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A B S T R A C T

Fine particulate matter (PM2.5) is closely related to the atmospheric environment and human life. Satellite-based
aerosol optical depth (AOD) products have been widely applied in estimating daily PM2.5 concentrations over
large areas using statistical regression models. However, they are often given at coarse spatial resolutions which
limit their applications in small or medium scales. This study aims to produce PM2.5 concentrations at a high
spatial resolution (1 km) across China based on the newly released Moderate Resolution Imaging
Spectroradiometer (MODIS) Collection 6 Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD
product using a newly developed space-time random forest (STRF) model. Daily PM2.5 concentrations for 2016
were estimated from in-situ surface PM2.5 measurements, and meteorological and ancillary variables. The 10-
fold cross-validation (CV) approach and three popular models, including the multiple linear regression model,
the geographically weighted regression model, and the two-stage model, are employed for validation and cross-
comparison. A sample-based CV of the STRF model shows a high and stable accuracy with a coefficient of
determination equal to 0.85, a root-mean-square error of 15.57 μgm−3, and a mean prediction error of
9.77 μgm−3. This finding suggests that the STRF model can predict PM2.5 daily, monthly, and annual con-
centrations at an unprecedented spatial resolution and accuracy across China. It also appears to have out-
performed the above popular models and the previous related studies. In general, the STRF model is robust and
can accurately estimate PM2.5 concentrations by taking advantage of the ensemble regression approach, the
synergy of space-time information, and the high-resolution, high-quality, and wide-spatial-coverage of the
MAIAC AOD product. It may thus also be useful for applications in related air pollution studies, especially those
focused on urban areas.

1. Introduction

Particulate matter with aerodynamic diameters≤ 2.5 μm, or PM2.5,
also known as pulmonary particles, can significantly damage human
health according to numerous epidemiological studies, exacerbating
respiratory and cardiovascular diseases (e.g., Bartell et al., 2013; Brauer
et al., 2012; Crouse et al., 2012; Pascal et al., 2014; Peng et al., 2009).
PM2.5 mainly comes from direct emissions from natural processes (e.g.,
forest fires, tsunamis, and volcanic eruptions), and human activities
(e.g., industrial production, transportation, and fuel combustion). In
recent decades, the rapid economic development experienced in China
has seriously undermined air pollution in this country. Fine particles
have been the primary pollutants in urban areas and have become a

major public concern (Bi et al., 2014; Huang et al., 2015; Li et al., 2017;
Sun et al., 2016). As a result, several PM2.5 observation networks (e.g.,
the Chinese Meteorological Administration Atmosphere Watch Net-
work) have been established in China recently for monitoring real-time
fine particles. However, the coverage is still on the sparse side with
varying standards of observational quality. High-resolution PM2.5 ob-
servations with consistent quality and wide-area coverage are thus
highly desired.

Thanks to numerous satellite missions and sensors, achieving this
objective is possible by means of remote sensing in combination with
surface PM2.5 ground measurements. As demonstrated in many studies
(e.g., Engel-Cox et al., 2004; Guo et al., 2009; Hu et al., 2014), aerosol
optical depth (AOD), representing the degree to which aerosols
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attenuate light in the atmospheric column, is highly correlated with
particulate matter concentrations. With the continuous improvement
and maturity of aerosol retrieval algorithms, a variety of aerosol pro-
ducts obtained from different satellite sensors have been widely used in
these studies. These sensors include the Multi-angle Imaging Spectro-
Radiometer (Liu et al., 2004, 2007; You et al., 2015), the Moderate
Resolution Imaging Spectroradiometer (MODIS; Fang et al., 2016; Just
et al., 2015; Lee et al., 2011; Li et al., 2017; Ma et al., 2014; Sorek-
Hamer et al., 2013; Yu et al., 2017), the Visible Infrared Imaging
Radiometer Suite (VIIRS; Pang et al., 2018; Yao et al., 2018), the
Geostationary Ocean Color Imager (Pang et al., 2018), and the Ad-
vanced Himawari-8 Imager (Zang et al., 2018). However, these pro-
ducts generally have coarse resolutions (3–50 km) which limit their
applications to atmospheric pollution studies, besides some inherent
limitations in the aerosol remote sensing (Li et al., 2009). The coarser
resolution renders particular problems for studying air pollution in fine
scales like urban areas where air composition is heterogeneous due to
complex emission sources.

A new global-coverage high-spatial-resolution (1 km) MODIS
Collection 6 (C6) daily AOD dataset (MCD19A2) has been released on
30 May 2018 (Lyapustin et al., 2018). The product is generated based
on the new Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm, which is different from the well-known Dark
Target (DT; Levy et al., 2013) and Deep Blue (DB, Hsu et al., 2013)
algorithms. It uses the semi-empirical Ross-thick/Li-sparse bi-direc-
tional reflectance distribution function and the semi-analytical Green's
function solution models (Lyapustin et al., 2011a, 2011b, 2012a). The
Lambertian equivalent reflector approximation is used to estimate the
spectral regression coefficients. For global processing and operation,
improvements have been made to numerous key steps such as cloud and
snow screening, and aerosol-type selection following a time-series

image-based analysis (Lyapustin et al., 2012b).
There are various developed models for examining the relationship

between surface ground-based PM2.5 and satellite-retrieved AOD, in-
cluding chemical (Liu et al., 2004), physical (Zhang and Li, 2015), semi-
empirical (Lin et al., 2015), and statistical models. Among these, the
statistical regression approach has been the most widely used because
of its fast and simple characteristics, and sound accuracy. The PM2.5-
AOD relationships take on many mathematical forms: the linear re-
gression model (Liu et al., 2005), the multiple line regression (MLR)
model (Xiao et al., 2017), the geographically weighted regression
(GWR) model (Ma et al., 2014; Yu et al., 2017), the linear mixed-effect
(LME) model (Xiao et al., 2017; Yu et al., 2017), the two-stage model
(Ma et al., 2016a), and the geographically and temporally weighted
regression (GTWR) model (He and Huang, 2018). PM2.5 concentrations
are affected by many factors such as meteorological conditions, land
changes, and human activities, making the use of any of these tradi-
tional models to estimate PM2.5 challenging. Machine learning, com-
monly known as data mining, has thus become popular when tackling
this and many other complex problems because of its superior cap-
ability in picking and using a large number of independent factors that
can affect the dependent variable to be predicted.

