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short-term exposure to PM1 is larger than associations with PM2.5 and PM10 

Jianyin Xiong b,1, Jing Li c,d,1,***, Xiao Wu e, Jack M. Wolfson d, Joy Lawrence d, 
Rebecca A. Stern f, Petros Koutrakis d, Jing Wei g,*, Shaodan Huang a,d,** 

a Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China 
b School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China 
c Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China 
d Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA 
e Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA 
f Harvard John A. Paulson School of Engineering & Applied Sciences, Cambridge, MA, USA 
g Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA   

A R T I C L E  I N F O   

Keywords: 
PM1 

COVID-19 
Time-serial analysis 
China 

A B S T R A C T   

Exposure to particulate matter (PM) could increase both susceptibility to SARS-CoV-2 infection and severity of 
COVID-19 disease. Prior studies investigating associations between PM and COVID-19 morbidity have only 
considered PM2.5 or PM10, rather than PM1. We investigated the associations between daily-diagnosed COVID-19 
morbidity and average exposures to ambient PM1 starting at 0 through 21 days before the day of diagnosis in 12 
cities in China using a two-step analysis: a time-series quasi-Poisson analysis to analyze the associations in each 
city; and then a meta-analysis to estimate the overall association. Diagnosed morbidities and PM1 data were 
obtained from National Health Commission in China and China Meteorological Administration, respectively. We 
found association between short-term exposures to ambient PM1 with COVID-19 morbidity was significantly 
positive, and larger than the associations with PM2.5 and PM10. Percent increases in daily-diagnosed COVID-19 
morbidity per IQR/10 PM1 for different moving averages ranged from 1.50% (− 1.20%, 4.30%) to 241% (95%CI: 
80.7%, 545%), with largest values for exposure windows starting at 17 days before diagnosis. Our results 
indicate that smaller particles are more highly associated with COVID-19 morbidity, and most of the effects from 
PM2.5 and PM10 on COVID-19 may be primarily due to the PM1. This study will be helpful for implementing 
measures and policies to control the spread of COVID-19.   

1. Introduction 

The spread of COVID-19 has become one of the most important 
global health events since World War II and significantly impacts human 
life worldwide. The outbreak of COVID-19 was initially reported in 
Wuhan, China in December 2019 (Li et al., 2020; Huang et al., 2020; Wei 
et al., 2022). It was declared a pandemic and global public health 
emergency by the World Health Organization (WHO) in March 2020 due 
to its high infectivity and severe health threat, as well as rapid growth in 
morbidity and mortality. Globally, the COVID-19 pandemic has resulted 

in over 400 million confirmed cases with about 5.8 million confirmed 
deaths through early February 2022 (WHO, 2022). 

People with COVID-19 were reported to have a wide range of mild to 
severe symptoms and clinical characteristics, including, but not limited 
to cough, shortness of breath or difficulty breathing, and acute respi-
ratory failure (CDC, 2021; Guan et al., 2020). Main transmission path-
ways of respiratory viruses include inhalation of respiratory droplets 
between people in close contact (distance less than 6 feet), aerosol 
transmission in indoor and crowded spaces with poor ventilation, and 
physical contact with contaminated surfaces or with an infected person 
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carrying the SARS-CoV-2 (CDC, 2021; Qian et al., 2021). 
There is evidence that indoor and outdoor particulate matter (PM) 

short-term air pollution could impair the defense of the upper airways, 
weaken the immune response, and make humans more prone to be 
infected by the virus (Zhu et al., 2020; Chen et al., 2020). Some studies 
suggested labelling PM of air pollution as potential vectors of 
SARS-CoV-2 (Barakat et al., 2020; Cao et al., 2021; Shao et al., 2021a, 
2021b). Thus, exposure to PM could increase both susceptibility to 
SARS-CoV-2 infection and severity of COVID-19 disease (Marquès et al., 
2022). A cohort study in Milan, Italy showed a relationship between the 
ambient (outdoor) levels of PM2.5 (particulate matter with aerodynamic 
diameter <2.5 μm) and PM10 (particulate matter with aerodynamic 
diameter <10 μm) and COVID-19 cases (Zoran et al., 2020). High 

