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A B S T R A C T   

Little is known about the impact of socio-economic and environmental factors on the associations between PM2.5 
exposure and health risk for elementary students. We estimated the space variability of effects of PM2.5 on daily 
illness-related absence rate for 2278 elementary schools from 97 counties across Jiangsu Province with data 
collected in the 2016-17 academic year. We evaluated the effects at school- and county-scales and examined the 
role of socio-economic and environmental factors with generalized addictive models (GAM). With an inter
quartile range (IQR, 32 μg/m3) increase in PM2.5 concentration, the relative risk of absence rate for a given 
school ranged between 1.00 and 2.81. Factors including high economic development level, low health expen
diture, dense road network, dense population and low vegetation coverage drove strong effects for schools/ 
counties. For the implementation of efficient clean air policies and public health interventions, we should 
concern about not only high-polluted areas but also areas under specific socio-economic and environmental 
conditions.   

1. Introduction 

According to the Global Burden of Disease Study 2015, fine partic
ulate matter (PM2.5) is the fifth-ranked risk factor for death. PM2.5 
caused approximately 4.2 million deaths worldwide, of which 1.1 
million were in China (Cohen et al., 2017). Deaths related to PM2.5 
exposure were mainly due to diseases including lower respiratory tract 
infections, lung cancer, ischemic heart disease, cerebrovascular disease 
and chronic obstructive pulmonary obstruction (Cohen et al., 2017). By 
2019, ambient particulate matter pollution has risen to the fourth place 
in the global ranking of risk factors by the total number of deaths 
(Murray et al., 2020). 

Children are more vulnerable to PM2.5 pollution, in view of their 
immature organ development, imperfect defense and immune mecha
nism, and insufficient protective measures and awareness, etc (World 
Health Organization (WHO), 2018; Gent et al., 2003). Children’s 
exposure to PM2.5 could lead to a series of health risks such as obesity, 
intellectual disability, impaired cardiopulmonary function and 

respiratory system damage. High-level childhood exposures to PM2.5 are 
associated with lifelong health consequences (World Health Organiza
tion (WHO), 2018). 

Studies estimating the impacts of air pollution exposure in school 
children confirmed the positive associations between exposure to air 
pollutants and illness-related absence and the impact of PM2.5 was the 
most consistent across studies (Watanabe et al., 2021; Mendoza et al., 
2020; Adar et al., 2015). Even low levels of PM2.5 exposure can increase 
the risk of illness-related school absence (Mendoza et al., 2020; Adar 
et al., 2015), and the health risk varied among regions with different 
socioeconomic characteristics, requiring exploration at finer spatial 
scales (Mendoza et al., 2020). With records of absenteeism due to illness, 
comprehensive risk assessments of extensive health damage and ancil
lary social effects caused by air pollution on children can be taken 
(Ransom and Pope, 1992). However, relevant evidence was mainly 
collected from developed countries (Mendoza et al., 2020; Ransom and 
Pope, 1992; Park et al., 2002; Rondeau et al., 2005). Limited studies 
conducted in developing countries ignored the confounding effects of 
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regional socio-economic and environmental factors (Chen et al., 2018; 
Liu and Salvo, 2018; Zhang et al., 2018), which could lead to biases in 
risk assessment. Additionally, current studies focused on the time series 
analysis of the relationship between pollution exposure and 
illness-related absence, ignoring the potential spatial differences in the 
exposure-response process. With the same 10 μg/m3 increase in PM2.5 
concentration, related average public death toll in China, Europe, and 
the United States increased by 0.54%, 1.23%, and 0.98%, respectively 
(Akyuz et al., 2020; Yang et al., 2012; Chen et al., 2011). Consistent 
evidence exists that the socioeconomic and environmental factors are 
associated with the spatial differences in public health responses to 
PM2.5 exposure (Akyuz et al., 2020). Therefore, it is necessary to pay 
attention to the spatial heterogeneity in illness-related school absen
teeism associated with PM2.5 exposure for primary students and explore 
the potential causes. 

Thus, we collected daily illness-related absence records from 2278 
elementary schools across 97 counties in Jiangsu Province and esti
mated the association between daily absence rate and PM2.5 exposure. 
Our objective was to explore the spatial distribution of comprehensive 
illness-related absence risks associated with PM2.5 exposure for 
elementary students and examine the influence of socio-economic and 
environmental variables on the distribution. Our results are expected to 
provide insights into the identification and governance of potential 
high-risk areas. 

