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• The relationship between AP and AL was
estimated in adults with large sample
sizes.

• Exposure to PM2.5, PM10, and O3 were sig-
nificantly associated with increased AL.

• The effect of AP on AL may be higher in
elderly, minority, lower educated/income.

• AP may be a chronic stressor, leading to
broad damaging effects on multiple
organs.
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 Background: Allostatic load measures the cumulative biological burden imposed by chronic stressors. Emerging exper-

imental evidence supports that air pollution acting as a stressor activates the neuroendocrine system and then produces
multi-organ effects, leading to allostatic load. However, relevant epidemiological evidence is limited.
Objectives:We aim to explore the relationships between chronic exposure to ambient air pollution (PM1, PM2.5, PM10,
and O3) and allostatic load in Chinese adults.
Methods: This cross-sectional study included 85,545 participants aged 30–79 from the baseline data of the ChinaMulti-
Ethnic Cohort (CMEC). Ambient air pollution levels were evaluated by a satellite-based random forest approach. The
previous three-year average exposure concentrations were calculated for each participant based on the residential ad-
dress. The outcome allostatic load was identified through the sum of the sex-specific scores of twelve biomarkers
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belonging to fourmajor categories: cardiovascular,metabolic, anthropometric, and inflammatory parameters. We per-
formed statistical analysis using a doubly robust approach which relies on inverse probability weighting and outcome
model to adjust for confounding.
Results: Long-term exposure to ambient air pollution was significantly associated with an increased risk of allostatic
load, with relative risk (95% confidence interval) of 1.040 (1.024, 1.057), 1.029 (1. 018, 1. 039), and 1.087 (1.074,
1.101) for each 10 μg/m3 increase in ambient PM2.5, PM10, and O3, respectively. No significant relationship was ob-
served between chronic exposure to PM1 and allostatic load. The associations between air pollution and allostatic
load are modified by some intrinsic factors and non-chemical stressors. The people with older, minority, lower educa-
tion, and lower-income levels had a significantly higher allostatic load induced by air pollution.
Conclusions: Chronic exposure to ambient PM2.5, PM10, and O3 may increase the allostatic load. This finding provides
epidemiological evidence that air pollution may be a chronic stressor, leading to widespread physiological burdens.
1. Introduction

Ambient air pollution (AP) has been recognized as a significant public
health hazard globally. Indeed, air pollution ranked fourth among risk fac-
tors for global attributable mortality, contributing to 6.67 million deaths in
2019 (GBD 2019 Risk Factors Collaborators, 2020). Over the past decades,
the adverse effects of air pollution on specific organs or diseases have been
well explored, primarily focusing on cardiometabolic (Brook et al., 2010;
Simkhovich et al., 2008) and pulmonary diseases (C Arden et al., 2002;
Sunyer, 2001) and, more recently, neurological and psychiatric disorders
(Braithwaite et al., 2019; Jo et al., 2021). Considering the possible exis-
tence of common pathways among various diseases (such as inflammation
and oxidative stress), it seems necessary to identify the broad effects of air
pollution on multiple organs and systems. Such findings may be helpful in
understanding the linkage of the complex pathogenesis in various air
pollution-related diseases, andwhether various diseases are driven by com-
mon initial events (Juster et al., 2010; Snow et al., 2018; Thomson, 2019).
Furthermore, since many people suffer from a combination of multiple dis-
eases (Jankovic et al., 2018; Wang et al., 2014; Zhao et al., 2021), such
multimorbidity underscores the necessity tomeasuremulti-organ or system
effects induced by air pollution.

A key concept that helps to explain the multi-organ effects of air
pollutants exposure is allostatic load (AL), which measures the cumulative
biological burden caused by chronic exposure to stressors (McEwen and
Stellar, 1993; Seeman et al., 1997; Seeman et al., 2001). Allostatic load is
hypothesized to be a marker reflecting the cumulative biological effect of
environmental and social stressors (pollutions and low socioeconomic sta-
tus), individual major challenges (life events) as well as consequences of
health-damaging behaviors (smoking, drinking, poor sleep and unhealthy
diet) (Guidi et al., 2021; Thomson, 2019). When faced with environmental
stressors, the organism must change the parameters of its internal physio-
logical milieu and adapt them to achieve stability (Sterling, 1988). Once re-
peated or chronic environmental stressors exceed the organism's adaptive
range, wear and tear on the body's systems occurs and allostatic load ensues
(Seeman et al., 1997; Seeman et al., 2001). Allostatic load can be consid-
ered as a direct indicator of population frailty and has been found to be
associated with all-cause mortality and multimorbidity. (Edes and Crews,
2017; Guidi et al., 2021; Juster et al., 2010; Seeman et al., 2001).

Emerging experimental evidence supports that the early initiating event
elicited by pollutants inhalation is a stress response (Thomson, 2013;
Thomson, 2019). Air pollutants act as chronic stressors and activate the
neuroendocrine stress pathways, resulting in awide range of physiologic re-
sponses in multiple organs (conceptualized as allostatic load) (Snow et al.,
2018; Thomson, 2019), which is a common pathway implicated in various
diseases (Guidi et al., 2021; Snow et al., 2018). Investigating the relation-
ships between air pollution and allostatic load can therefore elucidate the
mechanism linking air pollution to various diseases. However, few
epidemiologic studies have examined the air pollution-allostatic load asso-
ciations (Guidi et al., 2021; Jung et al., 2014;Montresor-López et al., 2021),
especially in general populations with large sample sizes.