An attempt is made here to use the machine-learning approach to
first generate a 1-km daily PM2.5 concentration dataset over mainland
China where emission sources are exceptionally complex and meteor-
ological conditions highly variable. Based on machine-leaning proce-
dures, the space-time random forest (STRF) model was first developed
to cope with the spatial heterogeneity and temporal variations of
emissions and meteorological variables. The STRF model developed in
this study for application with the MODIS 1-km MAIAC AOD product,
together with other pertinent variables related to meteorological con-
ditions, land use, and human activities, was used to generate 1-km daily
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Fig. 1. Locations of PM2.5 (purple dots) and Aerosol Robotic Network (red dots) monitoring stations in China. Land use cover types for 2016 (background colored
shading) are from the MODIS land use cover product at a 500-m spatial resolution. Descriptions of the land use classes in the legend are given in Table S1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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PM2.5 concentrations. The model performance relative to predicted
records is assessed and compared with MLR-, GWR-, and two-stage
model- (i.e., stage 1: LME model; stage 2: GWR model) generated PM2.5

concentrations. The approaches used to validate the model performance
are the sample-, spatial-, and temporal-based 10-fold cross-validation
(10-CV) approaches.

2. Datasets used and preprocessing

The datasets used in this study consist mainly of hourly in-situ PM2.5

concentrations, 1-km MODIS MAIAC AOD, and auxiliary data related to
PM2.5 such as meteorological, land- and population-related informa-
tion.

2.1. PM2.5 ground measurements

This study uses calibrated and quality-controlled PM2.5 concentra-
tion measurements (Guo et al., 2009) from 1480 stations across China
acquired by the China National Environmental Monitoring Center
(http://www.cnemc.cn) from 2015 to 2016 (Fig. 1). The observation
stations are unevenly distributed across China. Eastern China has the
greatest density of stations while stations are scarce in the desert and
plateau regions of western China. PM2.5 measurements at each station
that remain the same for more than three continuous hours are removed
because of likely instrument malfunction (Rohde and Muller, 2015;
Xiao et al., 2017).

2.2. MODIS AOD products

The newly released Terra and Aqua MODIS C6 daily 1-km MAIAC
AOD products at 550 nm from 2015 to 2016 are employed. They are
subject to quality assurance (QA), cloud screening
(QACloudMask= Clear), and adjacency (QAAdjacencyMask= Clear) tests
(Lyapustin et al., 2018). Three widely used Terra and Aqua MODIS
daily DT and DB products at 550 nm at different spatial resolutions for
the same period are also collected for comparison purposes. They in-
clude the 3-km DT, 10-km DT, and 10-km DB AOD products that have
passed the recommended quality assurance tests (Levy et al., 2013).

2.2.1. Validation against AERONET measurements
The above four operational MODIS AOD products at different spatial

resolutions are first validated against Aerosol Robotic Network
(AERONET) AOD ground measurements at 20 sites (marked as red dots
in Fig. 1) across China (Fig. S1). Table S2 provides detailed information
about the selected AERONET sites in China. The time- and space-
matching approaches developed in our previous studies for matching
satellite-derived and ground-based AODs are used in the evaluation
(Wei et al., 2019a, 2019b). Results show that the DT algorithm per-
forms the worse with the least number of valid samples and with<
45% of the samples falling within the MODIS expected error envelope
(EE,± (0.05+ 20%), Levy et al., 2013). The largest overestimation
uncertainties are also seen (Fig. S1a and b). The reason is that the DT
algorithm cannot accurately estimate the surface reflectance over
bright (i.e., urban and desert) surfaces (Wei et al., 2018). The 3-km DT
retrievals are generally worse than the 10-km retrievals because of the
increasing signal-to-noise ratio (Gupta et al., 2018). The DB algorithm
can provide about 2.6 to 3.2 times more data samples with ~73% of
them falling within the EE envelope. The estimation uncertainties [i.e.,
the mean absolute error (MAE) and root-mean-square error (RMSE)]
are lower than those of the DT algorithm. This mainly arises from the
improved surface reflectance modeling in the DB algorithm (Hsu et al.,
2013). The MAIAC algorithm generates the most (N=3111) and best
retrievals with ~81% of the samples falling within the EE envelope, an
RMSE of 0.150, and an MAE of 0.083. This is mainly attributed to
improved cloud screening and an enhanced radiative transfer model
used for aerosol retrievals (Lyapustin et al., 2011a, 2012b, 2018). These

results illustrate that the MAIAC product is more accurate with im-
proved spatial coverage and higher spatial resolution than the currently
widely used DT- and DB-based AOD products in China, and is thus se-
lected for use in this study.

2.2.2. Terra and Aqua combined MAIAC AOD product
Due to differences in observation time and the diurnal variation in

cloud cover, the spatial coverage between the Terra and Aqua satellite-
derived AOD products is noticeably different. It is thus necessary to
integrate the products to enlarge the spatial coverage. An improved
linear regression data integration approach by fitting the Terra and
Aqua AOD retrievals on a monthly scale is proposed to fill the missing
data and improve the spatial continuity. Table S3 presents the monthly
linear relationships between Terra and Aqua MAIAC AOD products in
China. The estimation has a sound accuracy in terms of regression slope
(0.79–0.96), intercept (0.01–0.06), R2 (0.75–0.88), and p (< 0.01),
which is better than other similar approaches on annual or seasonal
scales. For each grid, the combined daily MAIAC AOD is estimated, and
if both Terra and Aqua AODs are available, additional averaging is
done. After the data integration, the number of daily AOD records in-
creases by>29% (26%) and 34% (36%) in 2015 and 2016, respec-
tively, than if using Terra (Aqua) AOD retrievals only. Overall, the
number of effective samples is greater than that from previous studies
(Fang et al., 2016; He and Huang, 2018; Li et al., 2017; Zheng et al.,
2016). This approach largely minimizes the systematic differences be-
tween different sensors and improves the model capability by in-
creasing the number of training samples. A wider spatial coverage of
PM2.5 concentrations across China will result.