2. Methods and materials 

2.1. Location and participants 

Jiangsu Province located on the east coast of mainland China. It is 
one of the major Chinese economic hubs with a dense population. The 
industrialization and economic development levels are relatively 
developed in Jiangsu but notably different among cities and even among 
counties. PM2.5 pollution has long been a severe environmental problem 
in Jiangsu. The influence of socioeconomic and other environmental 
factor on the health impacts of PM2.5, however, was barely studied. The 
annual growth number of elementary students in Jiangsu has been 
ranking first in the country in the past ten years (http://tj.jiangsu.gov. 
cn/). Considering the vulnerability of school-age children, our study 
planned to focus on the relationship between PM2.5 exposure of 
elementary students in Jiangsu Province and their school absence due to 
illnesses. 

2.2. Data source and variables 

We collected absenteeism records from the student health moni
toring system of the Jiangsu Provincial Center for Disease Control and 
Prevention (JS CDC). The dataset included location information (city, 
district, school) about where the absence happened and the date and 
reasons (sick leave or not) of an absence. We eliminated records that 
were not illness-related, such as those caused by physical injuries. We 
also deleted records when there were >20 students from the same class 
requesting a leave simultaneously in that some of them may just try not 
to be infected. If a student asks for sick leave for multiple consecutive 
days, there was only one record in the health monitoring system when 
the first day of absence took place. Data of schools where student pop
ulation statistics could not be identified were excluded as well. We 
identified 693,081 illness-related absence records from 2278 elementary 
schools, 97 counties across Jiangsu Province during the 2016-17 aca
demic year (September 2016–June 2017) and calculated daily absence 
rates at the school level based on these data. 

We extracted PM2.5 concentrations of each school from the China
HighAirPollutants (CHAP) dataset developed by Wei et al. (2013–2020) 
(Wei et al., 2021). The daily PM2.5 concentrations at a high resolution of 
1-km were predicted from the Moderate Resolution Imaging Spectror
adiometer (MODIS) Multi-Angle implementation of Atmospheric 

Correction (MAIAC) aerosol products using artificial intelligence (Wei 
et al., 2020, 2021). The missing concentration data was replaced by the 
interpolated values generated based on measurements from a routine 
monitoring network. Daily relative humidity and temperature data of 22 
monitoring stations in Jiangsu were obtained from the National Mete
orological Data Center. We retrieved the meteorology estimates of each 
school with ordinary Kriging interpolation. 

We collected socio-economic factors at the county level, including 
Gross Domestic Product (GDP), disposable income per capita, health 
expenditure, energy and environmental expenditure. We also gathered 
demographic variables of 1-km resolution, including Normalized Dif
ference Vegetation Index (NDVI), population density and road density. 
The socio-economic data came from the Statistical Bulletin of National 
Economic and Social Development and the Jiangsu Provincial Bureau of 
Statistics (http://tj.jiangsu.gov.cn/). Density information of the road 
network was extracted from the OpenStreetMap (https://www.ope 
nstreetmap.org/). Population density were from Socioeconomic Data 
and Applications Center in the National Aeronautics and Space Ad
ministration’s Earth Observing System Data and Information System 
(https://sedac.ciesin.columbia.edu/data/sets/browse). NDVI informa
tion was extracted from the MODIS (https://ladsweb.nascom.nasa.gov). 

2.3. Statistic analysis 

We first examined the spatial distribution and aggregation charac
teristics of absenteeism rate, PM2.5 exposure and socio-economic factors. 
Moran’s I and the High/Low Clustering analysis were used for global 
spatial autocorrelation test, and hotspot analysis based on Getis-Ord Gi* 
statistic was conducted for cluster analysis. Among them, Moran’s I was 
applied to determine whether there were spatial differences in attribute 
values; the High/Low Clustering analysis was used to quantify the in
tensity of high or low value spatial clustering for the study area. Local 
spatial autocorrelation analysis was performed through hotspot analysis 
to further identify locations of statistically significant hot spots and cold 
spots. 