historical PM2.5 exposures in the United States are also found to be 
positively associated with higher county-level COVID-19 mortality 
rates, after accounting for many area-level confounders (PM2.5, age, 
temperature, etc.), with an increase of just 1 μg/m3 of PM2.5 resulting in 
a 15% increase in COVID-19 deaths (Wu et al., 2020). 

The aerosol particles with smaller sizes (less than 5 μm), such as 
those containing the SARS-CoV-2, are more dangerous to human health 
since they can suspend for longer periods and penetrate deeper into the 
lungs than those with larger sizes (Hinds, 1999; Meselson, 2020; Liu 
et al., 2020; Shao et al., 2021a, 2021b; Port et al., 2022). Marquès and 
Domingo (2022) systematically reviewed the research advances on the 
association between the outdoor air pollution and incidence of 
COVID-19, and pointed out that, the limitation of the prior studies is that 

Fig. 1. The locations of 12 cities included in our study.  
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the examined pollutants are only confined to PM2.5, PM10, O3, NO2, SO2 
and CO, and investigation on other important pollutants is urgently 
needed. At present, there have been no reports regarding PM1 (partic-
ulate matter with aerodynamic diameter <1 μm) and COVID-19. PM1 is 
composed of extremely fine particles. It has been reported that PM1 is 
associated with a higher risk for emergency department visits (EDVs) 
than larger sizes of particulate matter (Liu et al., 2021). 

This study aims to investigating the association between PM1 and 
daily-diagnosed COVID-19 morbidity. Specifically, a two-step analysis 
(time-series quasi-Poisson analysis for each city and random-effects 
meta-analysis for overall association) was conducted based on data 
from 12 cities in China from January to June 2020 to assess the asso-
ciations between ambient PM1 and daily-diagnosed COVID-19 
morbidity. 

2. Methods 

2.1. Data collection 

Our investigation was based on data from 12 cities in China from Jan 
13, 2020 to June 30, 2020 (Wuhan, Beijing, Guangzhou, Shanghai, 
Shenzhen, Nanchang, Hangzhou, Ningbo, Taizhou, Zhengzhou, Shaox-
ing, and Dongguan). Fig. 1 shows the locations of the 12 cities. The 
criteria for selecting the cities were: the total diagnosed morbidity of 
COVID-19 in the city was greater than 90 cases diagnosed during the 
study period; and the ambient PM1 data was available from China 
Meteorological Administration. We excluded Feb 04, 2020 in Wuhan, 
because a large number of cumulative cases instead of the daily diag-
nosed morbidity was reported on that day (13436 cases). 

Daily morbidities (cases with positive Polymerase Chain Reaction 
tests) were obtained from the daily published data (https://news.qq. 
com/zt2020/page/feiyan.htm#/global), which were gathered and re-
ported by the National Health Commission in China. In order to mini-
mize the interference of population flow, we only included the cases 
identified as local for each city and excluded the cases for those who 
traveled from abroad or other cities. Cases with positive PCR test were 
defined as diagnosed COVID-19 morbidity. 