In this study, we examined the relationships between long-term expo-
sure to ambient air pollutants (PM1, PM2.5, PM10, and O3) and allostatic
load among nearly 90,000 Chinese adults aged 30–79 years. We used a
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doubly-robust causal modeling technique which can provide unbiased esti-
mator in the case of either the propensity score model or the outcome
model is specified correctly (Funk et al., 2011). In addition, since allostatic
load is a combination of chemical/non-chemical stressors and intrinsic fac-
tors on body health (Guidi et al., 2021; Thomson, 2019), we further inves-
tigated the modification effect of intrinsic factors and other stressors on air
pollution-induced allostatic load to identify vulnerable subpopulations. The
study aimed at better understanding the role of air pollution as a chronic
stressor in the common pathogenesis of various diseases.

2. Methods

2.1. Study design and participants

This cross-sectional study used baseline data from the China Multi-
Ethnic Cohort (CMEC). Detailed design and implementation information
of the CMEC has been reported previously (Zhao et al., 2021). In brief,
CMEC recruited a total of 99,556 participants in five provinces of
Southwest China (aged 30–79 years in Sichuan, Chongqing, Yunnan,
Guizhou province; relaxing to 18–79 years in Tibet for shorter life expec-
tancy) from May 2018 to September 2019. Using a multistage, stratified
cluster sampling method, this cohort is aimed at being representative of
the general populations in Southwest China. The baseline survey consisted
of electronic questionnaires with face-to-face interviews, physical examina-
tions, and clinical laboratory tests. The electronic questionnaire investi-
gated demographic and socioeconomic information, disease history,
family history, health behavior information, reproductive history, physical
activity, dietary habits, and psychological status. The medical examination
collected height, weight, blood pressure, heart rate, ultrasound, X-rays,
vision screening, waist circumference, hip circumference, lung function,
bone mineral density, and electrocardiogram. Clinical laboratory tests
include routine blood tests, fasting blood glucose, blood lipids, liver func-
tion, and routine urine tests. All participants signed an informed consent
form before conducting the investigation. Ethical approval was obtained
from the Medical Ethics Review Committee of Sichuan University
(K2016038, K2020022).

The current study included all the CMEC participants except for 1) the
residents aged <30 years, 2) the residents in Aba area because they lived
nomadically and had no fixed residence, 3) those with incomplete informa-
tion on address, 4) those without complete clinical laboratory tests, and
5) those who had no available information on any adjusted covariates.
After these exclusions, 85,545 participants aged 30–79 years on the day
of the investigation were included in the following analyses (Supplemen-
tary Fig. S1).

2.2. Air pollution exposure assessment

The daily average concentrations of PM1, PM2.5, PM10 at a 1-km spatial
resolution and O3 at a 25-km resolution were predicted by space-time ex-
tremely randomized trees models using the Moderate Resolution Imaging
Spectroradiometer Multiangle Implementation of Atmospheric Correction
AOD product (for PM), pollution emissions, meteorology, land use informa-
tion, and other spatial and temporal predictors. The previous studies have



Table 1
Allostatic load biomarkers and the respective cut-off values.

Biomarker Unit Mean (SD) Cut-off value

Male Female

Cardiovascular
SBP mm Hg 126.44 (19.62) 139.67 136.00
DBP mm Hg 79.56 (11.42) 89.00 84.30

Metabolic
Triglycerides mmol/L 1.72 (1.59) 2.20 1.81
LDL-C mmol/L 2.93 (0.84) 3.46 3.41
HDL-C mmol/L 1.48 (0.40) 1.11 1.28
TC mmol/L 5.01 (1.01) 5.60 5.59
fasting glucose mmol/L 5.41 (1.42) 5.70 5.51
НЬA1c % 5.75 (0.92) 6.00 5.90
Creatinine clearance mL/min 88.73 (25.92) 71.55 70.14

Inflammatory
leukocyte 109/L 6.15 (1.69) 7.30 6.90

Anthropometric
BMI kg/m2 24.11 (3.41) 26.49 26.12
waist circumference cm 82.35 (10.11) 92.00 87.00

Abbreviations: SBP, Systolic blood pressure; DBP, Diastolic blood pressure; LDL-C,
low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol;
TC, total cholesterol; НЬA1c, glycosylated hemoglobin; BMI, Body mass index.
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reported a detailed description of the data collection and modeling process
(Wei et al., 2019a;Wei et al., 2019b;Wei et al., 2020;Wei et al., 2021a;Wei
et al., 2021b). These models were validated with 10-fold cross-validation
R2 (root mean square error) values for the daily predictions of PM1,
PM2.5, PM10 and O3 being 0.77 (14.6 μg/m3), 0.90 (10.01 μg/m3), 0.86
(24.28 μg/m3), and 0.84 (20.11 μg/m3), respectively. According to the
geocoded residential addresses, the previous three-year average exposure
concentrations of PM1, PM2.5, PM10, and O3 before the baseline survey
were calculated for each participant as the substitute for long-term air pol-
lution exposure.