2.3. Meteorological data

Meteorological data used are the ERA-Interim atmospheric re-
analysis products (Dee et al., 2011). They are produced based on a
sequential data assimilation scheme and have provided continuous real-
time atmospheric parameters since 1979 at several spatial resolutions
every 3 or 6 h. Eight meteorological quantities, i.e., the 2-m air tem-
perature (TEM; unit: K), total precipitation (PRE; unit: mm), evapora-
tion (ET; unit: mm), boundary layer height (BLH; unit: m), 10-m U/V
wind components (unit: m s−1), relative humidity (RH; unit: %), and
surface pressure (SP; unit: hPa), at a 0.125°× 0.125° resolution are
measured. Wind speed (WS; unit: m s−1) and wind direction (WD; unit:
degrees) are calculated from the two wind components using the vector
synthesis method. Daily means of the meteorological quantities from
10:00 to 14:00 local time coincident with satellite-derived AODs are
used.

2.4. Auxiliary data

Land-related variables include the International Geosphere-
Biosphere Program with seventeen classes of MODIS 500-m-resolution
annual land use cover (LUC) product and 1000-m-resolution monthly
normalized difference vegetation index (NDVI) product. The 90-m-re-
solution Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) is also used. The population-related variable is the
nighttime lights (NTL) product generated from the Suomi National
Polar-Orbiting Partnership VIIRS at a 500-m resolution, reflecting
human activities and regional economic development. Table S4 sum-
marize the data sources used in this study.

2.5. Data processing

Due to different spatial and temporal resolutions, all quantities used
in this study are uniformly resampled to the same spatial size
(0.01°× 0.01°≈ 1×1 km) using the bilinear interpolation method
and the same temporal interval. The 14 selected independent variables
are matched to the daily PM2.5 concentrations for each station on each

J. Wei, et al. Remote Sensing of Environment 231 (2019) 111221

3

http://www.cnemc.cn


day. After removing invalid values, there are a total of 149,351 and
153,648 matched daily ground PM2.5 concentrations and all in-
dependent variables covering all days in 2015 and 2016, respectively.

3. Methodology

PM2.5 concentrations vary dramatically in space and time due to
vast geographical areas, complex surface structures, and human dis-
turbances in China. A STRF model is thus developed to tackle the
spatiotemporal variability and its impact on the AOD-PM2.5 relation-
ship. Three popular regression models, i.e., the MLR, GWR, and
(LME+GWR), are used to see how their PM2.5 concentration estimates
compare with STRF-estimated PM2.5 concentrations.

3.1. Correlation and collinearity diagnosis

The overall relationship between MAIAC-AOD and PM2.5 measure-
ments is not close across China [correlation coefficient (R)= 0.473],
suggesting the influence of other variables. Meteorological and other
auxiliary quantities are thus introduced to enhance the relationship
(Table S5). Variables that have significant positive or negative effects
on PM2.5 concentrations (p < 0.01) are selected. However, the colli-
nearity of independent variables must be taken into account to avoid
duplication of information conveyed in the seemingly independent
variables. For this, the variance inflation factor (VIF) method is chosen
to diagnose collinearity among the selected variables (i.e., AOD, DEM,
NDVI, LUC, NTL, TEM, PRE, ET, RH, SP, BLH, WS, and WD). The VIF
values of DEM (~17.84) and SP (~21.25) are very high, indicating
strong collinearity (Table S6). The ERA-interim SP with a higher daily
spatial resolution than DEM remains, along with the other eleven in-
dependent variables, for model fitting in this study.

3.2. Space-time random forest model

The traditional Random Forest (RF; Breiman, 2001) is a relatively
modern and highly flexible machine-learning approach that integrates
multiple decision trees. It can evaluate the importance of each feature
during the classification, produce an unbiased estimation, and handle
conditions with a large amount of missing data. Moreover, it can effi-
ciently process thousands of input variables without the necessity of
dimensionality reduction. There are many classification trees in RFs,
and each variable must be input into each tree for classification. Each
tree in the forest is independent, and 99.9% of unrelated trees make
predictions that cover all situations. These predictions will offset each
other. Predictions with a few excellent trees are beyond the “noise” and
used for making a good prediction. The basis of RF bagging is to select
the results of several weak classifiers and form a strong classifier. Each
tree in the RF can be generated by the following steps (Hastie et al.,
2008):

(a) For each tree, Z samples are extracted from the training dataset (N)
using the bootstrap sample method.

(b) Randomly select m feature subsets from the M-dimension features
and select the best one from m features as each tree splits into two
daughter nodes.

(c) Every tree grows as far as it can without the pruning process. The
characteristics of randomness are crucial to the classification of RFs
to avoid over-fitting and noise.

(d) The optimal M is the key parameter in constructing the RF, which
can be determined by the out-of-bag (oob) error. For each tree
(assuming the kth tree), approximately one-third of the training
samples do not participate in the generation of the kth tree, which is
oob samples of the kth tree. For each regression tree [f(x)],
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where (xi, yi) is the samples for i=1, 2, …, N for Z regions (R1, R2, …,
RZ), cm is the response to the model, which is a constant, cz is the best
value, m is the splitting variable, and n is the split point.

The RF model is one of the traditional machine learning models,
which has been reported previously for applications in different fields.
However, there are much fewer applications in remote sensing, more
importantly, these applications of the RF model were based on the
quantities of input independent variables and did not consider the
spatiotemporal information (Hu et al., 2017; Brokamp et al., 2018;
Huang et al., 2018). PM2.5 is most essentially characterized by its
spatial and temporal heterogeneity, and many researchers have tried to
solve these problems, leading to the development of well-known
models, such as the GWR, the two-stage, and the GTWR models. To
further improve the accuracy of the PM2.5 estimations, a new space-
time random forest (STRF) model is developed. Not only does our
model make use of rich information as conveyed in the input variables,
it also benefits from the extraction of geospatial information weighted
by the distance of adjacent pixels from a center pixel, as well as the time
difference from ground-based PM2.5 measurements. For a given pixel,
its spatial (Ps) and temporal (Pt) characteristics can be expressed as,
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where ds and dt represent the spatial and temporal distances. TheW and
L represent the w pixels near the site and the l prior days for the same
pixel. The improved AOD-PM2.5 relationship can be explored with sa-
tellite-derived AOD, meteorological variables, land-related parameters,
population-related indices, and spatiotemporal information as inputs
using the STRF model [PM2.5= f(AOD, NDVI, LUC, NTL, TEM, PRE, ET,
RH, SP, BLH, WS, WD, Ps, Pt)]. The output is the estimated 1-km PM2.5

concentrations. Fig. 2 illustrates the structure and specific schematics of
the STRF model.