The PM1 in situ measurements for the study period were collected 
from the China Atmosphere Watch Network (CAWNET) of the China 
Meteorological Administration (Wei et al., 2019). The detailed infor-
mation for the PM1 monitor stations used in this study is listed in 
Table S1 in Supplementary Material. PM1 was measured using the 
GRIMM Model 1.180 Aerosol Spectrometer, which is an optical particle 
counter that measures and records particle number concentration 
(counts/cc) in multiple channels based on aerodynamic size and records 
5-min average counts (5-min) for each channel. The 5-min values for 
each channel are used to calculate the mean 24h (daily) particle con-
centrations. For each size channel the particle number concentrations 
are converted to particle mass concentrations using the GRIMM pro-
tocols. PM1 is then determined by adding the particle mass values for all 
channels for sizes up to 1 μm. The PM1 determined this way is compa-
rable to the PM2.5 and PM10 measurements we used for this study, ob-
tained from the China National Environmental Monitoring Centre 
(http://www.cnemc.cn/), measured using the tapered element oscil-
lating microbalance (TEOM) or beta attenuation monitor (BAM), to 
determine compliance with China’s National Ambient Air Quality 
Standard (Wei et al., 2021). It has been reported that the 
GRIMM-derived particle mass concentrations are highly consistent with 
those measured by the TEOM or BAM (Wei et al., 2019; Mukherjee et al., 
2017). We assigned the average PM concentrations across all monitor 
stations in each city as exposure to the cases since we were unable to 
obtain the addresses of each case. 

Daily meteorological data (including temperature and relative hu-
midity) for each city were calculated from hourly data obtained from the 
NOAA Satellite and Information Service (http://www7.ncdc.noaa.go 
v/CDO/cdo). 

2.2. Statistical analysis 

We employed a two-step analysis to estimate the associations be-
tween ambient PM1 and daily-diagnosed COVID-19 morbidity. 

2.2.1. Time-series quasi-Poisson analysis 
For the first step, we used a time-series quasi-Poisson model (R 

package “mgcv”) to estimate the association between ambient PM1 and 
daily-diagnosed COVID-19 morbidity for each city. We included time as 
a variable to control for long-term trends (Hamilton, 1994). We also 
controlled for meteorological parameters, i.e., daily temperature (T) and 
relative humidity (RH) 5 days before diagnosis, and day of week (if the 
day is weekend or not), as previous studies found associations between 
these factors and morbidity (Ma et al., 2020). We selected T and RH 5 
days before diagnosis as T and RH at this lag time had strongest asso-
ciations with morbidity compared to associations for other lag times, 
according to our analysis as well as Ma et al.’s (2020) research. The 
model can be expressed as: 

Log(E(Y))= β0 + β1 ×PM1 + β2 × lag5T + β3 × lag5RH + β4 ×weekend
+ s(time, df = 2 per − month) + e

(1)  

where, E(Y) is the daily-diagnosed COVID-19 morbidity; PM1 is the PM1 
exposures for 22 different moving averages starting at 0 through 21 days 
before the day of diagnosis respectively; lag5T is the daily temperature 5 
days before diagnosis; lag5RH is the daily relative humidity 5 days of 
diagnosis; weekend is a binary variable which equals to 1 for weekend 
and 0 for weekdays; s(time, df = 2 per-month) is a natural spline with 2 
degrees of freedom per month, which represents time series; β0 is the 
intercept; β1, β2, β3, and β4 are the regression coefficients; e is the 
standard error. 

2.2.2. Random-effects meta-analysis 
Subsequently, we applied meta-analysis (R package “metaphor”) to 

evaluate the overall associations in all 12 cities. We used random-effects 
meta-analysis as there was significant heterogeneity between the results 
for different cities (I2 > 50%). The overall study error variance in a 
random-effects meta-analysis includes two components: within-study 
and between-study errors (Borenstein et al., 2009). The observed 
mean effect of city i (ʘi) can be expressed as follows: 

Θi = μ + εi + £i (2)  

where, μ is the grand mean effect of PM1 on daily-diagnosed COVID-19 
morbidity; ϵi is the within-study error and £i is the between study error; i 
represents the city ID (i = 1, 2, …12). 

The combined association between PM1 and daily-diagnosed COVID- 
19 morbidity in all 12 Chinese cities (β) is given by weighted observed 
mean effects (ʘi) for all cities. The weight for city i is the reciprocal of 
the error variance (Zanobetti and Schwartz, 2009). 