2.3. Measurement of allostatic load index

Allostatic load is typically quantified using a multi-system framework,
including a series of biomarkers that reflect physiological derangements.
The choice of biomarkers for the construction of the allostatic load index
was based on (i) representation of various physiological systems including
cardiovascular, metabolic, anthropometric, and inflammatory parameters,
(ii) prior allostatic load research (Barry et al., 2020; Egorov et al., 2020;
Juster et al., 2010; Montresor-López et al., 2021; Ribeiro et al., 2019;
Seeman et al., 1997; Seeman et al., 2001), and (iii) available CMEC
measurements. Twelve biomarkers were selected to create a summary
index representing allostatic load. Cardiovascular biomarkers included sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP). Metabolic
biomarkers included triglycerides, low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDLC), total cholesterol
(TC), fasting glucose, glycated hemoglobin (HbA1c), and creatinine clear-
ance. Anthropometric markers were body mass index (BMI) and waist
circumference (WC). The inflammatory biomarker was leukocyte. Detailed
information about themeasurement of biomarkers is as follows: At baseline
survey, participants received a physical examination by trained personnel,
including fasting weight, height, waist circumference, and fasting blood
pressure. The BMI was calculated as the body weight (kg) divided by the
height squared (m2). The blood pressure (BP) measurements were per-
formed three times in a seated, upright position. Participants were
instructed not to smoke, drink alcohol, coffee, or tea, or exercise for at
least 30min prior to the measurement. The threemeasurements were aver-
aged to calculate diastolic and systolic BP. All participants were collected
with blood and urine samples at the collection sites. After overnight fasting
(at least 8 h), venous blood sampleswere collected for clinical laboratory test-
ing, including blood routine, fast blood glucose, lipid levels, and hepatic func-
tion, etc. Creatinine clearance (CCr) was calculated by the Cockcroft-Gault
formula, where CCr(mL/min) = [(140 − age(years)) ∗ weight (kg)]/
(0.818 ∗ serum creatinine (μmol/L), corrected in women by a factor of 0.85.

The allostatic load index was defined as the sum of the sex-specific
scores of the twelve biomarkers. For each of the biomarkers, the highest
quartile in the population distribution by sex was considered ‘high risk’
and received a score of 1, except for HDL-C and creatinine clearance,
where the lowest quartile was considered ‘high risk’(Barrett et al., 2018;
Berger et al., 2018; Robertson et al., 2015). Allostatic load biomarkers
and the respective cut-off values are presented in Table 1. Then, we totaled
all the biomarker scores to obtain an allostatic load index ranging from 0 to
12 for each participant. Higher scores of the allostatic load index imply
greater physiological dysfunction.

2.4. Covariate assessment

We adjusted for covariates in both the propensity score model (design
stage) and the outcome regression model (analysis stage). According to
the recommendation of Austin et al., two types covariates were examined
(Austin et al., 2007): the potential confounders of ambient air pollution-
allostatic load and the risk/protective factors related to allostatic load.
Referring to previous literature has reported: i) potential confounders
included region and residential greenness (Egorov et al., 2017, 2020;
Ribeiro et al., 2019); ii) factors related to allostatic load included demo-
graphics (age at the baseline survey, sex, and ethnicity) (Kusano et al.,
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2016; Langellier et al., 2021; Shiels et al., 2019), socioeconomic factors
(education level and annual family income) (Howard and Sparks, 2015;
Johnson et al., 2017; Upchurch et al., 2015), lifestyle risk factors (smoking
status, alcohol drinking status, and physical activity) (Petrovic et al., 2016;
Robinette et al., 2016), diet (fruits, vegetable, and red meat intake) (Mattei
et al., 2013; Suvarna et al., 2020), and environmental variable (secondary
smoking and indoor air pollution) (Jung et al., 2014; Robinette et al.,
2016). The covariate definitions are shown in Supplementary Table S1.

2.5. Statistical analysis

In the present study, we applied a doubly-robust approach, which has
been efficiently used for analyzing the associations between air pollution
and various health outcomes in several previous papers (M. D. Yazdi
et al., 2021a; M. D. Yazdi et al., 2021b). For each exposure, the analysis
consisted of 2 stages: 1) a design stage where the generalized propensity
scores (GPS) and corresponding inverse-probability weights (IPWs) were
estimated using the linear model to construct a pseudo population in
which covariates were balanced across exposure levels, and 2) an analysis
stage where the Poisson regression model was run to estimate the allostatic
load given the covariates and exposures in the pseudo population. The im-
plementation of the doubly-robust approach was described in Supplemen-
tary S1. Since a Poisson regression model was used as the outcome
model, results are presented as the relative risk (RR) of allostatic load asso-
ciated with a 10 μg/m3 increase in specific air pollution concentrations. In
terms of the uncertainty during the design stage of GPS calculating, the
standard errors of coefficients were re-estimated in a sandwich method
(Zhang et al., 2016). The balance of covariates (after weighting) was also
assessed by calculating the average absolute correlations between the expo-
sures and the covariates (Supplementary Fig. S2) (Zhu et al., 2015).

We also evaluated the effect modification by individual factors and
other non-chemical stressors, including age, sex, ethnicity, education
level, family income level, smoking status, alcohol drinking status, and
physical activity. Each potential effect modification was assessed by adding
multiplicative interaction terms between air pollution and the modifier to
be evaluated. To test the statistical significance of the effect modification,
we evaluated the heterogeneity among different strata.

2.6. Sensitivity analyses

To assess the robustness of our findings, we performed a series of sensi-
tivity analyses by 1) additionally adjusting for psychological factors
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(anxiety, depression, insomnia, and major life events occurring); 2) ex-
cluding participants from Tibet, where the environment is quite distin-
guished from other regions (the unique environment in Tibet is high
altitude with generally >3500 m above sea level, low atmospheric pres-
sure, hypoxia, and extreme cold); 3) excluding participants who resided
at their present address for fewer than three years; 4) excluding partic-
ipants with self-reported diabetes, hypertension, hyperlipidemia, car-
diovascular diseases, malignant tumors, tuberculosis, cirrhosis, and
pregnancy.