3.3. Other statistical regression models

The MLR model (Gupta and Christopher, 2009) used here is ex-
pressed as:

[PM2.5= f(AOD, NDVI, LUC, NTL, TEM, PRE, ET, RH, SP, BLH, WS,
WD)],

= + + …+ +PM a AOD a NDVI a WD b,n2.5 1 2 (8)

where a1, …, an are the regression coefficients and b is the intercept.
The GWR model (Hu et al., 2013) is expressed as,

= + + + …+ +PM b i j b i j AOD b i j NDVI b i j WD ε( , ) ( , ) ( , ) ( , ) ,s s s n s s2.5 0 1 2

(9)

where PM2.5s represents the daily PM2.5 concentration at location s(i, j),
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b0 and b1-bn denote the intercepts and slopes for each independent
variable, and ε stands for the error term.

The two-stage model contains an LME model in stage one and a
GWR model in stage two (Ma et al., 2016a). It is expressed as.

= + + + + + + …

+ + + … … −

PM c c c c AOD c c NDVI

c c WD ε β β β N φ

( ) ( ) ( )

( ) ( , , , )~ [(0, , 0), ], Stage 1
st t t st t st

n nt st st t t nt

2.5 0 0 1 1 2 2

0 1

(10)

= + + −−PM resi d i j d i j AOD ε( , ) ( , ) , Stage 2st t t st st2.5 0 1 (11)

where PM2.5st and PM2.5−
resist are PM2.5 concentrations and residuals

from the first-stage model on day t, c0 and c0t are the intercepts, c1-cn
are the slopes, c1t-cnt are the slopes for the independent variables, φ are
the variance-covariance matrices, and d0 and d1t are the intercept and
slope for the GWR model.

3.4. Evaluation approaches

For validation purposes, three approaches, i.e., sample-, spatial-,
and temporal-based 10-CV, are selected to validate the PM2.5 con-
centrations estimated by the previously mentioned models. The sample-
based CV is a widely used validation approach (Rodriguez et al., 2010)
that involves randomly selecting 90% of the samples for modeling and
using the remaining 10% for validation. This process is repeated 10
times to ensure that all samples are tested. The spatial-based CV and
temporal-based CV are like the sample-based CV, which performs the
10-CV process with 10% of ground-based sites (space-CV) and 10% of
days (time-CV) randomly dropped. The evaluation includes two parts.
The first part is model training and validation based on the three va-
lidation approaches. Due to more missing data in 2015 than in 2016,
the data from 2016 are used. The second part evaluates the model's
predictive power. The models developed for 2015 are used to predict
PM2.5 concentrations for 2016, which are then validated using surface
measurements of PM2.5 concentrations from 2016. The following sta-
tistical metrics are used to quantitatively evaluate the performance of
the models: the linear regression equation (slope and intercept), the
coefficient of determination (R2), the RMSE, and the mean prediction
error (MPE).

4. Results and discussion

4.1. Descriptive statistics

Fig. 3 first plots the histograms of all site-based variables used to fit
the PM2.5-estimation models from 153,648 matched samples for all
days in 2016 over mainland China. In general, the surface daily PM2.5

concentrations show close similar distributions with AOD. The bivariate
correlation analysis illustrates that all independent variables were sig-
nificantly related to PM2.5, especially AOD (R=0.473, p < 0.01) and
ERA-interim BLH (R=−0.326, p < 0.01, Table S5). Furthermore,
there are significant seasonal variations for several variables. The an-
nual mean observed PM2.5 concentration is 50.78 ± 40.76 μgm−3

averaged at all ground-based stations in China, where the highest PM2.5

concentration is 69.50 ± 52.03 μgm−3 in winter, and the lowest is
29.28 ± 17.30 μgm−3 in summer. The annual mean MAIAC AOD is
0.39 in China, and seasonally averaged AODs do not vary much: 0.43,
0.37, 0.38, and 0.39 in sping, summer, autumn, and winter, respec-
tively. The discordant seasonal variations are likely caused by varying
planetary BLH and hygroscopic growth, both of which have strong
seasonal variations (Li et al., 2017; Su et al., 2018). Table S7 gives the
seasonal statistics for all selected variables.

4.2. Model fitting and validation

4.2.1. National-scale model performance
Fig. 4 shows the density scatterplots of the fitting and 10-CV results

for the traditional RF and newly developed STRF models in 2016 for
mainland China. The RF and STRF models perform equally well with
equal R2 values of 0.98, according to model-fitting results. The overall
RMSE (MPE) values are 6.40 (4.10) μgm−3 and 5.57 (3.48) μgm−3 for
the RF and STRF models, respectively. This suggests that the two RF
approaches do well at generating training approximations. For CV on a
spatial scale, the two models have relatively poor accuracies because
PM2.5 concentrations are noticeably spatially heterogeneous. However,
the STRF model performs better with a higher space-CV R2 of 0.63, a
lower RMSE of 24.83 μgm−3 and an MPE of 15.53 μgm−3 than the RF
model (R2= 0.57, RMSE=26.58 μgm−3, and MPE=17.10 μgm−3).
In general, the model accuracies on the temporal scale of the two
models are much better than those on the spatial scale. The STRF model
is an improvement over the RF model with a better time-CV R2, RMSE,
and MPE of 0.83, 16.63 μgm−3, and 10.55 μgm−3, respectively. For
the sample-based validation, the overall R2, RMSE, and MPE values are
0.85, 15.57 μgm−3, and 9.78 μgm−3 for the STRF model, which are
generally better than the values for the RF model (R2=0.81,
RMSE=17.90 μgm−3, MPE=11.50 μgm−3). In general, considering
both the geographical correlation and the temporal variation improves
the model performance. However, the STRF model tends to under-
estimate PM2.5 concentrations (slope=0.82, intercept= 9.64 μgm−3),
which can lead to poorer estimates on heavily polluted days.