We used equation (3) to calculate the relative percent changes (PC) 
of diagnosed morbidity per IQR/10 (IQR denotes interquartile range) 
increase of exposure to ambient PM1: 

PC = (exp(β × IQR/10) − 1 ) × 100% (3)  

where, β is the overall coefficient of PM1 for the 12 cities. 

2.2.3. Sensitivity analysis 
As the daily-diagnosed COVID-19 morbidity cases in Wuhan were 

much higher than other cities, this may skew the overall results for the 
12 studied cities. Therefore, we conducted a sensitivity analysis on the 
associations for other 11 cities to exclude the interference of high 
morbidity factors in Wuhan cases, and compared the results with the 
overall results for 12 cities. 

All the above statistical analyses were performed using R software. 
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We consider results with p < 0.05 as significant and 0.05 ≤ p < 0.1 as 
marginally significant. 

3. Results 

3.1. Characteristics of daily-diagnosed morbidity and exposures 

Our study included 170 days with daily-diagnosed COVID-19 
morbidity and environmental data in 12 cities. The mean daily- 
diagnosed COVID-19 morbidity was 18 cases/day. The highest mean 
daily-diagnosed morbidity was found in Wuhan (196 cases/day), where 
COVID-19 was initially reported. Summary statistics of COVID-19 
morbidities for all 12 cities together and for each city separately are 
shown in Table 1. 

Table 2 shows the descriptive information of the environmental data 
on the day of diagnosis for all 12 cities together and for each city 
separately, including ambient exposures to PM1, PM2.5 and PM10, tem-
perature, and relative humidity. The Pearson correlations between PM1, 
PM2.5, and PM10 used in this study are shown in Fig. S1. The mean 
outdoor PM1, PM2.5 and PM10 exposure for all cities was 18.2, 29.8, and 
49.1 μg/m3, respectively. The mean PM1, PM2.5 and PM10 exposure for 
Wuhan was 17.5, 34.3, and 52.1 μg/m3, respectively. Among the 12 
cities, Zhengzhou had the highest PM exposure. The lowest PM1 and 
PM10 levels were observed in Dongguan, while the lowest PM2.5 level 
was observed in Guangzhou. The mean temperature for all cities was 
18.0 ◦C and the mean relative humidity was 72%. 

We presented the PM1 exposure and daily-diagnosed COVID-19 
morbidity by date in Wuhan, where the diagnosed morbidity was the 
highest, in Fig. S2 in Supplementary Material. 

3.2. Associations between PM1 exposures for different moving averages 
and daily-diagnosed morbidity 

3.2.1. Overall associations for all 12 cities together 
We assessed the associations between daily-diagnosed COVID-19 

morbidity and ambient PM1 starting with the day of diagnosis (day0) to 
moving averages through 21 days before diagnosis (day21), controlling 
for daily temperature and relative humidity 5 days before diagnosis, 
weekend/weekday, and long-time trends. Values of regression co-
efficients of PM1 (β) and p-values for the 12 cities for different moving 
averages are presented in Table S2 in the Supplementary Material. We 
found that PM1 exposures for moving averages starting from 21 days 
before the day of diagnosis were all positively associated with the in-
crease of daily-diagnosed COVID-19 morbidity, and most of the associ-
ations were significant. Overall percent increases of daily-diagnosed 
COVID-19 morbidity with per IQR/10 PM1 for different moving aver-
ages ranged from 1.50% (95%CI: − 1.20%, 4.30%) to 241% (95%CI: 
80.7%, 545%) as shown in Fig. 2. The largest association between 
diagnosed morbidity and PM1 is for average exposure from 17 days 
before diagnosis. 

Table 1 
Summary of daily COVID-19 morbidities in the 12 study cities.  