In addition, we used the cubic spline transformation of air pollution to
investigate the linearity. The average concentrations of air pollution for
one, two, and four years before the baseline survey were used to evaluate
the influence of the exposure windows. Two types of air pollutants (partic-
ulate matter including PM1, PM2.5, and PM10, and a gaseous air pollutant
O3) were included in the analyses. We also implemented a paired pollution
model for each pollutant by adjusting another type of pollutant. We calcu-
lated Evidence-for-causality values (E-values) for our main results. E-value
is the minimum strength of an unmeasured confounder which must be re-
lated to both exposure and outcome to explain away a study result, condi-
tional on all measured covariates (VanderWeele and Ding, 2017). A high
E-value indicates that considerable strongly unmeasured confounding
would be needed to distort a study result. For an observed RR, E-value is
calculated as follows: E − value = RR + sqrt{RR ∗ (RR − 1)} (Ding and
VanderWeele, 2016, VanderWeele and Ding, 2017). Finally, we re-
examined the main analyses between air pollution and allostatic load by
the traditional regression approach.

All statistical analyses were conducted in R version 4.1.0.

3. Results

3.1. Descriptive characteristics and air pollutant concentrations

The baseline characteristics of the study participants are presented
in Table 2 and Supplementary Table S2. A total of 85,545 participants
were included in the main analyses. The mean age of the participants
was 51.65 years (SD: 11.47). Approximately 60% of the participants
were female, and 39% were the minority. The mean allostatic load
score was 3.06 (SD: 2.26). Compared to people with low PM2.5 expo-
sure, people with high PM2.5 exposure were more likely to smoke and
drink alcohol, had higher education and income, and had lower physical
activity. While compared to those with low O3 exposure, those with
high O3 exposure had lower education and income and higher physical
activity level.

The distribution of the air pollution concentrations for each participant
is displayed in Fig. 1, Supplementary Table S3 and Fig. S4. The medians of
air pollution exposure levels were 27.8 μg/m3 (range: 6.1–53.6), 37.7 μg/
m3 (range: 11.8–105.3), 65.8 μg/m3 (range: 33.1–165.2), and 80.1 μg/m3

(range: 56.2–95.4) for PM1, PM2.5, PM10, and O3, respectively.

3.2. Associations between outdoor air pollution and allostatic load

The associations between long-term exposure to air pollution and
allostatic load are presented in Table 3. Increased PM2.5, PM10, and O3

were significantly associated with increased allostatic load. Every
10 μg/m3 increase in the three-year average PM2.5, PM10, and O3

concentrations, the RR (95%CI) of allostatic load was 1.040 (1.024,
1.057), 1.029 (1.018, 1.039) and 1.087 (1.074, 1.101), respectively.
The E-value was 1.16, 1.24, 1.20, 1.39 for PM1, PM2.5, PM10, O3,
respectively. Take PM2.5 for example, the E-value of 1.24 implied that the
observed RR of 1.04 could be explained away by an unmeasured con-
founder that was related to both ambient PM2.5 and allostatic load by a
RR of 1.24 -fold each, above and beyond the measured confounders, but
weaker confounding could not do so. The likelihood of containing such
strength of unmeasured confounder to distort the study result was rela-
tively low because an adjustment has been made for a sufficient number
of confounding variables.
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3.3. Modification analyses

Evidence of effectmodification by individual factors and other potential
stressors is displayed in Fig. 2 (and Supplementary Table S5). The associa-
tions between PM and allostatic load were modified by age, ethnicity, edu-
cation level, income level, and alcohol drinking status. The associations
between PM and allostatic load were significantly increased among partic-
ipants with older, minority, lower education and lower-income group, and
regularly drinking. For example, the RR (95% CI) of allostatic load for each
10 μg/m3 increase in PM2.5 was 1.043 (1.025, 1.062) for people older than
60 years, 1.176 (1.139, 1.215) for minority, 1.049 (1.031, 1.067) for the
primary school or below group, 1.049 (1.032, 1.067) for people whose an-
nual family income was less than 20, 000 yuan, and 1.061 (1.042, 1.079)
for people who regularly drink. For O3, the results suggested that ethnicity,
education level, income level, and physical activity could modify the O3-
allostatic load associations. We found the relationships between O3 and
allostatic load were significantly increased among participants with minor-
ity, lower education, lower-income level, and higher physical activities.

3.4. Sensitivity analyses

The estimated RRs of allostatic load for air pollution exposurewere sim-
ilar when additionally adjusting for mental health-related factors (Table 4).
We also observed similar results when sequentially excluding participants
with those living in Tibet, those at the current residence less than three
years, those who are chronically ill or pregnant (Table 4).

The exposure-response relationships between air pollution and
allostatic load were approximately linear (Supplementary Fig. S3). We ob-
served that the associations between air pollution and allostatic load re-
mained robust when using average air pollution concentrations for a
series of exposure windows (Table 5). The association of each pollutant
with allostatic load also remained generally consistent after the inclusion
of another pollutant, indicating the independent effect of each other
(Fig. 3 and Supplementary Table S4). Lastly, all of the results were almost
consistent after using the traditional regression approach, except that the
uncertainty of the estimated effect was slightly smaller than that of using
the causal doubly-robust approach (Supplementary S3).