The association between PM2.5 exposure and illness-related school 
absence was further estimated with generalized additive model (GAM). 
The over-dispersed Poisson distribution was used to reflect the daily 
illness-related absenteeism rate because the daily absence rates were 
pretty low (Putila and Guo, 2011). We applied LOESS local smoothing 
function to allow for the undetected spatial influential factor(s) (Chen 
et al., 2015). 

In the basic model, we controlled for the current day’s relative hu
midity (RH) and temperature with 3 degrees of freedom (df) for both 
variables via a natural cubic spline. A dichotomous variable indicating 
whether the day is the first day after a public holiday was included to 
illustrate the holiday effect. We estimated the relative risk (RR) to 
represent the additional risk of illness-related absenteeism related to an 
IQR increase in PM2.5 concentration and calculated its 95% confidence 
interval (95% CI). The basic equation is as follows: 

Ln(Absence.rate) = β1PM2.5 + β2Holiday + ns(Temp, df = 3)+
ns(RH, df = 3) + s(longitude, latitude) + eerror

(1)  

RR= exp(IQR * (Estimate± 1.96 * SE)) (2) 

In equation (1), Absence. rate was daily illness-related absence rate 
of a given school on that day; PM2.5 was the corresponding daily PM2.5 
concentration; Holiday was used to indicate if this was the first day 
following a public holiday; Temp and RH were the daily averages of 
temperature and relative humidity; s() represented the LOESS function 
with longitude and latitude being the paired spatial coordinate; ns was 
natural cubic spline and df was the degree of freedom; eerror represented 
the error term. In equation (2), RR was the relative risk of illness-related 
absence; IQR was the interquartile range of PM2.5 concentration in 
Jiangsu Province during the study period; Estimate was β1 extracted 
from equation (1); SE was standard error. 
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We checked the multicollinearity among socio-economic and envi
ronmental factors by calculating the condition index through the Kappa 
function and detected very weak multicollinearity. We then added these 
factors into the basic model to detect their confounding effects. Separate 
models were created across various spatial scales, including region-, 
county- and school-levels, to screen high-risk areas and identify their 
common spatial features. We further conducted subgroup analyses by 
stratifying the socio-economic and environmental variables. We esti
mated the RR separately in areas where the level of a given socio- 
economic or environmental condition was higher than its 90th (or 
75th) percentile or lower than its 10th (or 25th) percentile (top and 
bottom 10% or 25%). 

3. Results 

3.1. Absenteeism distribution and socio-economic status 

The cumulative number of absence days for elementary students in 
southern Jiangsu (Suzhou, Wuxi, Changzhou, Nanjing, Zhenjiang) was 
much higher than that in central and northern Jiangsu. The average 
illness-related daily absence rate of elementary schools in Nantong, 
central Jiangsu 0.526% [standard deviation, SD, 0.453%] was the 
highest, followed by that 0.391% [0.519%] of students in Nanjing, 
southern Jiangsu. The highest level of PM2.5 pollution during the study 
period occurred in Xuzhou, northern Jiangsu, with 60.97[6.38] μg/m3 

(Fig. 1). The spatial difference of PM2.5 concentration in other regions 
was less obvious. 

As shown in Figs. S1 and S2, the GDP, disposable income per capita, 
energy and environmental expenditure, population density and road 
density in southern Jiangsu were higher than those in central and 
northern Jiangsu overall. In contrast, the NDVI in central and northern 
Jiangsu was higher than that in the south. 

3.2. Spatial autocorrelation 

Moran I’s index estimation and High/Low Clustering analysis were 
applied to test global spatial autocorrelation. We found that, except for 
energy and environmental expenditure and health expenditure, the rest 
demographic variables exhibited significant positive spatial autocorre
lation. The rest demographic variables also clustered with high values at 
the global level with Z-score exceeding 1.96 and p-value lower than 0.05 
from both analyses (Table S1, Fig. 2). Hot spot analysis was then applied 
to test local spatial autocorrelation. Hot spots of absence rate distributed 
in Nanjing (southern Jiangsu), Nantong (central Jiangsu), Yangzhou 
(central Jiangsu) and Huai’an (northern Jiangsu). Hot spots of GDP, 
disposable income per capita and population density were mainly in 
southern Jiangsu, especially in Nanjing, Suzhou and Wuxi. Hot spots of 
NDVI scattered in northern Jiangsu and central Jiangsu while cold spots 
mainly distributed in southern Jiangsu. For PM2.5 concentration, the hot 
spots concentrated in northern Jiangsu and the junction of Taizhou 
(central Jiangsu), Changzhou (southern Jiangsu), Wuxi (southern 
Jiangsu) and Zhenjiang (southern Jiangsu). 