City Total diagnosed morbidity Daily range Mean daily diagnosed 

Wuhan 30706 0–1985 196 
Beijing 864 0–121 5 
Guangzhou 554 0–38 4 
Shanghai 543 0–112 3 
Shenzhen 457 0–60 3 
Nanchang 225 0–21 1 
Hangzhou 207 0–19 1 
Ningbo 170 0–27 1 
Taizhou 162 0–24 1 
Zhengzhou 153 0–13 1 
Shaoxing 109 0–13 1 
Dongguan 96 0–9 1  Ta
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3.2.2. Associations for 11 cities excluding Wuhan 
We excluded Wuhan and conducted analysis on the associations for 

other 11 cities for sensitivity analysis. Values of regression coefficients 
of PM1 (β) and p-values for 11 cities for different moving averages are 
presented in Table S3 in the Supplementary Material. We found that the 
results were very similar with the associations for 12 cities as shown 
Fig. 3. It indicated that, though daily-diagnosed COVID-19 morbidity 
cases in Wuhan were much higher than other cities, including Wuhan in 
our meta-analysis did not skew the overall results for the 12 studied 
cities. 

3.2.3. Associations for Wuhan 
The regression coefficients for PM1 (β1) for Wuhan, the first outbreak 

site of COVID-19 and the most severely affected area in China, are shown 
in Table S4 in the Supplementary Material. Percent changes in daily- 
diagnosed COVID-19 morbidity per IQR/10 p.m.1 for Wuhan for 
different moving averages are shown in Fig. 4. According to our results, 

the pattern of the associations was similar with the overall results. 
Percent changes were all positive except for the exposure on the diag-
nosis day. The percent changes of daily-diagnosed COVID-19 morbidity 
per IQR/10 PM1 in Wuhan were larger than the overall values, ranging 
from − 1.4% (95%CI: − 3.1%, 0.4%) to 32.7% (95%CI: 20.7%, 45.8%). 
The values of percent changes were lower for Wuhan compared with the 
overall percent changes, because the IQR value in Wuhan was much 
lower. 

3.3. Associations between PM2.5 and PM10 and daily-diagnosed 
morbidity 

In order to compare the effects of PM1 with those of the two larger 
particle sizes, we applied the two-step method as described in the 
Methods section to examine the associations between daily-diagnosed 
COVID-19 morbidity with both PM2.5 and PM10. The time-series quasi- 
Poisson model for each city is: 

Fig. 2. Overall percent changes in daily-diagnosed COVID-19 morbidity per IQR/10 PM1 for 12 cities for different exposure windows.  

Fig. 3. Overall percent changes in daily-diagnosed COVID-19 morbidity per IQR/10 PM1 for 11 cities excluding Wuhan for different exposure windows.  
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Log(E(Y))= β0 + β1 ×Pollutant + β2 × lag5T + β3 × lag5RH + β4

×weekend + s(time, df = 2per − month) + e
(4)  

where, Pollutant is the exposure of PM2.5 or PM10 with different moving 
averages starting from 21 days before diagnosis. 

Overall values of regression coefficients of PM1 (β) for PM2.5 and 
PM10 are presented in Table S5 and Table S6 in Supplementary Material. 
Overall percent changes in daily-diagnosed COVID-19 morbidity per 
IQR/10 PM2.5 and PM10 with different moving averages are shown in 
Fig. S3 and Fig. S4 in the Supplementary Material, respectively. 
Compared with PM1, the overall percent changes with PM2.5 and PM10 
per IQR/10 were smaller. Overall percent increases of daily-diagnosed 
COVID-19 morbidity per IQR/10 PM2.5 for different moving averages 
ranged from 2.00% (95%CI: 0.300%, 3.80%) to 90.8% (95%CI: 36.3%, 
167%), as shown in Fig. S3. For PM10, the percent changes ranged from 
2.80% (95%CI: 0.700%, 5.00%) to 52.7% (95%CI: 23.6%, 88.6%) 
(Fig. S4). 