4. Discussion

Using a large-scale cohort of nearly 90,000 adults aged 30–79 years en-
rolled in Southwest China, we found that long-term exposure to PM (PM2.5

and PM10) and O3 was associated with an increased risk of allostatic load.
The associations between air pollution and allostatic load were consistent
even after a series of sensitivity analyses and two kinds of analysis strategies
(causal doubly-robust and traditional regression approaches). Factors such
as age, ethnicity, and socioeconomic status generally modified these rela-
tionships, as the elderly, minority, lower educated, and lower-income had
significantly higher air pollution-related allostatic load. To our knowledge,
the current study is the first and largest epidemiologic study to investigate
the associations between long-term exposure to ambient air pollution and
the allostatic load among the general population.

4.1. Biological mechanism and experimental evidence

The potential mechanisms underlying the relationships between air
pollution and allostatic load are linked to the neuroendocrine response sys-
tem (Snow et al., 2018; Thomson, 2019). The neuroendocrine response is
activated when inhaling air pollution, leading to a wide range of physiolog-
ical responses. If this process occurs repeatedly and chronically, allostatic
load ensues. Specifically, air pollution inhalation triggers sensory signals
and pulmonarymediators that travel to the brain and thenmay lead to neu-
roendocrine stress responses, including activating the hypothalamic-
pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes
(Snow et al., 2018; Thomson, 2013; Thomson, 2019). Activation of the
HPA axis and SAM axis releases stress hormones (such as epinephrine,



Table 2
Characteristics of the study participants by low and high PM2.5/O3 exposure.

Variables Overall PM2.5 (μg/m3)a O3 (μg/m3)a

Low (11.8–37.7) High (37.7–105.0) Low (56.2–80.1) High (80.1–95.4)

Population 85,545 42,836 42,709 43,378 42,167
Age (SD) 51.65 (11.47) 52.23 (10.89) 51.08 (12.00) 51.64 (11.50) 51.67 (11.43)
Sex (%)
Male 33,878 (39.6) 14,654 (34.2) 19,224 (45.0) 17,700 (40.8) 16,178 (38.4)
Female 51,667 (60.4) 28,182 (65.8) 23,485 (55.0) 25,678 (59.2) 25,989 (61.6)

Ethnicity (%)
Han 52,176 (61.0) 107,73 (25.1) 41,403 (96.9) 26,422 (60.9) 25,754 (61.1)
Minorityb 33,369 (39.0) 32,063 (74.9) 1306 (3.1) 16,956 (39.1) 16,413 (38.9)

Education level (%)
Illiteracy 20,700 (24.2) 15,990 (37.3) 4710 (11.0) 10,191 (23.5) 10,509 (24.9)
Primary school 21,963 (25.7) 12,825 (29.9) 9138 (21.4) 9370 (21.6) 12,593 (29.9)
Junior high school 22,794 (26.6) 9148 (21.4) 13,646 (32.0) 12,036 (27.7) 10,758 (25.5)
High school 10,329 (12.1) 2642 (6.2) 7687 (18.0) 6096 (14.1) 4233 (10.0)
Junior college and above 9759 (11.4) 2231 (5.2) 7528 (17.6) 5685 (13.1) 4074 (9.7)

Annual family income, yuan (%)
<12,000 14,841 (17.3) 10,263 (24.0) 4578 (10.7) 7702 (17.8) 7139 (16.9)
12,000–19,999 15,033 (17.6) 9710 (22.7) 5323 (12.5) 6891 (15.9) 8142 (19.3)
20,000–59,999 30,763 (36.0) 15,626 (36.5) 15,137 (35.4) 14,705 (33.9) 16,058 (38.1)
60,000–99,999 12,969 (15.2) 4065 (9.5) 8904 (20.8) 7389 (17.0) 5580 (13.2)
≥100,000 11,939 (14.0) 3172 (7.4) 8767 (20.5) 6691 (15.4) 5248 (12.4)

Smoking status (%)
Never smoking 63,508 (74.2) 33,173 (77.4) 30,335 (71.0) 32,700 (75.4) 30,808 (73.1)
Quit smoking 4331 (5.1) 1561 (3.6) 2770 (6.5) 2284 (5.3) 2047 (4.9)
Smoking 17,706 (20.7) 8102 (18.9) 9604 (22.5) 8394 (19.4) 9312 (22.1)

Alcohol drinking status (%)
Never 47,697 (55.8) 27,663 (64.6) 20,034 (46.9) 21,287 (49.1) 26,410 (62.6)
Occasionally 26,355 (30.8) 10,508 (24.5) 15,847 (37.1) 16,203 (37.4) 10,152 (24.1)
Regularly 11,493 (13.4) 4665 (10.9) 6828 (16.0) 5888 (13.6) 5605 (13.3)

Secondary smoking (%)
Yes 42,964 (50.2) 20,973 (49.0) 21,991 (51.5) 22,448 (51.7) 20,516 (48.7)
No 42,581 (49.8) 21,863 (51.0) 20,718 (48.5) 20,930 (48.3) 21,651 (51.3)

Indoor air pollution (%)
Low 13,449 (15.7) 6368 (14.9) 7081 (16.6) 6947 (16.0) 6502 (15.4)
Moderate 67,851 (79.3) 33,161 (77.4) 34,690 (81.2) 34,228 (78.9) 33,623 (79.7)
High 4245 (5.0) 3307 (7.7) 938 (2.2) 2203 (5.1) 2042 (4.8)