4.2.2. Seasonal model performance
The performances in STRF model fitting and of the sample-based 10-

Fig. 2. The structure and specific schematics of the space-time random forest (STRF) model.
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CV tests according to the season are also evaluated (Fig. 5). The training
accuracies of the STRF model-fitting results have R2 values of 0.98,
0.96, 0.98, and 0.98 in spring, summer, autumn, and winter, respec-
tively. The RMSE and MPE values are generally< 8 μgm−3 and
5 μgm−3, respectively, for the four seasons. The STRF sample-based
validation has similar seasonal characteristics. Winter is the season with
the highest R2 (0.85) but also with the highest RMSE (20.06 μgm−3)
and MPE (12.69 μgm−3). By contrast, of the four seasons, summer is
the season with the lowest R2 (0.69), RMSE (9.62 μgm−3), and MPE
(6.43 μgm−3). The large estimation error in winter arises because of
the frequent occurrence of high PM2.5 concentrations (> 100 μgm−3)
due to anthropogenic pollutants. The small estimation error in summer
is mainly due to low fine particulate concentrations caused by high
relative humidity and frequent precipitation (Li et al., 2017; Su et al.,
2018), complicating the PM2.5-AOD relationship. The evaluation me-
trics in spring and autumn are similar.

4.2.3. Site-scale model performance
Fig. 6 shows the spatial patterns of the sample-based CV of the STRF

model at individual monitoring stations in China. The number of days
of valid estimations of PM2.5 concentration varies from 2 to 269 days,
with an average of 106 days. The number of days increases from
southeast to northwest China, mainly due to the decreasing clouds in
the remote sensing images. The STRF model performs better but with a
noticeable spatial heterogeneity. The mean R2 is 0.79, and> 90% of

the stations show high daily R2 values > 0.7, especially in densely
populated eastern China (R2 > 0.8, p < 0.01). By contrast, R2 is re-
latively low at a few stations in the northwest and southwest of China,
likely because of the sparsity of stations in this part of the country. The
average RMSE and MPE in China are 13 μgm−3 and 8 μgm−3, re-
spectively. More than 88% (93%) of the stations have low estimation
errors with RMSE (MPE) values < 20 μgm−3 (15 μgm−3), respec-
tively. Larger estimation errors are found in northern China where
higher PM2.5 values are found because of intensive human activities and
high pollutant emissions. These results illustrate that the STRF model is
robust and can significantly improve the PM2.5-AOD relationship
through its consideration of the large spatiotemporal heterogeneities.

4.3. Predictive power of the STRF model

This section focuses on evaluating the STRF model's predictability in
China. For this purpose, data from 2015 and 2016 are respectively se-
lected for model fitting and sample-based cross-prediction on different
time scales. Daily PM2.5 estimates for 2016 generated by the 2015-data-
fitted STRF model are close to measurements (R2= 0.55,
RMSE=27.38 μgm−3, MPE=17.83 μgm−3) (Fig. 7a). When con-
sidering the monthly scale, only stations with>20% valid daily PM2.5

concentration measurements in a month are used in the calculations.
The STRF model performs better on a monthly scale with a steeper
slope (~0.65), increased R2 (~0.73), decreased RMSE

Fig. 3. Histograms and descriptive statistics (minimum, maximum, mean, and standard deviation) for PM2.5 and the independent variables used for modeling. Data
are from 2016 in China. The number of samples is 153,648.
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Fig. 4. Density scatterplots of model fitting, and time-based, space-based, and sample-based cross-validation results for the traditional RF (a-d) and newly STRF (e-h)
models at the daily scale (N=153,648) for mainland China. The black dashed and solid lines represent the 1:1 line and the linear regression line, respectively.

Fig. 5. Density scatterplots of model-fitting results (top row) and station-based cross-validation results (bottom row) from the STRF model for (a, e) spring, (b, f)
summer, (c, g) autumn, and (d, h) winter in China.
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(~14.88 μgm−3), and decreased MPE (~10.56 μgm−3) (Fig. 7b). Sea-
sonal PM2.5 estimates are averaged from at least two months of mean
PM2.5 concentrations in each season at each station (Fig. 7c). Annual
PM2.5 estimates are averaged from at least eight months of monthly
mean PM2.5 concentrations in a year at each station (Fig. 7d). They are
consistent with ground measurements with improved regression lines,
higher R2 values of 0.78 and 0.79, lower RMSEs of 11.42 μgm−3 and
8.08 μgm−3, and MPEs of 8.59 μgm−3 and 6.25 μgm−3, respectively.
These results illustrate that the newly developed STRF model can be
well applied for predicting the PM2.5 concentrations, which is of great
significance for studying its long-term variations and their causes in
China.

One hundred randomized trials on the model fitting, sample-based
CV, and prediction power of PM2.5 concentrations were also conducted.
The model-fitting results are stable with almost constantly high R2

values of 0.98, RMSE values of 5.64 μgm−3, and MPE values of
3.51 μgm−3 with small standard deviations of ~0.000, 0.009, and
0.003, respectively. The sample-based accuracy is 0.85 ± 0.001 in R2

with small and stable estimation errors, i.e.,
RMSE=15.57 ± 0.027 μgm−3 and MPE=9.76 ± 0.011 μgm−3.
Moreover, concerning the predictive power, the R2, RMSE, and MPE
values are 0.55 ± 0.001, 27.38 ± 0.029 μgm−3, and
17.83 ± 0.015 μgm−3, respectively. The overall low standard devia-
tions close to zero further affirm that the STRF model is reasonably
stable for estimating PM2.5 concentrations.