4. Discussion 

This study investigated the associations between short-term expo-
sure to ambient PM1 and daily-diagnosed COVID-19 morbidity based on 
the data from 12 cities in China using a two-step analysis. Prior studies of 
the associations between PM and COVID-19 morbidity generally focused 
on PM2.5 or PM10 (Zoran et al., 2020; Wu et al., 2020; Zhou et al., 2020a, 
2020b; Conticini et al., 2020; Travaglio et al., 2021; Liang et al., 2020). 
To the best of our knowledge, our study provides the first attempt to 
examine the association between PM1 and COVID-19 morbidity. 

Our results show, for the 12 investigated cities together, daily- 
diagnosed COVID-19 morbidity was significantly associated with PM1 
exposures for different moving averages starting from 1 day before 
diagnosis (day1) to day21 (p-values < 0.05), except for day18. While for 
Wuhan city, daily-diagnosed COVID-19 morbidity was significantly 
associated with ambient PM1 exposures starting from day3 to day19 (p- 
values < 0.05), except for day11. Specifically, with per IQR/10 increase 
of PM1 concentration for day17, the overall percent change of daily- 
diagnosed COVID-19 morbidity was 241% (95%CI: 80.7%, 545%) for 
the 12 cities together, and the percent change was 32.7% (95%CI: 

20.7%, 45.8%) for Wuhan. This is a remarkable increase, indicating that 
PM1 exposure is highly correlated with daily-diagnosed COVID-19 
morbidity. 

Our results also indicate that the associations between PM1 and 
daily-diagnosed COVID-19 morbidity increased with the length of 
exposure windows for exposure windows starting from day0 to day17, 
and then decreased. For PM1 exposure starting from day17, the percent 
change (PC) of daily-diagnosed COVID-19 morbidity increases about 
160-fold compared to PC for exposure on diagnosis day. While for 
Wuhan city, the PC for exposure starting from day17 increases about 29- 
fold compared to PC for day1. The main reason may be that for longer 
exposure windows, the coronavirus can transmit wider and farther, 
resulting in more significant cumulative impact. Under the exposure 
condition of longer time, people have more possibility and chance to be 
infected by the virus via various pathways, e.g., inhalation of respiratory 
droplets or aerosols or direct touch, which makes the morbidity rate rise 
rapidly. In addition, the possibility of a lag between exposure and when 
there is sufficient response to infection to test positive also contributes 
the higher morbidity in longer time. 

Since many studies attempted to analyze the impact of PM2.5 and 
PM10 on the COVID-19 morbidity, it is necessary to make a comparison 
among the contributions for particles of different sizes (i.e., PM1, PM2.5 
and PM10), to identify which size of particles shows the highest effect. 
Therefore, we also examined associations of diagnosis of COVID-19 with 
PM2.5 and PM10. We found that the association between diagnosis of 
COVID-19 and PM1 exposure was larger than the associations with PM2.5 
and PM10 exposures. For example, at moving average starting from 
day17, the PC of PM2.5 (90.8% (95%CI: 36.3%, 167%)) and PM10 
(29.5% (95%CI: 16.6%, 43.8%)) for the 12 cities together were about 
62%–88% lower than that of PM1 (241% (95%CI: 80.7%, 545%)). This 
analysis suggests that PM1 concentration may contribute more signifi-
cantly than PM2.5 and PM10 concentrations, which have been used as 
exposure indices in prior studies. Because PM1 has a smaller size range, 
it may travel farther and suspend longer than PM2.5 and PM10, and it can 
penetrate deeper into the lungs, and lead to more severe health effects. 
This indicates that future studies of PM health effects should include this 
size range. In order to examine which size range of the particles may 
influence the COVID-19, we included PM1 together with two residuals: 
the residual of PM2.5 and PM1 (represents PM from 1 μm to 2.5 μm), and 

Fig. 4. Percent changes in daily-diagnosed COVID-19 morbidity per IQR/10 PM1 for Wuhan with different exposure windows.  
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the residual of PM10 and PM1 (represents PM from 1 μm to 10 μm), 
respectively, in our models. However, no significant associations were 
found between either of these residuals and diagnosed morbidity. This 
result suggests that most of the effects from PM2.5 and PM10 on COVID- 
19 may be primarily due to the PM1. 