Fruits intake (%)
Never or little 15,145 (17.7) 8707 (20.3) 6438 (15.1) 9105 (21.0) 6040 (14.3)
1–3 day/week 21,802 (25.5) 11,260 (26.3) 10,542 (24.7) 11,104 (25.6) 10,698 (25.4)
4–6 day/week 3419 (4.0) 1538 (3.6) 1881 (4.4) 1985 (4.6) 1434 (3.4)
Every day 45,179 (52.8) 21,331 (49.8) 23,848 (55.8) 21,184 (48.8) 23,995 (56.9)

Vegetable intake (%)
Never or little 587 (0.7) 386 (0.9) 201 (0.5) 254 (0.6) 333 (0.8)
1–3 day/week 1107 (1.3) 739 (1.7) 368 (0.9) 382 (0.9) 725 (1.7)
4–6 day/week 298 (0.3) 193 (0.5) 105 (0.2) 117 (0.3) 181 (0.4)
Every day 83,553 (97.7) 41,518 (96.9) 42,035 (98.4) 42,625 (98.3) 40,928 (97.1)

Red meat intake (%)
Never or little 8253 (9.6) 6030 (14.1) 2223 (5.2) 3262 (7.5) 4991 (11.8)
1–3 day/week 13,978 (16.3) 7770 (18.1) 6208 (14.5) 6058 (14.0) 7920 (18.8)
4–6 day/week 2402 (2.8) 1063 (2.5) 1339 (3.1) 1256 (2.9) 1146 (2.7)
Every day 60,912 (71.2) 27,973 (65.3) 32,939 (77.1) 32,802 (75.6) 28,110 (66.7)

Physical activity, METs/d (%)
Quintile 1 [0,11.7] 20,633 (24.1) 8768 (20.5) 11,865 (27.8) 10,198 (23.5) 10,435 (24.7)
Quintile 2 (11.7,21.9] 21,389 (25.0) 8447 (19.7) 12,942 (30.3) 11,063 (25.5) 10,326 (24.5)
Quintile 3 (21.9,37.2] 21,752 (25.4) 11,220 (26.2) 10,532 (24.7) 11,502 (26.5) 10,250 (24.3)
Quintile 4 (37.2142] 21,771 (25.4) 14,401 (33.6) 7370 (17.3) 10,615 (24.5) 11,156 (26.5)
Residential greenness, NDVI (mean (SD)) 0.39 (0.13) 0.44 (0.12) 0.35 (0.12) 0.40 (0.13) 0.38 (0.12)
Allostatic load index (mean (SD)) 3.06 (2.26) 3.27 (2.24) 2.85 (2.26) 2.94 (2.28) 3.18 (2.23)

Data are the mean (standard deviation, SD) for continuous variables and number (percentage) for categorical variables.
Abbreviations: METs, metabolic equivalent tasks; NDVI, the Normalized Difference Vegetation Index.

a The cut-off value for air pollution concentrations is based on the median, where less than or equal to the median is defined as low concentration.
b Minority includes Buyi ethnicity, Dong ethnicity, Miao ethnicity, Bai ethnicity, Yi ethnicity and Tibetan.
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norepinephrine, and glucocorticoids) from the adrenal gland into the
circulation (Koren et al., 2012; Ranabir and Reetu, 2011). In addition,
sympathetic nerve endings distributed throughout all organs produce
5

norepinephrine locally. These stress hormones can mediate a wide range
of physiological effects through activating adrenergic and glucocorticoid
receptors, such as lipid synthesis and redistribution, insulin secretion,



Fig. 1. Study design and the distributions of exposure and outcome. A is the study design, including the measurement time of exposure and outcome. B is the maps of the
three-year average air pollution exposure for the study participants (The separate exposure map is shown in Fig. S4). C is the distribution of allostatic load scores among
study participants.
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inflammation, vasoconstriction, and so on (Thomson, 2013). The neuroen-
docrine system is critical for normal homeostasis (Ramsay and Woods,
2014). If exposed to air pollution for a long time, the persistent activation
in the neuroendocrine response system can break the allostasis balance
and result in allostatic load (Snow et al., 2018; Thomson, 2019). The dam-
age during these processes can eventually lead to cardiometabolic disease,
neurodegenerative disease and developmental abnormalities (Juster et al.,
2010; Snow et al., 2018).

Multiple experimental studies have provided evidence to support the
mechanisms abovementioned. In an animal study, rats' exposure to concen-
trated air particles activated the stress axis and increased the corticosterone
level compared to rats' exposure to normal air (Sirivelu et al., 2006). Thom-
son et al. mapped gene expression profiles across various tissues in Fischer
rats exposed to PM or O3 (relative to air-exposed controls) and found that
exposure to pollutants can activate the HPA axis and produce common sys-
temic effects (Thomson et al., 2013). A recent animal study showed that the
adrenergic and glucocorticoid receptor antagonists can reduce pulmonary
injury and inflammatory effects caused by O3 (Henriquez et al., 2018). In
a randomized, double-blind crossover trial of 55 students, using air puri-
fiers to reduce indoor PM was associated with reductions in the stress hor-
mone, suggesting that higher PMmay activate the HPA and SAM axes, and
then induce metabolic alterations (Li et al., 2017). Another randomized,
double-blind, crossover trial of 22 healthy young adults found that acute
ozone exposure increased the secretion of neuroendocrine stress hormones
(Wang et al., 2022).
Table 3
Relative risk (RR, 95% CI) of allostatic load associated with each 10 μg/m3 increase
in three-year average concentrations of PM1, PM2.5, PM10, and O3.