3.3. PM2.5 and illness-related absenteeism 

With the basic model, we found that the overall impact of PM2.5 
pollution on illness-related absence was robust with RR being 1.035 
(95% CI: 1.025-1.044). After controlling for the county- and school-level 
demographic variables, the RR increased to 1.045 (95% CI: 1.036-1054). 
Elementary students in southern Jiangsu suffered the most from PM2.5 
pollution with a relative risk of 1.059 (95% CI: 1.049-1.069) while the 
risk disappeared in northern Jiangsu (Table 1). 

To explore the spatial distribution of the health risks, we constructed 
exposure-response models for each of the 97 counties and 2278 school 
(Fig. 3). The significant positive impacts of PM2.5 on illness-related 
absenteeism were detected in a total of 23 (23.711%) counties, with 

relative risk ranging between 1.053 and 1.180 (Mean 1.093, SD 0.030). 
These counties were concentrated in southern Jiangsu, especially in 
Suzhou City, while only four counties (Haizhou, Tongshan, Haimen and 
Guangling) located in northern Jiangsu and central Jiangsu. At the 
school level, we detected a total of 307 (13.477%) elementary schools in 
the province where illness-related absenteeism was remarkably related 
to PM2.5 exposure. The range of relative risks at school level was 1.000- 
2.814 (mean 1.273, SD 0.222). The overall health risk was higher than 
those at county levels. The proportion of significantly and adversely 
affected elementary schools in southern Jiangsu also reached 18.33%, 
far exceeding that in northern (8.38%) and central Jiangsu (9.11%) 

Fig. 1. The location of elementary schools in Jiangsu Province, the spatial 
difference of PM2.5 pollution (µg/m3) and school absence (%) due to illness 
during the 2016-17 academic year. 
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(Table S2). 

3.4. Potential socio-economic and environmental impacts 

Furthermore, to characterize areas with higher risks, we performed 
subgroup analysis based on the top/bottom 10% and 25% data stratified 
according to certain social-economic and environmental factor in turn 
(Fig. 4). The analyses proved that students in areas with higher GDP and 
disposable income per capita suffered more from PM2.5 exposure. The 
illness-related absence risk associated with PM2.5 for students in area 
with the top 10% GDP was higher than that of students in areas with the 
top 25% GDP, while the risk was insignificant for students in area with 
GDP of the bottom 10% and 25%. It was worth noting that though 
students in areas of the top 10% or top 25% of energy and environmental 
expenditure levels bore higher health risks (Fig. 4), increasing energy 

and environmental expenditures was able to reduce the risk of illness- 
related absenteeism overall across Jiangsu Province (Table 1). Risk of 
illness-related absenteeism were also robust in areas with denser pop
ulation and road but insignificant vice versa. In contrast, students in 
areas with lower local medical expenditure and lower NDVI levels were 
more susceptible to PM2.5 pollution. For medical expenditure, students 
in areas with lower health care spending tended to have a higher risk of 
illness-related absenteeism. 

4. Discussion 

Using ~0.7 million illness-related records obtained from 2278 
elementary schools, this work explored the characteristics of areas 
where elementary students bore high health risks of illness-related 
absence due to PM2.5 exposure. Risk of illness-related school 

Fig. 2. Hot spot analysis of demographic variables and PM2.5 concentrations during the 2016–17 academic year in Jiangsu province. * Red dots represent 
areas where high values are clustered, and cold dots represent areas where low values are clustered. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Y. Wu et al.                                                                                                                                                                                                                                      



Environmental Research 212 (2022) 113473

5

absenteeism associated with PM2.5 exposure was significant in Jiangsu 
Province overall while differences in risks were also obvious among 
counties/schools. With exposure-response models stratified according to 
socio-economic and environmental conditions, we found shared char
acteristics of surrounding environment and socioeconomics in areas 
with high risks. 