4.4. Comparison with other regression models

This section compares the performance of the STRF model with
those of currently popular regression models including the MLR, GWR,
and two-stage models using the same samples from 2016 in China

(Table 1). The MLR model has the least steep slopes and the largest
intercepts and significantly underestimates daily PM2.5 values. The
GWR model is overall better than the MLR model with higher corre-
lations (R2= 0.60, CV-R2= 0.53) and reduced estimation errors.
However, the distribution of monitoring stations and the potential
scarcity of observations can limit the use of the GWR model. This model
also does not consider time information and cannot capture temporal
variations in the time series samples. The first-stage LME model of the
two-stage model considers daily variability and shows a notable im-
provement over the MLR model in terms of modeling (R2=0.67) and
validation (CV-R2=0.65). The PM2.5-AOD relationship improves with
the same R2 values of 0.71 in modeling and validation when the GWR
model, which considers spatial variability, is added as the second stage.
However, despite the overall increased accuracy of the two-stage
model, the model still cannot simultaneously capture both spatial and
temporal heterogeneities. By contrast, the RF model is more robust than
these three models in terms of training (R2= 0.98) and CV (CV-
R2=0.81). By making use of time and space information, the STRF
model performs the best among these models according to all evalua-
tion metrics. Note that most models have poor predictive abilities (CV-
R2 < 0.45), while the STRF model shows the best performance in
predicting daily PM2.5 concentrations (CV-R2= 0.55). The comparison
results illustrate that the STRF model is robust in modeling, estimating,
and predicting PM2.5 concentrations through its ability to take both
spatial and temporal variabilities into account.

4.5. Comparison with recent studies

Due to the serious air pollution problem in China, especially fine
particulate particles, many studies have tried to improve the spatial
coverage and resolution of PM2.5 concentrations in China. In earlier

130°0'0"E120°0'0"E110°0'0"E100°0'0"E90°0'0"E80°0'0"E
50

°0
'0

"N
40

°0
'0

"N
30

°0
'0

"N
20

°0
'0

"N
130°0'0"E120°0'0"E110°0'0"E100°0'0"E90°0'0"E80°0'0"E

50
°0

'0
"N

40
°0

'0
"N

30
°0

'0
"N

20
°0

'0
"N

130°0'0"E120°0'0"E110°0'0"E100°0'0"E90°0'0"E80°0'0"E

50
°0

'0
"N

40
°0

'0
" N

30
° 0

'0
"N

20
°0

'0
"N

130°0'0"E120°0'0"E110°0'0"E100°0'0"E90°0'0"E80°0'0"E

50
°0

'0
"N

40
°0

'0
"N

30
°0

'0
"N

20
°0

'0
"N

(b) R2

(c) RMSE (d) MPE

< 5

5 - 10

10 - 15

15 - 20

> 20

< 10

10 - 15

15 - 20

20 - 25

> 25

< 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

0.8 - 1.0

< 50

50 - 100

100 - 150

150 - 200

200 - 366

Fig. 6. Spatial distributions of (a) the number of valid samples (N) at each monitoring station, (b) R2, (c) RMSE (μgm−3), and (d) MPE (μgm−3) between PM2.5

estimations and measurements from 2016 in China. Results are from the sample-based 10-cross-validation. The black dots in (b) indicate significance at the 99%
confidence level.

J. Wei, et al. Remote Sensing of Environment 231 (2019) 111221

8



studies, due to the limitation of aerosol sources, PM2.5 maps of China
could only be provided at a spatial resolution of 10 km (Fang et al.,
2016; Ma et al., 2014, 2016b; Yu et al., 2017). However, fine particu-
late particles always occur and are severe in local urban areas with
dense populations. Such coarse-resolution PM2.5 products are thus not
satisfactory. The National Aeronautics and Space Administration
(NASA) has recently released a new 3-km AOD product which allows
for the creation of PM2.5 maps at a higher resolution of 3 km (He and
Huang, 2018; Li et al., 2017; You et al., 2016). The latest released
MAIAC 1-km aerosol product is used in the current study to improve the
spatial coverage of and generate more accurate 1-km PM2.5 con-
centrations.

To be comparable with our study, only those studies on satellite-

aerosol-based PM2.5 estimations over the whole of China are selected
(Table 2). The STRF model can capture 85% of the daily variations in
the sample-based CV and can outperform most previous models used for
generating 10-km-resolution PM2.5 maps of China, e.g., the GWR model
(CV-R2=0.64; Ma et al., 2014), the two-stage model (CV-R2= 0.78
and 0.79 for the stage-1 LME and stage-2 GWR models; Ma et al.,
2016a), the timely structure adaptive modeling (TSAN) model (CV-
R2=0.80; Fang et al., 2016), and the Gaussian process model (CV-
R2=0.82; Yu et al., 2017). Moreover, the STRF model also surpasses
most of the high-spatial-resolution (3 km) models, including the GWR
model (CV-R2=0.79; You et al., 2016), the GTWR model (CV-
R2=0.80; He and Huang, 2018), and the generalized regression neural
network (GRNN) model (CV-R2= 0.67; Li et al., 2017). In addition,

Fig. 7. Estimation and evaluation of predicted PM2.5 concentrations on (a) daily, (b) monthly, (c) seasonal, and (d) annual scales in 2016 in China.

Table 1
Model performances and predictive powers of different models.

Model Model fitting Model validation Predictive power

R2 RMSE MPE R2 RMSE MPE R2 RMSE MPE

MLR 0.41 20.04 20.85 0.41 20.04 20.85 0.38 21.97 22.20
y= 0.41 x+ 30.02 y=0.41 x+ 30.03 y= 0.41 x+ 30.70

GWR 0.60 22.83 18.96 0.53 23.28 19.26 0.44 26.47 22.23
y= 0.62 x+ 20.25 y=0.61 x+ 20.93 y= 0.55 x+ 23.35

Two-stage (1) 0.67 19.04 15.41 0.65 19.50 15.72 0.31 27.73 24.03
y= 0.66 x+ 17.63 y=0.65 x+ 17.63 y= 0.45 x+ 26.76

Two-stage (2) 0.71 18.51 14.17 0.71 18.59 14.54 0.35 27.65 23.30
y= 0.71 x+ 15.00 y=0.71 x+ 15.10 y= 0.49 x+ 25.46

RF 0.98 6.40 4.10 0.81 17.91 11.50 0.53 28.09 18.43
y=0.92 x+ 4.45 y=0.77 x+ 12.56 y= 0.52 x+ 24.95

STRF 0.98 5.57 3.48 0.85 15.57 9.77 0.55 27.38 17.83
y=0.94 x+ 3.39 y= 0.82 x+9.64 y= 0.54 x+ 23.77
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only a few studies have examined the model ability in predicting PM2.5

records, e.g., the two-stage model (R2= 0.41; Ma et al., 2016a) and the
GTWR model (R2= 0.47; He et al., 2018). The STRF model developed
in this study has a stronger predictive power than the other models,
having a CV-R2 of 0.55. The comparison results affirm that the STRF
model performs better than most models in estimating and predicting
PM2.5 concentrations in China.