Air pollution Relative risk (RR)b 95% CI E valuea

PM1 1.020 (0.990, 1.050) 1.16 (1.00)
PM2.5 1.040 (1.024, 1.057) 1.24 (1.18)
PM10 1.029 (1.018, 1.039) 1.20 (1.15)
O3 1.087 (1.074, 1.101) 1.39 (1.36)

Abbreviations: PM1, particles with aerodynamic diameter ≤ 1.0 μm; PM2.5;
particles with aerodynamic diameter≤ 2.5 μm; PM10, particles with aerodynamic
diameter≤ 10 μm; O3, ozone.

a E-value for point estimates and the lower bound of the 95% confidence of the
relative risk.

b Adjusted for age, sex, ethnicity, region, education level, annual family income,
smoking status, alcohol drinking status, physical activity, fruits intake, vegetable in-
take, red meat intake, secondary smoking, indoor air pollution, and residential
greenness.
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4.2. Comparison with other studies

Only two relevant epidemiologic studies examined the effect of air pol-
lution on allostatic load. One cross-sectional study among 115 office
workers in Taiwan examined the relationship of indoor environmental
quality with allostatic load score (Jung et al., 2014). The result reported
no significant association between indoor PM2.5 exposure and total
allostatic load score. Another cross-sectional study of 2338 youth with
type 1 diabetes investigated the effects of long-term exposures to traffic-
related air pollutants on allostatic load (Montresor-López et al., 2021).
This study still reported no significant associations in the main analysis,
while a higher allostatic load was observed for non-white participants
who lived closer to heavily-trafficked roads in stratified analyses. The insig-
nificant associations between PM and allostatic load found in these two
studies may due to the relatively small sample sizes to some extent. Collec-
tively, the current study is the first to find significant positive correlations
between long-term exposure to PMandO3 and allostatic load in a large gen-
eral population. Moreover, E-value analysis were performed to quantify the
strength of the observed association against potential unmeasured con-
founders, which may help to improve the ability of researches to assess ev-
idence from the observational study (VanderWeele and Ding, 2017).

4.3. Modification effect

In this study, we observed that the elderly and minorities might suffer
greater harmful effects of air pollution on allostatic load than younger
and Han. Studies have shown that physiological challenges, represented
by allostatic load, increase with age (Crimmins et al., 2003). The modifica-
tion effect of age on air pollution-induced allostatic load may be due to
brain structural changes (Ritchie et al., 2017), white matter and brain vol-
ume decreasing (Booth et al., 2015), and physiological decline in the el-
derly (Crimmins et al., 2003). Furthermore, despite improvements in
living standards and conditions in less-developed ethnic minority regions,
certain economic and health disparities still exist. Some of ethnicminorities
are concentrated in remote rural regions, while a larger proportion of Han
resides in urban areas. The inequality in socioeconomic status levels be-
tween urban and remote rural areas may be a possible explanation for the
worse health effect among minorities. Rural inhabitants have lower in-
come, education, and quality of health services, probably leading to less
awareness of proactive health care compared with urban residents (Chen
et al., 2019; Chen et al., 2020). Our results suggest that the elderly and
minorities would be better to take more protection against air pollution
exposure and to be allocated more health resources.



Fig. 2. Relative risks (95% CI) of allostatic load associated with each 10 μg/m3 increase in three-year average concentrations of PM1, PM2.5, PM10, and O3, modified by
individual factors and some other non-chemical stressors. The effects were estimated after adjusting for age, sex, ethnicity, region, education level, annual family income,
smoking status, alcohol drinking status, physical activity, fruits intake, vegetable intake, red meat intake, secondary smoking, indoor air pollution, and residential
greenness (excluding the evaluated effect modifier). Statistically significant modifier effects were tested using a heterogeneity test. Abbreviations: PM1, particulate matter
with an aerodynamic diameter ≤ 1 μm; PM2.5, particulate matter with an aerodynamic diameter ≤ 2.5 μm; PM10, particulate matter with an aerodynamic diameter ≤
10 μm; O3, ozone.
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In addition to the intrinsic factors (age and ethnicity), the current study
highlights that socioeconomic position (education and income level) might
modify the associations between air pollution and allostatic load. This find-
ing is consistent with the evidence from previous studies indicating that
lower education and income, acting as a chronic stressor, is a risk factor
for allostatic load (Dowd et al., 2009; Gustafsson et al., 2011; Hawkley
et al., 2011; Hickson et al., 2012; Robertson et al., 2015). Previous studies
have also reported that simultaneous exposure to non-chemical stressors
Table 4
Sensitivity analyses for the association of allostatic load with each 10 μg/m3 increase in

PM1 PM

Main analysesa 1.020 (0.990, 1.050) 1.0
Additional adjustment for:
Mental health-related factorsb 1.022 (0.997, 1.048) 1.0

Additional excluding:
Those living in Tibet 1.031 (1.001, 1.062) 1.0
Those at the current residence <3 years 1.034 (1.002, 1.068) 1.0
Those with specific diseasesc 1.021 (0.986, 1.058) 1.0

Abbreviation: PM1, particles with aerodynamic diameter ≤ 1.0 μm; PM2.5; particles wi
10 μm; O3, ozone.

a Main analyses: adjusted for age, sex, ethnicity, region, education level, annual fami
vegetable intake, red meat intake, secondary smoking, indoor air pollution and resident

b mental health-related factors included: anxiety, depression, insomnia, and major lif
c specific diseases included: diabetes, hypertension, hyperlipidemia, cardiovascular d
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exacerbates the effects of air pollutants on allostatic load (Clougherty
et al., 2007; Hicken et al., 2014; Shankardass et al., 2009). Interestingly,
we found the association between O3 and allostatic load was significantly
increased among participants with higher physical activities. The reason
may be related to adipose lipolysis. A crossover clinical study found expo-
sure to O3 alongside exercise increases circulating free fatty acids and glyc-
erol (Miller et al., 2016). Moreover, areas with higher physical activity
include more field workers or migrant workers who spend a lot of time
three-year average concentrations of PM1, PM2.5, PM10, and O3.