We confirmed the risk of illness-related absenteeism associated with 
PM2.5 exposure for elementary students in Jiangsu Province, eastern 
China. Consistent with research constructed in southern China (Chen 
et al., 2018) and northern China (Liu and Salvo, 2018), about 13.477% 
of primary schools and 23.711% of counties in Jiangsu province suffered 
from the risk of illness-related absence associated with PM2.5 exposure. 
The overall relative risk was 1.035 across the province with each IQR 
increase (32 μg/m3) in PM2.5 concentration. A study conducted in 
Washington found that after converting to ultra-low sulfur diesel, a drop 
of 10 μg/m3 in PM2.5 concentration was associated with a reduction of 
8% in school children’s absenteeism (Adar et al., 2015). In Utah, per 1 
μg/m3 increase in PM2.5 exposure was also detected to be associated 
with an absence rate ratio of as high as 1.026. Compared with our study, 
we found that the impact of PM2.5 exposure on the illness-related 
absence of children in the US was higher than that in China. Liu et al. 
revealed that the sensitivity of elementary students from America, 
Canada and Europe to PM2.5 was higher than that of students from China 
(Liu and Salvo, 2018). It was speculated that children in China could 
have formed long-term adaptation because of frequent and severe air 
pollution exposure. Parents’ low tolerance for children’s school absence 
may also mask part of illness-related absenteeism risks in China (Liu and 
Salvo, 2018). 

Spatial heterogeneity of absence risk resulting from PM2.5 exposure 
was also explicit in Jiangsu Province. The higher accumulative 

absenteeism rate was mainly distributed in southern Jiangsu, where 
students also suffered from higher illness-related absenteeism risks 
related to PM2.5 exposure when compared with students in central and 
northern Jiangsu. Distribution of factors such as GDP, disposable income 
per capita, energy and environmental expenditure, road density and 
population density were similar, displaying high-high clustering in 
southern Jiangsu. In comparison, PM2.5 concentration, together with 
NDVI, was obviously higher in central and northern Jiangsu than in 
southern Jiangsu. We noticed that the overall relative risk of illness- 
related absenteeism increased to 1.045 (95% CI: 1.036-1.054) across 
Jiangsu Province when controlling the socio-economic and environ
mental variables. The spatial differences of socio-economic and envi
ronmental factors may as well be responsible for the different risks in 
various areas. 

Some studies conducted in developed countries listed evidence of 
more adverse health influence of air pollution on people in areas of less 
unfavorable socio-economic conditions (Meng et al., 2012; Green et al., 
2004; O’Connor et al., 2008), but the result in our study was the 
opposite. Studies conducted in the United States reported that schools 
with more students from low-income families or in low socio-economic 
areas tended to have higher illness-related absenteeism rates (Meng 
et al., 2012; Simons et al., 2010). However, in our study, students in 
areas with higher levels of economic development suffered a higher risk 
of illness-related school absence due to PM2.5 exposure, and such risks 
disappeared in areas with lower socio-economic development levels 
(RR < 1). A study conducted in China showed that high levels of 
socio-economic development, urbanization and air pollution might 
jointly lead to an increased risk for children suffering from asthma, 
rhinitis, and respiratory symptoms (Norbäck et al., 2018). Again, we 
speculated that the long-term adaptability of children in heavier 

Table 1 
Relative risk (RR) of illness-related school absenteeism rate associated with PM2.5 with and without the control of socio-economic and environmental factors.   

JS a JS-with control b Northern JS c Central JS Southern JS 

RR (95% CI d) 1.035 1.045 0.997 1.028 1.059 
(1.025,1.044) (1.036,1.054) (0.978,1.016) (1.006,1.050) (1.049,1.069) 

PM2.5 0.001*** 0.001*** 0.000 0.001* 0.002*** 
(0.000) (0.000) (0.000) (0.000) (0.000) 

Temperature, df = 1 − 0.145*** − 0.186*** − 0.313*** − 0.116* − 0.217*** 
(0.022) (0.020) (0.044) (0.045) (0.020) 

Temperature, df = 2 0.111 − 0.083 0.238 − 0.258* − 0.247*** 
(0.070) (0.063) (0.123) (0.117) (0.056) 

Temperature, df = 3 − 0.518*** − 0.551*** − 0.175*** − 0.473*** − 0.625*** 
(0.025) (0.026) (0.052) (0.058) (0.026) 

