion.
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verified with field investigation combined with ground-measured data and shows an overall high
accuracy compared with ground observations. It serves as a good indicator for qualitative and
quantitative assessments of mineral mapping and has been widely applied to validations of
Cuprite mineral recognition results. First, the geometric correction of the USGS mineral
map was conducted by selecting control points and then, the minerals were extracted and merged
into seven types in order to match the mineral mapping results in this paper.

For qualitative comparison, several typical minerals, alunite, kaolinite, and muscovite, were
extracted from USGS map, AVIRIS, and Hyperion mapping results, respectively. Figure 8 shows
the qualitative comparison between the mineral mapping results and the USGS map in Cuprite.
It is clear to see that alunite, kaolinite, and muscovite were effectively identified in both AVIRIS
and Hyperion images. They showed a strong alignment with the USGS map. However, com-
pared with Hyperion, the three typical minerals, especially for kaolinite, and muscovite can be
better identified in the AVIRIS data.

For quantitative evaluation, the Kappa coefficient (K) with the overall and user’s accuracies are
computed for a measure of how well the mineral mapping result agrees with the USGS map. Each
mineral was extracted independently from the USGS map as the validation samples to match with
the experiment results. Table 4 shows the mineral mapping accuracies of AVIRIS and Hyperion data.

Fig. 7 USGS map of the location of different minerals in the Cuprite mining district. The map is
available online at http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
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Table 4 Accuracy statistics of the mineral mapping results.

Matrix

Accuracy (%)

AVIRIS Hyperion

Prod. acc. (%) User acc (%) Prod. acc. (%) User acc (%)

Alunite 95.08 97.94 92.22 82.56

Kaolinite 94.79 91.84 67.05 68.37

Montmorillonite 58.59 65.82 12.36 59.81

Muscovite 96.37 99.74 81.25 88.91

Calcite 86.07 76.00 54.46 36.18

Chlorite 71.03 51.58 68.48 14.16

Kao + Mus 97.57 94.25 — —

Kappa 0.9317 0.6234

Prod. acc. (%) 94.82 74.54

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Qualitative comparisons among different mineral mapping results in Cuprite, Nevada.
(a)–(c) The alunite; (d)–(f) the kaolinite; (g)–(i) the muscovite from USGS map, AVIRIS, and
Hyperion data, respectively.
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The mineral mapping result of AVIRIS data exhibited a strong accuracy with the USGS map.
The overall accuracy reached 94.82% with a Kappa coefficient of 0.9317. The SMMA algorithm
can identify seven types of minerals with a contact ratio above 65% for most minerals. The
mixture of kaolinite and muscovite, muscovite, alunite, and kaolinite showed overall good rec-
ognition results, with high producer’s accuracies of 97.57%, 96.37%, 95.08%, and 94.79%,
respectively. However, chlorite and montmorillonite showed overall low recognition accuracies
with low agreements of 71.03% and 58.59% compared with the USGS map.

The mineral mapping result of Hyperion data agreed well with the USGS map but showed an
overall worse accuracy than AVIRIS data. This method was able to identify seven types of min-
erals for Hyperion with an overall accuracy of 74.54% and a Kappa coefficient of 0.6234
(Table 4). Alunite, muscovite, chlorite, and kaolinite showed high consistencies with the
USGS map, with producer’s accuracy of 92.22%, 81.25% 68.48%, and 67.05%, respectively.
Calcite and montmorillonite showed overall low accuracies of 54.46% and 12.36%.

From the above analysis, AVIRIS data can identify similar typical minerals with that of
Hyperion data, but Hyperion data showed an overall lower mineral mapping accuracy than
that of AVIRIS data. The main reason was the low SNRs of the Hyperion data. However, to
some extent, the difference in pixel size was still causing some loss of spatial detail in the
Hyperion mineral mapping result. Additionally, AVIRIS data showed a basic mineral mapp-
ing result of which it was possible to obtain more detailed mineral information. However,
mineral recognition by Hyperion was possible and actually Hyperion demonstrated a relatively
good mapping result considering the overall SNRs of the SWIR channels after the rigorous data
processing.

Alunite, kaolinite, and muscovite showed high recognition accuracy in accordance with the
USGS map in two hyperspectral datasets. The main reason is that these minerals are widely and
intensively distributed, and the spectral absorption features were obvious and easily identified.
However, calcite, chlorite, and montmorillonite showed overall low accuracies in both AVIRIS
and Hyperion data. The main reason is that these minerals are distributed more dispersedly and
are easily affected by surrounding derived minerals. In addition, montmorillonite always
presents in mixtures,39,40 adding the identification difficulties. Within the adjoining pixel, due
to the effects of data noise in the hyperspectral data, some scattered pixels at the edge were
divided into minerals, resulting in a relatively low accuracy.

6 Conclusions

A mineral recognition decision-tree model of this paper is developed based on the analysis of
multitype diagnostic spectral absorption features. The types and scopes of thresholds for the
spectral absorption features corresponding to different mineral types are determined, and an
SMMA with the combined application of multitype spectral absorption features is proposed
and applied to mineral mapping experiments from airborne/satellite hyperspectral images of
AVIRIS and Hyperion. Finally, the mineral map produced by the USGS library is selected
to verify the experiment results. Validation results show that the SMMA can identify most min-
erals in Cuprite and the experiment results show overall high consistency with the USGS map.
Both AVIRIS and Hyperion data show similar mineral mapping results and different mineral
types show certain differences in recognition precision; however, due to effects of low
SNR, spatial resolution, and other factors, Hyperion shows a relatively worse mineral mapp-
ing result (K ¼ 0.6234, overall accuracy ¼ 74.54%) than that of AVIRIS (K ¼ 0.9317,
overall accuracy ¼ 94.82%).

Although the proposed algorithm is suitable and obtains high accuracies, this work is limited
by some shortcomings of the decision-tree classification method. This method requires high
precision of data processing which is easily affected by image noise; results of the information
gain are biased to a category with more numerical features; it ignores correlations among differ-
ent attributes. Future work will focus on exploring the relevant relationship among the multitype
spectral absorption parameters, mineral abundance and element content, and the contribution
evaluation method of different minerals in the combined application of multitype spectral
absorption parameters.
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