2.5 PM10 O3

40 (1.024, 1.057) 1.029 (1.018, 1.039) 1.087 (1.074, 1.101)

33 (1.019, 1.047) 1.028 (1.019, 1.036) 1.063 (1.051, 1.075)

39 (1.023, 1.056) 1.029 (1.018, 1.040) 1.089 (1.075, 1.102)
40 (1.023, 1.058) 1.029 (1.018, 1.041) 1.090 (1.076, 1.104)
32 (1.014, 1.051) 1.021 (1.009, 1.033) 1.085 (1.068, 1.101)

th aerodynamic diameter≤ 2.5 μm; PM10, particles with aerodynamic diameter≤

ly income, smoking status, alcohol drinking status, physical activity, fruits intake,
ial greenness.
e events.
iseases, malignant tumors, tuberculosis, cirrhosis or pregnancy.



Table 5
Relative risks (RR, 95% CI) of allostatic load associated with air pollution by different exposure windows.

Air pollution Exposure windowsa

One year Two years Three years Four years

PM1 1.011 (0.989, 1.033) 1.032 (1.004, 1.061) 1.020 (0.990, 1.050) 1.021 (0.993, 1.049)
PM2.5 1.033 (1.017, 1.049) 1.037 (1.021, 1.054) 1.040 (1.024, 1.057) 1.043 (1.026, 1.060)
PM10 1.028 (1.019, 1.038) 1.032 (1.022, 1.041) 1.029 (1.018, 1.039) 1.029 (1.018, 1.039)
O3 1.091 (1.076, 1.106) 1.060 (1.046, 1.075) 1.087 (1.074, 1.101) 1.081 (1.068, 1.095)

Abbreviation: PM1, particles with aerodynamic diameter ≤ 1.0 μm; PM2.5; particles with aerodynamic diameter≤ 2.5 μm; PM10, particles with aerodynamic diameter≤
10 μm; O3, ozone.

a Adjusted for age, sex, ethnicity, region, education level, annual family income, smoking status, alcohol drinking status, physical activity, fruits intake, vegetable intake,
red meat intake, secondary smoking, indoor air pollution and residential greenness.
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outdoors and may have poorer health condition despite having higher
physical activity than the average person. In addition to air pollutants,
other environmental, social, and individual stressors, as well as the result-
ing health-damaging behaviors may play together to affect allostatic
loads. Research on the combined and cumulative effects of air pollution
and multiple other stressors and the characteristics of their interactions
may be important. Future research will provide insight into such issues.

4.4. Limitations and strengths

The current study has some limitations. First, primary mediators, com-
prising stress-related hormones (such as cortisol) in response to acute
stressors, were not included in the allostatic load score because of data un-
availability in the CMEC. Indeed, our study included secondary mediators
resulting from the long-term actions of the primary mediators as much as
possible. The current study examined the effect of long-term exposure to
air pollution, and it seems reasonable to construct allostatic load scores
using secondary mediators. Second, we calculate the allostatic load score
by assigning equal weights to twelve biomarkers, possibly ignoring the
different contributions of biomarkers to allostatic load. Third, we used the
traditional approach (75th or 25th percentile bounds by age) to define
high-risk cut-offs for the AL biomarkers, which may not accurately repre-
sent the true clinical status. However, the theory of allostatic load focuses
on measuring sub-clinical dysregulation, and thus the cut offs of distribu-
tion may be more appropriate than clinical reference values (Seplaki
et al., 2005). Finally, we assessed participants' air pollution exposure levels
at their residential address, which may not fully represent the actual expo-
sure levels given their activity patterns.

Apart from the shortcomings mentioned, this study has some advan-
tages. The study's participants were from the baseline survey of a large
and well-characterized cohort, which incorporated extensive personal
Fig. 3. Associations between ambient air pollutants and allostatic load in single pollutan
diameter≤ 1.0 μm; PM2.5; particles with aerodynamic diameter≤ 2.5 μm; PM10, partic
the pollutant effect presented in the figure; Triangle, the relative risk of allostatic load i
pollutant models.
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information, such as detailed lifestyle factors and indoor air pollution infor-
mation. This helps us to adjust for confounders more fully. Lastly, this study
used a doubly-robust causal approach mimicking randomized trials with a
counterfactual framework. This approach will similarly produce an
unbiased causal estimator either the inverse probability weighting model
or the outcome model are correctly specified. After conducting several sen-
sitivity analyses, the results were consistent and have not substantial
changed.

5. Conclusion

This study identified that long-term exposure to ambient air pollution
(PMs and O3) was significantly associated with an increased risk of
allostatic load. We also found that increasing age, minorities, lower educa-
tion and lower income may exacerbate the harmful effects of air pollution.
Our findings add the epidemiological evidence about the ambient pollut-
ants' broad damaging effects on multiple organs and systems. Ambient air
pollution acting as a chronic stressor leads to allostatic load, which may
be the linkage of various air pollution-related diseases.
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