5. PM2.5 spatial distribution across China

5.1. Annual and seasonal maps

Fig. 8 shows the spatial distributions of STRF-modeled, i.e., satellite-
estimated on 0.01°× 0.01° grids, and ground-based PM2.5 measure-
ments for 2016 in China. The model provides a nearly complete spatial
coverage of PM2.5 concentrations except for a few areas. The spatial
distribution patterns of the 1-km PM2.5 estimations from this study and
those reported in previous studies are similar except for the wider

spatial coverage of the 1-km PM2.5 estimations, especially in northwest
and southwest China (Fang et al., 2016; He and Huang, 2018; Li et al.,
2017; Yu et al., 2017). The satellite-derived PM2.5 estimations agree
spatially well with surface observations. In general, the annual mean
PM2.5 concentration is 38.5 ± 12.4 μgm−3 with high PM2.5 values
(> 70 μgm−3) mainly found in the North China Plain, Xinjiang, and the
Sichuan Basin. The North China Plain is heavily industrial and densely
populated, having undergone rapid economic development which has
led to severe emissions of pollutants. Xinjiang Province which includes
the Taklimakan Desert experiences frequent sand dust outbreaks. In-
tensive human activities are the likely cause of pollutants in the Sichuan
Basin which are hard to remove because of the special terrain there. By
contrast, PM2.5 concentrations in southwest and northeast China are
generally low and are<30 μgm−3. This is most likely due to the low
anthropogenic aerosol loading there and the favorable meteorological
conditions that keep the loading low. Nevertheless, > 55% of China's
expanse exceed the standards for the acceptable amount of fine parti-
culate pollution of both the World Health Organization and China's

Table 2
Statistics for the comparison in performances of different regression models in China.

Related study Spatial resolution Model Model fitting Model validation Predictive power

R2 RMSE MPE R2 RMSE MPE R2 RMSE MPE

Ma et al. (2014) 10 km GWR 0.71 29.58 19.04 0.64 32.98 21.25 – – –
Ma et al. (2016a) 10 km Stage-1 0.81 26.31 17.59 0.78 27.99 18.67 – – –

Stage-2 0.82 25.74 17.32 0.79 27.42 18.37 0.41 – –
Fang et al. (2016) 10 km TSAM 0.82 18.13 13.21 0.80 22.75 15.99 – – –
Yu et al. (2017) 10 km Gaussian 1.00 00.01 – 0.81 21.87 – – – –
You et al. (2016) 3 km GWR 0.81 17.20 18.50 0.79 18.60 19.60 – – –
Li et al. (2017) 3 km GRNN 0.79 16.51 11.01 0.67 20.93 13.90 – – –
He and Huang (2018) 3 km GTWR 0.85 15.28 10.16 0.80 18.00 12.03 0.47 37.57 24.51
Our study 1 km RF 0.98 06.40 04.10 0.81 17.91 11.50 0.52 28.80 18.99
Our study 1 km STRF 0.98 05.57 03.48 0.85 15.57 09.77 0.55 27.38 17.83
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Ministry of Ecology and Environment (i.e., PM2.5 > 35 μgm−3).
Fig. 9 shows seasonal PM2.5 spatial distributions across China in

2016. On a seasonal scale, the STRF model can provide an almost
complete PM2.5 spatial coverage in most areas. However, missing PM2.5

values are observed in south-southwest China due to frequent cloud
contamination (especially in summer) and in the high-latitude areas of
northwest-northeast China due to the long-term snow cover or in-
adequate observations made in the winter. Spatial differences in fine
particulate pollution are noticeable on a seasonal scale. Winter ex-
periences the most severe fine-particulate-matter pollution
(~54.3 ± 18.6 μgm−3) with>80% of the country exceeding the na-
tional air quality standard. This is mainly due to coal burning and
unfavorable weather for the dispersion of pollutants in eastern China
and frequent dusty weather in the western deserts. By contrast, the
lightest air pollution is found in summer (~28.1 ± 8.9 μgm−3) with
only ~17% of the country exceeding the air quality standard. The main
reason is that the favorable weather conditions, e.g., abundant pre-
cipitation, high relative humidity, and abundant water vapor, diffuse
atmospheric fine particles. The PM2.5 concentration levels in spring and
autumn are similar and close to the annual mean with average PM2.5

concentrations of 40.1 ± 15.3 μgm−3 and 36.9 ± 11.2 μgm−3, re-
spectively.

5.2. Regional PM2.5 hotspots

Several heavily polluted areas are selected which are of great con-
cern to the public, including the North China Plain, Yangtze River Delta

region, Pearl River Delta region, and Sichuan Basin. Our 1-km higher
spatial-resolution PM2.5 product enables the study of air pollution on
small and medium scales, especially for urban areas. Compared with
other studies in these hotspot regions (Ma et al., 2016a, 2016b; Zheng
et al., 2016; Guo et al., 2017; He and Huang, 2018; Yao et al., 2018),
our product shows similar spatial distributions and variations but can
provide more detailed and clearer PM2.5 information because the spa-
tial resolution is increased by three to ten times.