A possible feature of the PM1 that may be responsible for the higher 
effects per μg/m3 (or IQR) is that each μg of PM1 particles has a far 
greater number of particles than for the same mass for either PM2.5 or 
PM10. This suggests that part of why there are higher effects from PM1 
than the other two is that the particle number concentration influences 
the outcome, rather than the mass concentration of each of these size 
ranges, since each individual particle will cause cell damage (See and 
Balasubramanian, 2008). Table 2 shows that for all 12 cities, the mean 
mass concentration (μg/m3) increases with increasing size range going 
between PM1 and PM10. So it is clear that the differences in effects are 
not related to mass concentrations for these three sizes. This reason 
suggests that future studies should include direct measurements of 
particle number concentration, using the conventional condensation 
nuclei counter (CNC) method (McMurry, 2005). 

For PM2.5 and PM10, the percent increases of daily-diagnosed COVID- 
19 morbidity in the present study are higher than the results in a prior 
study. Zang et al. (2022) applied the meta-analysis to quantitatively 
explore the association between the short-term exposure to air pollut-
ants and COVID-19 risk. They obtained that, with a 1 μg/m3 increment 
in the PM2.5 and PM10 concentrations, the COVID-19 morbidity in-
creases 0.3% and 0.5%, respectively. The reasons for the difference are 
probably due to that: (1) the present study uses a different index, i.e., the 
percent change of daily-diagnosed COVID-19 morbidity per IQR/10; (2) 
we perform calculation and analysis under different moving averages 
from day0 to day21. However, the present results are comparable to the 
results in Lu et al. (2021)’s study based on data of 41 Chinese cities, 
which indicated that, a 10 μg/m3 increase in the PM2.5 concentrations 
was positively associated with a 5% percent change in the COVID-19 
morbidity. 

Our study has some limitations. Firstly, confirmed cases may not 
capture all morbidity and the number of observation days is limited (170 
days), which will result in some bias and reduce the precision and 
power. However, previous study indicates that the precision and power 
depend only in the useable variation of exposure and the total number of 
disease events, instead of the number of the days (Armstrong et al., 
2020). Secondly, the official report of morbidity is the number of cases 
with positive PCR tests and the test capacity varies greatly at the 
beginning or end of the pandemic, which will impact the number of 
cases reported each day. Thirdly, some potential confounding factors in 
our statistical models may be missing, such as public health-related 
policies, the shifting populations between cities, or UV radiation 
(Chaudhry et al., 2020; Hopman et al., 2020; Badr et al., 2020; Zhou 
et al., 2020a, 2020b; Ianevski et al., 2019). We tried to include some 
policies such as “the Wuhan lockdown” in our model, but did not find 
significant results. Moreover, the present study doesn’t include analysis 
on individual-level features (age, gender, etc.) of morbidity. Despite the 
above limitations, our present study is the first to incorporate PM1 
exposure as an important factor for the morbidity of COVID-19 and may 
be helpful for implementing measures and policies related to community 
mitigation and personal protection (e.g., use of masks that could capture 
small particles <1 μm efficiently) to control the spread of COVID-19. 

5. Conclusions 

This is the first study to identify a significantly positive association 
between short-term exposure to PM1 and daily-diagnosed COVID-19 
morbidity. Our results also indicate that smaller particles are more 
highly associated with COVID-19 morbidity, and most of the effects from 
PM2.5 and PM10 on COVID-19 may be primarily due to the PM1. 
Therefore, researchers and policy makers should account for PM1 as a 
potential risk factor of COVID-19. 
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