RH, df = 1 − 0.115*** − 0.167*** 0.091 − 0.261*** − 0.118*** 
(0.021) (0.021) (0.050) (0.038) (0.017) 

RH, df = 2 − 0.237 − 0.307** 0.541** − 0.347** − 0.295*** 
(0.092) (0.092) (0.207) (0.122) (0.067) 

RH, df = 3 − 0.068** − 0.079** 0.053 − 0.022 − 0.054** 
(0.021) (0.021) (0.057) (0.038) (0.018) 

Public holiday 0.292*** 0.283*** 0.183*** 0.201*** 0.313*** 
(0.008) (0.008) (0.021) (0.021) (0.009) 

GDP  0.000*** 0.002*** 0.002*** 0.000***  
(0.000) (0.000) (0.000) (0.000) 

Disposable income per capita  0.000** − 0.000* − 0.000*** − 0.000***  
(0.000) (0.000) (0.000) (0.000) 

Energy & Environment expenditure  − 0.005** − 0.575*** 0.000 − 0.028***  
(0.002) (0.027) (0.013) (0.003) 

Health expenditure  − 0.052*** − 0.027*** − 0.236*** − 0.007  
(0.003) (0.008) (0.024) (0.004) 

Population density  0.000*** − 0.000*** − 0.000 0.000  
(0.000) (0.000) (0.000) (0.000) 

NDVI  1.261*** 1.765*** 2.380*** 0.223**  
(0.059) (0.131) (0.184) (0.076) 

Road density  0.000* − 0.000*** − 0.000*** 0.000***  
(0.000) (0.000) (0.000) (0.000) 

*p < 0.05, **p < 0.01, ***p < 0.001. 
a JS, global model for Jiangsu Province, basic model, controlling for temperature, RH, and a binary indicator indicating if it was the first day after holiday. 
b JS-with control, global model for Jiangsu Province, based on the basic model, further controlling for socio-economic and environmental factors. 
c Northern/Central/Southern JS, global model for different parts of Jiangsu Province, with control for socio-economic and environmental factors. 
d 95%CI is the upper and lower limit of the 95% confidence interval of the RR. 
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polluted areas and the higher tolerance of parents in economically 
developed areas for children’s absenteeism may also be the underlying 
explanations (Liu and Salvo, 2018). A cross-sectional survey covering 
ten cities in China indicated that socio-economic level might be related 
to more rhinitis and confirmed asthma, yet further investigation is 
needed (Zhang et al., 2013). 

Road density also has proven effects on the health risks related to 

PM2.5 exposure. Schools around major roads faced great threats of 
traffic-related pollutants potentially causing damages to children’s 
health (Meng et al., 2012). On one side, particulate matter from vehicle 
exhaust may contain more hazardous components such as heavy metals; 
on the other, risk associated with PM2.5 may increase due to synergistic 
effects of PM2.5 and other vehicle emissions (Lv et al., 2019; Gupta, 
2020). Adoption to clean fuel used in school buses was able to lower the 
absenteeism especially for those with asthma (Adar et al., 2015). A study 
covering seven cities in China indicated that both high levels of eco
nomic development and proximity to major roads were associated with 
more frequent asthma, rhinitis and dry cough for children (Norbäck 
et al., 2018). In contrast, studies in the US found the contribution of 
sound socio-economic conditions to the decreased air pollution related 
health effects (Green et al., 2004). One possible explanation could be 
that, the road density around schools was higher in areas with stronger 
economies in China (Zhang et al., 2015), leading to more traffic-related 
air pollution exposure for school-age children in these areas; whereas, 
schools with higher proportion of students participating in free and 
reduced-price meal programs were more likely to located near busy 
roads in the US (Green et al., 2004). 

Neighborhood environmental differences among schools, such as 
NDVI, is an important factor affecting the exposure-response relation
ship related to PM2.5. The absenteeism risk brought about by PM2.5 
existed only in areas with low NDVI and the risk was robust. Green 
space, especially tree coverage, was deemed to mitigate PM2.5 pollution 
at the neighborhood scale (Dadvand et al., 2012). The personal PM2.5 
exposure levels in sites with high NDVI could therefore be lower than 
measurements from routine monitoring stations or concentrations esti
mated based on MODIS. Evidence from Barcelona emphasized that 
increasing green vegetation coverage around elementary schools alle
viated air pollution exposures for school children (Dadvand et al., 2015). 
The relatively higher NDVI in northern Jiangsu partly explained the 
lower risk of illness-related absenteeism there. However, it should be 
vigilant that there was a positive association between NDVI and 
illness-related absenteeism overall. Whether NDVI places positive or 
negative influence on health effects is conditional upon other re
strictions including the type of vegetation (Lovasi et al., 2013; Gernes 
et al., 2019; Dadvand et al., 2014; Fuertes et al., 2016). The government 
should be cautious on evaluating the benefits of enhancing the vegeta
tion coverage of green spaces surrounded by schools. 