Fig. 10a shows that the North China Plain with its high levels of fine
particulate matter has become one of the most polluted areas in China.
The annual mean PM2.5 concentration is 44.08 ± 23.79 μgm−3, ran-
ging from 5 μgm−3 to 166 μgm−3. Higher PM2.5 concentrations are
observed over southwest Beijing, southern Hebei, and Henan and
Shandong Provinces, mainly the result of intensive human activities
(especially fossil fuel burning and straw combustion) and adverse pol-
lutant diffusion conditions (Fang et al., 2016; He and Huang, 2018;
Wang et al., 2018). By contrast, the northwest part of the North China
Plain has lower PM2.5 concentrations due to the dense vegetation cov-
erage and lesser human activities. The Yangtze River Delta region has
relatively light particulate-matter pollution with an annual mean PM2.5

concentration of 44.1 ± 7.9 μgm−3. The high PM2.5 concentrations in
this region are in Shanghai, Jiangsu, and northern Anhui Provinces
(Fig. 10b). The Pearl River Delta region has the least amount of at-
mospheric fine particulate pollution with PM2.5 concentrations <
30 μgm−3 in most areas (Fig. 10c) among all developed regions in
China. The annual mean PM2.5 concentration is 34.5 ± 4.3 μgm−3.
Favorable meteorological conditions, i.e., adequate precipitation and
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the impact of the monsoon, and less anthropogenic pollutant emissions
contribute to this. The Sichuan Basin, however, is a hotpot featuring
high levels of fine particulate matter (Fig. 10d) with PM2.5 concentra-
tions generally> 60 μgm−3 with an average mean value of
42.6 ± 12.0 μgm−3. This is mainly due to the discharge of anthro-
pogenic pollutants and the combination of special topographic (i.e.,
basin) and meteorological conditions that limit the diffusion of pollu-
tants (Wang et al., 2018; Zhang et al., 2012). These results illustrate
that the newly generated 1-km PM2.5 product appears to be beneficial
for the study of air pollution in small and medium-scale areas.

6. Summary and conclusion

Nowadays, most satellite-derived PM2.5 concentrations in China are
reported at coarse spatial resolutions (3–50 km) constrained by the
input datasets, making it difficult to meet the needs of air pollution
monitoring on small- or medium- scales, especially in urban areas.
Meanwhile, most traditional models used in estimating PM2.5 from

satellite face great challenges due to large uncertainties in the AOD-
PM2.5 relationship as it is influenced by numerous factors that have
strong spatial and temporal heterogeneities. To tackle with these
challenges, a new space-time random forest (STRF) model is developed
that makes use of both the values of the independent input variables
and their spatial-temporal variations. The STRF model is able to im-
prove the estimation of PM2.5 considerably than the traditional ap-
proaches relying on the deterministic relationship between PM2.5 ob-
servations and satellite-derived AODs. It accounts for the influences of
meteorological, land-related, population-related data, and spatio-
temporal heterogeneities. The model performance is evaluated using
the sample-, spatial-, and temporal-based 10-fold cross-validation (10-
CV) approaches, with reference to the widely used regression models
(i.e., the MLR, GWR, and two-stage models) for the sake of comparison.

By applying the STRF model to the newly released 1-km MODIS
MAIAC AOD products, a satellite-based 1-km PM2.5 product was first
generated across the mainland China of persistent high accuracy in
estimating the daily PM2.5 concentrations (model fitting: R2= 0.98,

Hebei

Shandong

Henan

Shanxi

Beijing

Liaoning

Tianjin

Jiangsu

Nei Mongol

Anhui

120° E

120° E

118° E

118° E

116° E

116° E

114° E

114° E

40
° N

40
° N

38
° N

38
° N

36
° N

36
° N

0 10 20 30 40 50 60 70 80 90 100 μg/m3

Jiangsu

Anhui

Zhejiang

Shanghai

Jiangxi

Shanghai

122° E

122° E

121° E

121° E

120° E

120° E

119° E

119° E

118° E

118° E

33
° N

33
° N

32
°  N

32
°  N

31
° N

3 1
° N

30
° N

30
° N

29
° N

2 9
° N

Guangdong

Jiangxi
Hunan

Guangxi

Fujian

115° E

115° E

114° E

114° E

113° E

113° E

112° E

112° E

25
° N

25
° N

2 4
° N

24
° N

23
° N

23
° N

22
° N

22
° N

Sichuan

Chongqing

Guizhou

Yunnan

Shaanxi

107° E

107° E

106° E

106° E

105° E

105° E

104° E

104° E

32
° N

32
° N

31
° N

3 1
° N

30
° N

30
° N

2 9
° N

29
° N

(a) (b) 

(c) (d) 

Fig. 10. Zoomed-in map of 1-km annual mean PM2.5 concentrations in 2016 for four pollution hotspots: (a) the North China Plain, (b) the Yangtze River Delta region,
(c) the Pearl River Delta region, and (d) the Sichuan Basin.

J. Wei, et al. Remote Sensing of Environment 231 (2019) 111221

12



RMSE=5.64 μgm−3, MPE=3.51 μgm−3, and model validation:
R2= 0.85, RMSE=15.57 μgm−3, MPE=9.76 μgm−3). Meanwhile,
the STRF model can more accurately predict the PM2.5 concentrations
at monthly (R2= 0.73), seasonal (R2= 0.78), and annual (R2= 0.79)
scales, which can be used to develop a much longer records of PM2.5

than the ground-based PM2.5 measurements, as satellite data cover
much longer periods. The STRF model is superior in both model per-
formance and predictive power to those of widely used regression
models and most models presented in previous studies. The newly
generated PM2.5 product with its three-to-ten times higher spatial re-
solution provides a wider spatial coverage than most traditional pro-
ducts. More detailed PM2.5 information at small to medium scales
across China is thus obtained. These results illustrate that our newly
generated 1-km PM2.5 product can be useful in air quality studies,
especially when the focus in urban areas.
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Appendix A

Nomenclature

Acronym Full name Acronym Full name

10-CV 10-fold cross-validation MPE mean prediction error
AERONET Aerosol Robotic Network NDVI normalized difference vegetation index
AOD aerosol optical depth NTL nighttime lights
BLH boundary layer height PM2.5 particulate matter with aerodynamic diameters less than 2.5 μm
DB Deep Blue PRE total precipitation
DEM digital elevation model R2 coefficient of determination
DT Dark Target RF random forest
EE expected error RH relative humidity
ET evaporation RMSE root-mean-square error
GRNN generalized regression neural network SP surface pressure
GTWR geographically and temporally weighted regression SRTM Shuttle Radar Topography Mission
GWR geographically weighted regression STRF space-time random forest
LME linear mixed effect TEM air temperature
LUC land use cover TSAN timely structure adaptive modeling
MAE mean absolute error VIF variance inflation factor
MAIAC Multi-Angle Implementation of Atmospheric Correction VIIRS Visible Infrared Imaging Radiometer Suite
MLR multiple line regression WD wind direction
MODIS Moderate Resolution Imaging Spectroradiometer WS wind speed
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