Additionally, the positive role of government public financial ex
penditures should be affirmed (Yip et al., 2019). Pupils in areas with 
lower health expenditures had higher risks of absenteeism related to 
PM2.5 exposure overall. Therefore, low-income families in areas with 
low medical expenditures might avoid the extra expenses of taking time 
off to go to the hospital, which led to the underestimation of absence 
risks. The government needs to increase health expenditures to help 
school children receive equal access to higher-quality health services. 
Increasing regional energy and environmental protection expenditures 
also reduced the adverse effects of PM2.5 pollution for elementary chil
dren. Considering the clean air policy promoted by the Chinese gov
ernment in the past ten years, increasing energy and environmental 
protection expenditures is helpful to control PM2.5 pollution, thereby 
reducing the exposure risk of all citizens, especially school children 
(Xiao et al., 2020). 

This is the first research assessing the county-, and even school-level 
differences of the illness-related absenteeism risk associated with PM2.5 
exposure. With risk estimation for 2278 schools from 97 counties in 
Jiangsu Province, we found that the health risk from PM2.5 was robust 
for students in about 13.5% of primary schools and 23.7% of counties. 
The relative risk of illness-related absenteeism associated with an in
crease of IQR (32 μg/m3) in PM2.5 concentration ranged from 1.00 to 
2.81. After detecting the high-risk areas, we further characterized the 
socio-economic and environmental conditions of these areas. We found 
that GDP, disposable income per capita, health expenditures, road and 
population density and NDVI are significantly and positively associated 

Fig. 3. Schools and counties with significant risks of illness-related school 
absenteeism rate associated with PM2.5. (a) Proportion of significantly influ
enced schools in each county; (b) relative risk distribution of significantly 
influenced schools; (c) relative risk distribution of significantly influ
enced counties. 
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with the illness-related absenteeism risk associated with PM2.5. 
This study had several advantages. We explored the PM2.5-related 

health impacts with up to ~0.7 million illness-related school absence 
records, a large sample size representative enough to display the 
exposure-response relationship. In addition, this study made use of the 
modeled PM2.5 concentration data with a high spatial resolution of 1- 
km, allowing us to improve the accuracy of exposure assessment. 
Finally, as far as we know, this is the first study exploring the spatial 
heterogeneity of PM2.5-related health threats in school-aged children in 
countries with severe air pollution problems like China. Limitations also 
existed. Firstly, with data of only one year, we were not able to conduct 
time series analyses to explore the moderating effects of socio-economic 
and environmental factors on illness-related absenteeism risk associated 
with PM2.5 exposure as time went by. Secondly, the socio-economic data 
are collected from yearbook of a city or county. Systematic differences 
could exist between areas in data processing before data collection. 
Thirdly, with no high-resolution data of other air pollutants, the inter
action effects between pollutants were not considered. Finally, here we 
only consider the spatial change in PM2.5 concentrations, which may 

not be able to fully explain the PM2.5-related health effects. We would 
dig into the impact of PM2.5 component in future studies. 

The study verifies that PM2.5 exposure poses widespread risks of 
illness-related absenteeism to elementary students and the risks vary on 
school- and county-levels. Students in areas with higher levels of eco
nomic development, denser road network and lower green space 
coverage may have higher risks. To deal with health risks related to 
PM2.5 exposure, the government may need to focus on not only areas 
with high pollution, but also areas with specific socio-economic and 
environmental characteristics. In addition, public financial expenditure 
and school site selection are effective interventions regarding alleviation 
of health impacts of PM2.5 on elementary students. This provides evi
dence for identifying areas where students suffer from higher risks by 
spatial characteristic indicators and the governments’ intervention 
measures should focus on. 
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